
Function Level Programs as Mathematical Obj ects

John Backus

IBM Re search Laboratory
5 6 0 0 Cottle Road

San Jo se, , Cali fornia 9 5 19 3

I. Introduction

Most programs wri tten today are "obj ect-
level" " programs. . That is, , programs des-
cribe how to combine various "obj ects" " (i.e .,
numbers, , symbols, , arrays, , etc. .) to form
other obj ects until the final "re sult ob-
jects" " have been formed. . New obj ects are
constructed from exi sting ones by the ap-
plication of various obj ect-to-object func-
tions such a s + or matrix inversion. .

Conventional, , yon Neumann programs are
obj ect level; ; "expressions" " on the right
side of assignment statements are exclusive-
ly concerned with bui lding an obj ect that is
then to be stored. . Lambda calculus based
languages, , such as LISP and ISWIM [Landin
66] , are also, , in practice, , obj ect level
languages s,, although they have the means to
be more. .

To see that "lambda style" " programs are
primarily obj ect level, , consider the defi-
nition of a new obj ect-to-obj ect function
(the usual kind of definition) , f = lx..E; ;

here x must be an obj ect variable (since
the argument of f is an object) and E must
denote an obj ect (since f ' s result is an
obj ect) . Typically E is an expression in'
volving the application of object-forming
functions to obj ect variables s and constants. .
A few obj ect-forming functions are used that
have both function and obj ect arguments. .

If we include obj ect variables in the
term "obj ects" ", , then the obj ect level view
of programming is one of buil lding obj ects
by the application of existing programs
(obj ect-forming operations) to obje ects.
Lambda style programs then buil ld a new pro-
gram from the result-obje ect by abstracting
the obj ect variables.

Ppocppuoeretmhrobremvmlmiriiwicdesasersissdtciioieoio ,ntnah nlo t oaarfoatnd dttcvthoh aoieenprt cetsyA oap dugspwasbeitoie,tels hcis t iaaohahepur,tp it reAo nfee neaCqero fu M,to i aarrm len clasC od odoa prne my fo peropteaiir gruc httaden i iotnis dfsntg rto/ giMohtibrviiusca e setcnm pehdea anictn fthidoeefari rrcttiya h .cpdel o e Tiitprsorie mty cligectinro s gasopni fyoi tsnt e hdb. e y
©1981 ACM0 -89791-060-5/81-10/0001 $00.75

There is a different approach to bui ld-
ing programs, , a " function level " one. . In
the function level style a program is bui lt
directly from the programs that are given
at the outset, , by combining them with pro-
gram-forming operations (PFOs) . Thus instead

of applying the given programs to obj ects
to form a succession of obj ects culminating
in the result obj ect, , the function level ap-
proach applie s program-forming operations
to the given programs to form a succe ssion
of programs culminating in the desired pro-
gram. .

Thus the obj ect level approach invites s
the study of the space of obj ects under the
obj ect- forming operations, , and of the alge-
braic properties of those operations. . On
the other hand, , the function level approach
invites s study of the space of programs under
the program-forming operations and of the
algebraic properties of the se PFOs. .

The study of the space of obj ects under
the obj ect-forming operations is now called
the study of data types s. . It has advanced
from focus sing on the obj ects themselves
and their structure to a primary concern

swittrhuc ttuhree oabsj ecgitv-efnor mbiyn gc eorpteariant iaxoinosm sa nodr tahle-i r
gebraic laws. . This s movement toward the
algebraic study of data types is exemplified
by [Burstall & Goguen 8 0]] , [Guttag & orning
7 8]] , [Thatcher, , Wagner & Wright 7 8]] , and
[Zilles s 7 9]] .

One goal of the function level approach
is to now move our attention in a simil lar
fashion from programs themselves and their
'~structure" " to the program-forming opera-
tions and their structure as given by var-
ious algebraic laws. Just as the study of

data types has brought out that "obj ects ' ~
compris se a "mathematical" " space by emphasiz z-
ing the algebraic properties of the opera-
tions on that space, so the function level
approach offers the possibil lity of making
the set of programs a mathematical space by
emphasiz zing the algebraic properties s of the
program-forming operations over the space of
programs.

One purpose of this s paper is s to contrast
the obj ect t level and the function level ap-
proaches s to programming. The latter ap-
proach is not well unders stood by many users s
of lambda style languages , who mi stakenly
regard it a s merely a re strictive variant
of the lambda style, , which is an obj ect lev-
el style. .

Sec tion 2 is a very brief summary of the
FP style of programming [Backus 7 8]] which
we shallu se as an example of the function
level style. . Sec tion 3 di scusses what we
mean by a set of "mathematical obj ects" ,
the advantages of a concept of "programs" "
in which h programs compris se a se t of mathe-
matical obj ects, and why the obj ect level
view blocks s, , whereas s the function level l
view advances s thi s obj ective.

Section 4 compares obj ect levellfunction
definit tions and function level ones s. . It
gives a mapping, "lift" ", , that tran sforms any
obj ect level ldefinit tion into a corres spondin g
func tion level lone, , where obj ect variables
in the first kind are rep laced by function

variables in the second. . Thi s introduction
of function variables makes s "extended" FP
de finit tio ns a s readable a s obj ect t level l ones s, ,
thereby removing one of the principal diffi- -
cu lties s people have experienced wi th the FP
variable-free style. . Extended definit tions
also turn out to be use ful algebraic laws
a bout t the func tions s the y de fine.

Sec tio on 5 shows why variables are e s sen-
tial in obj ect t level definit tions but not in
function level ones s. . It shows how func tion
variables in the latter can be removed, giv-
ing a "proper" ", , variable-free definit tion of
the same function.

Sec tion 6 di scusses two further advan-
tages s o f the function levellview. . One is
the abi liit ty to use only strict t functions s
and thereby have bottom-up semantic cs s (the
simples st kind)) that are " safe" " for comput-
ing lea st fixed points. The other is the
exi stence of func tion level ldefinit tio ons
that are not the "lifted" " image of any ob-
jec t level l one. . Thes se "ter se" " function
level definit tions represent a more powerf ful
style of programming no t avai lable a t the
obj ect t level; ; they are often ea sier to un-
der stand and to re a son about. .

Sec tion 7 compares s lambda style and FP
style programs. It shows that the former
tend to be unstructured whereas s the latter
are highly structured. The lambda style
tends s to obscure function level lidentities
that are clear in function level expres s-

sions; ; it obscures s and complicates function
level reasoning about programs.

2. Bstriyleef osfu mpmraorgy rao~f, ~itnhge FP function level

Here we give the shortes st de scription
we can of the essential elements of FP pro-
grammin ng. For a complet te de scription see
[Backus 7 8] .

The "obj ects" " that FP programs map into
one another compris se a set whose primary
property is closure under " sequence forma-
tion": : if X l,. . . ,x x n are obj ects, then the

sequence <Xl ,.. . ,Xn > is an object. Thus

the obj ect ts can be bui lt from any set of
atoms (which should contain numbers , truth
values, symbols s, etc. .) .

FP programs are functions f that each
map a singl le obj ect t x into another. We
write f :x for the obj ect that re sults from
applying the function f to the obj ect t x..
Functions are either primitive (given)) or
are bui lt from the primitives by program-
forming operations, or PFOs (also called
combining forms or funct tional forms)) . One
such PFO, , constant, transforms an obj ect x
into the constant-valued function x, ,where

~ :y= x

for allobj ects y (except the "undefined" "
obj ect, , which allfunctions map into itself)).
Next there are the three principal PFOs s of

FP, , which map, , respectivel y, two, , na l, or
three functions into a single function as
fol lows:

composition fog
f o g: :x = f : (g :x))

construction [fl ,. . . ,fn]
If ,g]] :x = < f :x, , g :x>

[fl fn] :x = <fl :x fn :x>

condition (p+f;g)
f :x if p :x = T

(p+f ;g)) :x = g :x if p :x = F

undefined otherwis e

Other PFOs are apply-to-all , ~f,, where
ef: <x I ,. .. ,Xn> = <f:x I ,... ,f :Xn>; right in-

sert, , /f,, where /f::<x> = x and

/f:<xl x 2 Xn> = f:<xl ,/f: <x 2 Xn>>; ;

and le ft insert \ f,, which works s like right
insert except that the computation associates
to the left. . Right or left insert of f ap-
plied to the empty sequence gives s the right
or left uni t of f if f ha s such a unit t..

In addi tion to being constructed from
primitives by PFOs, , a function may be defined
recursively by an equation, the simples st
kind (without vari ables, more on equations
wi th variables later)) has the form: :

f = Ef

where Ef is an express sion bui lt from primi- -
tives s, , defined functions, and the function
symbol f by PFOs. .

Of the many possible primitive functions
here we note only the basic " selector" func-
tions, , denoted by 1,2 ,. . . , where, , e .g. . ,

1 :<x I , Xn> = Xl , 2 :<Xl, X 2 .. . ,Xn> = x2 ,
e tc .

3. Programs as mathematical objects.
When we say that a set S is a set of

Si"n mtaaotn hd eS)ma atssiuectca hl o ft hoaobpjt eercttahste"is,oe n sow pe eornaa rteSi ons(stp heaatka irenm ga pi onSf- n
terre lated by algebraic laws. . The " strong-
e st ' laws are " symmetric" one s like the
distributive law that re late two operations
A and B , in which operation A , combining
obj ec ts s formed by operation B , is expres ssed
a s operation B combining e lements formed by
operation A . Other "weaker '~, non-s symmetric
laws may re la te several loperat tio ons. The
more and the stronger laws that relate the
operations on S , the " stronger" is their
algebraic structure and the stronger is the
"mathematical structure" of the set S .

If the operations of a set of mathemat-
ical obj ects obey a strong set of interrelat-
ing laws, , then there will exi st a large body
of general theorems about the se t.. Thus
there are many such theorems concerning the
set of numbers under addit tion and mult tiplica-
tion, , or about rings in general, or about
ca tegories , etc. . On the other hand, if the
operations on a set obey only a few weak laws,
there wi ll be few general theorems. Thus
the set of numbers under addit ion and square
root hardly deserves to be called a set of
"mathematical obj ects" since there are few
general laws and theorems about it (unless
other operations, e .g. ., multiplication, are
added and obey laws relating to the other
two))

mtcmgouafautapniahierneittihvndeshor ene aefhItmsuremabfa laids e lt oat wpily(in fralascPcoyFrybaa go lpOllmrrse t)(oaqo pm vurdttoemahmooinoninsae vegn tpcke rgiaier grswfp o mpeiilsndattte)iieuch hhdsnecr ae ee a t, trol ovoevs faa seps r praitpbie tcoaehleacbcce~ i bjoetogtilrem e)osecee .f stt (m oaissb apsm rw oWpttaoddhooe(nguyer iwrdlr s thwu adtaooolomi nsfuytpsnte elhd - rdee - -at o
note programs) . Thes e theorems would ex-
press many reliable, useful facts about
large cl lasses of programs and about the
solut tions of equations whose " unknowns" are

ptrhoegorraemmss , abjouustt nasu meorridcianla rye xparlegsesbiroan s giyaneds, us
for example, the general solution for all
quadratic equations. This saves us the

mlaabnyor inodfi vriedpueaalt edplryo blaenmds . separately solving
If programs were themselves mathematical

woobjuelcdt sg,u idwee umsig h-t- adter itvhee omuatnsye tt,h eonrote msa fttehra t
tphroeg rfaamc,t -a-n d inl atheorw htoe lps turusc tpurroev e a itpsr opcoosrerde ct-
dniesresc to:r otphetoirmeizmse wiot.ul d Ocuro ncreerans ontihneg acctouualld be
PstFrOus ctwuer eu soe f ttoh ec opnrsotgruracmts outrh empsreolgvreasm.s and the

Von Neumann programs do not form a set of
mathematical obj ects for reasons relating to
their obj ect level nature; ; for further dis-
cussion of thi s que stion see [Backus 8 1a]

Tradi tional " functional" programs, , those
wri tten in the lambda style of LISP or IS-
WIM, also tend not to form a set of mathe-
matical obj ects. . These programs use lambda
abstraction a s their principal program-f form-
ing operation. Thi s PFO obeys no strong
a lgebraic laws of the k ind that are helpful
in transforming and rea soning about programs.
Its use in building an obj ect-transforming
program requires that it be applied to an
obj ect t expres ssion, one built by obj ect-f form-
ing operations from obj ect variables , where-
upon lambda abstraction "elevates " it to a
function expression.

Thu s the use of lambda abstract tion a s the

PFO of the lambda style means that most pro-
grams are largel ly y obj ect t level l;; exi sti ing
programs are combined, not by PFOs direct tly,
but by application to "obj ects " to form an
expres ssion for a "re sul lt obj ect" " that is
then e levated to a program by abs tract ion
of obj ect variables .

Since von Neumann programs and tradit tional
functional programs are not mathematical
obj ects, we reas son about them by mapping
them into a logical lor mathematical domain,
reason about their images s in that domain
and then translat e the re sult ts of that
reasoning back to the realm of programs.
Even in thes se other, richer domains we do
not have a satis sfactory set of laws and gen-
erall ly y usef ful theorems rel lating to programs.

Our inabil it y to change our notio on of
"program" into a more orderly concept has s
res sult ed from our tendency to keep to the
obje ect level lvie ew of programs in their r
active role as s entit ties that combine obje ects.
This view has caused us to neglect the
study of f program-f orming g operatio ns them-
selves in their active role as s entit ties that

combine programs.
The mai in purpos e of f this paper is s to point

out the importance and usefulnes s of this
second, function level view of "programs"
as s entit ies operated upon by PFOs. Only y by
taking this view can we hope to change "pro-
grams" into mat themat ical obje ect s.

FP programs serve as one example of "pro-

grams" that are mathematical obje ct s; we
need to develop other examples. Thus the
three princi pal PFOs of FP obey the kin nd
of symmet ric innterrel ating laws required
of the operations on a set of objects wit h
a strong mathematical structure; they obey
the foll owing interrel ating laws (in addi-
tion to laws concerning a sin ngle operation,
such as as ssociativity y of composition and
various laws concerning properties of con-
dit ion) :

Composition and construction
[f,3]] o h : f oh,, 3 oh h]

Thi s is a symmetric law since it expres sses
composit tion involving con struction a s con-
struc tion involving compos sit tion, just as the
distributive law of ordinary a lgebra expres s- -
se s multiplication involving addi tion a s
add it tion involving multiplication:

(a+b) c :ac + bc .

Composition and condition
([,-~f f; ~]) o h :p oh h +f oh; ~j jo h

h °({ {' '÷f;;w w) = ~, -~ ho f; h o g

Again n both laws are symmetric ones s, , composi- -
tion involving a condition is expres ss sed as
a condit tion involving compos sit tion.

Con structio n and condit tio on

[f, (k÷:1 ;h)] = P -~ [f,u]] ; [f, l~]

(The same symmetry princi iple applies to

tshiimsi lalra w,o newsh.i)c h is only an example of many
In addi tion to these " strong" " basic

laws there are many others s, usually "weak" "
ones, , some involving the other PFOs s, , others
involving particular constants (that is, ,
particular functio ons)), corres sponding to
laws about uni ts and other entit ties. Thus, ,
e .g. . , the identit ty function is the "unit t" "
of composit tio n: fo id = ido oj'= ~' . The law

h : [1 " h ,2o oh h]] where h : [f ,j]]

corres sponds to the import tant "natural" " one-
one cor res sponden ce

h ~ " [I.h ,2..h]

in category theory [Mac Lane 7 1 , p2]] .

From the laws governing the PFOs s and
primit tive functio ons of FP one can derive
many general l theorems and the soluti ons for
several large c la ss ses of functional equa-
tions s. . For ear ly examples s of such re sults
see [Wi lliams 8 0] , [Backus 8 1] , and
[Back us s 7 8] .

The approach of viewing programs as

manadt hetmhaet idceavle loopbmjeenctt s oifs tah eofraeimrsl y inr eac endto maoinne

sutropih emc het mhariitsen h aeleamnllyatgte eibricrpnaartliie scre ec soltwamiewmn sug nc iahtnany se p we obnrielhngyasipin sgsb h ethgtsoou p ne.it naktfeooW hre n
the mathematical structure of the domain of
programs with their PFOs. . As some second-
order PFOs -- operations for combin ning first-

owifored dern esrtth iahfPlelyFs Oes ht hoae-pvee - rcaanltereeaiedno enassodt jf,o (iiannmneodsds i tgf hottour sesntefouuw cl hh e fiplsrrpyos sptute-sero mtrsi deers
PFOs)) .

4. fOtbiujnoencstct;i o nll iefvexetlpinr gea snsodi bojfneuscn:ct t iaeonxn p reelxeasmsvpielolen .sd eftio ni-
A typical obj ect level definit tio n looks s

like thi s (we u se FP syntax to c larif fy later
comparis sons) :

f :<x ,y> > = if neg: :x then 0
else + :<sqrt: x,y>

Thi s def in nes s a function f that sends s a pa ir
of numbers s < x ,y> into 0 when x is negative

and otherwis e into fk + y. . Notice that the
corres spondin g def in nit tion using lambda ab-
strac tion concerns itself f with exactly the
same obj ects s and cons structions:

f :l(x,y)) . (if neg: :x then 0
else + :< sqrt: x, y >) .

Theref fore, for the pres sent, we shall ldi s- -
pens se with lambda abstract tion (we sha lll
have more to say a bout the " lambda style" "
of programming later)) and use traditional
obj ect t levelldefi innit tio ns a s above. .

Notice that obj ect t expres ss sions, like that
on the right above, , are bui lt up from atomic
obj ect ts (e .g . , 0) and obj ec ct varia ables
(x and W) by the applic cation o f ordinary
obj ect-f forming functions (neg, , +, , sqrt t)
and by two obj ect t-f formin g operatio ons tha t
are treated specially, if-then-el se and
sequence-formation or tupli ng (that maps s
n obj ect ts x ,Xn into the sing le obj ect

<Xl ,. . . Xn>) •

Thus obj ects and obj ect variables are
object expressions and if e, el , en are

obj ect expres ss sions and if f is an obj ect t-
formi ng functio on, then

(a) (f :e))

(b) if e I then e 2 else e 3

(c) <el , .. . ,en >

a re obj ect t expres ss sions.
It is c lear tha t a n obj ect t expres ss si io on

contain nin ng no varia ables denotes s an obj ect t
that is the value of the expres ssion, thus

the expres ss sion +: < 2, , 3> > denotes s the value
5 .

Now c on si ider r t he following mappi inng that
" lifts" " obj ect expres ssions e onto function

expres ss si io ons 6 :lift t((e e))

The mapping "lift" : {e] ÷ {e}
We g ive the values o f lift((e e)) for the
f ive po ss si ib ble c a ses s: :

a)) e is an obj ect:

lift((e e)) =

b) e is an obje ct variable:

lif t(e) = e

wxh eirse ,t hee .gf.u,n ctliiofnt ovaf ritahbel e objx.e ct variable
c) e is an application (f: :d d) where f is s

an obje ct-fo orming function and d is s an
obje ct expres sion:

lift((:d d)) :fo od
d) e is formed by if f- then-else:

lift(if e I then e 2 else e 3)
= el + e2; e3

e) e is s a sequence:

lift(<elen>) = [el .. . en]

i(nNtoot e onteh,a t whiefr-etahse n-ceolnsdei tiomna,p s otnhr eteh e orbijgehctt s

Hienr e (d)i s, maan pse xatmhprleee: functions into one.)
lift(+: < g:x ,h :3>) :+o [g ox, ,h o3] ,

where x is s an obje ct variable on the left
and a function variable on the right.

Notice that an obje ct expres sion e wit th-
out variables is lif fted onto a function ex-

pression ~ whose function-value is the
constant-valued function v, , where v is the

oibnjdeiccta-tevda lueb y othf e e.f ollTohwiisn g relcaotmimountsihnigp diias-
gram:

lift
object value ~ $ function value

lift

Thus, for example:

val lue(+:< 2, 3 >) :5

lift(+: < 2 ,3 3> >) = +o [2 ,3]

function-value(+ o [2 ,3]) = 5 :lift(5)

But keep in mind that most function expres-
sions are not lift-images of obj ect expres-
sions.

Using the lift mapping we can write the
function level vers sion of our earlier ex-
ampl le:

(I) object level:
f :<x, y> = if neg: x then 0 else + :<sqrt: x,y>
(2) function level:
f0 [x ,y]] :negox ÷ 0 ; +o [sqrtox, y]

Ju st a s the obj ect level lvers srio n (I) is to
hold for all obj ect values of the variables
x and y , so the function level version (2)
is to hold for all function values of the
varia ables x and y .

If f, for the moment, we think of the var-
ia able s x and y as having fixed obje ct or
function val ues respectively in the two
equations, denoted x and y in both cases,

mtheentn , iwnh er(Ie)a s< x,iyn > (2i)s t[hxe,y]v aliuse thoef ff'usn ctairognu -
that constructs f' 's argument. Thus when
fo[x,y] :w is computed for any object w, f
" sees" the argument <x x: w,y :w w >. When the
right side of (2) is applied to the same
obje ct w, then every occurrence of x will
produce x: w,just as it t does on the left
side; simil arly every occurrence of y will
produce the same obje ct on both sides of
the equation. So the functional equation
(2) asserts that, to compute fo o [x, ,y y] :w =
f: :< <x:w,y: :w w> one computes

(negox ÷0; +o [sqrtox, y]) :w ,
which is s 0: :w w = 0 if f neg: (x: :w w) = T , or

+: :< <s qrt: (x: :w w) , y: :w w>

if f neg: (x: :w w) = F.

This computation for the "extended" FP
definit ion (2)) corresponds exactly with what
we understand from (I) except that the

ti(nhve a r(io2ab) bjlebecy)t x:wowb ,ja ercewt h evraxer iianbb olte(h I) etlihseem erfnuetnpscr teisoe(nnb tute dx ian nd
(2)) the variable obje ct w is s only implicit
by virtue of the fact that f=g means
f :w = g: :w w for all obje ects w).

Another way to see that (I) and (2)) define
the same function f is to compare the obje ect
level computation of (I) for a particular
argument, say < 4, ,3 3>, with the corresponding
function level calculation for (2) .
(I') f :<4 4, 3 > = 4 : <s sqrt:4 4 , 3 >

since neg: 4 = F

= 5

Lif ft ting 4 and 3 yields the cons stant-valued

functions ~ and 3. . Thus the lift of < 4 ,3> >

is the function [4 ,3], and (2) becomes

(2 ') fo [4, 3] = nego~ + 0; +o sqrto4, 3]
It is easy to see that nego~ = F, (F÷g;h h)

= h, sqrto4 = 2 , and +0 [2, 3] = 5 are triv-
ial function level identities (if you wi sh
you can view them as lifted from their obje ect
level counterparts). Fromt ese we obtain
at the function level

f o [~ ,3]] =

And in general, if (I) yields f :<x, ,y y> = z ,
then (2) will give

f o [x ,y] =

Thus (I) expres ses the fact that the ob-
j ect f :< x, ,y y> is the same as the obj ect-value
of the expres sion on the right, no matter
what obj ects one chooses a s x and y . As
expected, (2) expres s es the " same" - thing

except in its "lifted" vers sion: the function
f o [x ,y] is the same as the functio on-value of
the expres ssion on the right, no matter what
functions one choos ses as x and y. .

5. fWthhueny cttoihboejn e cftlu encvleteliv eolnd; e flideneviertlii voiinnssg prfvaerrfomie arbatlbhelo-es fer teoe
uweitdh. function variables: example contin-

What t, if any, , are the advantages of us ing
the lift ted vers sio on of a de fin ni it ion? (We
continue to refer to definit tions (I) and (2)
of the la st section.) Now (I) allows us to

rrxie gpalhntad.c e y , Tthbhyie s othfbojer eccoetbs j ecuft:s,-< exx,ipynr> e,sr esaifosoronn ianongny atobhboeju etc ts
the program f or some program that uses s f ,
to de scend from the domain of programs to

the domain of obj ects . Clearly it is simpler
and more direct if we can reason about the
program f in the program domain wi thout
referring to obj ect ts at all l;; the funct tion
level definit tion (2) a llows us to do just

bpTthrhya oergttr.ehfa em or Tperh oufogs (r2a[)x(m ,2-y)ie]sx, pa arlel fosogrswe niso eanruna syl ,otp nor ougrtsreheapefm ulslar cieglx h atwat. nh dea boyu, t
f that can be used to reason about f and

porf ogprraomgsr amuss.i ng f without leaving the domain

Many programs that use f will construct
an argument for f with a function of the
form [g ,h] , and so fo [g ,h] will occur in

tawi hetlh a wp traohbeg rouafmtu nucft,s iionagnl loefwx. sp reTushssu isto on (r2)e,p larceeg arfdoe[dg ,ha]s
negog ÷ 0; +o [sqrtog, hi ;

thi s elimination of f may help us to reason
about or trans sform the using program.

In addition to serving as a useful alge-
braic law about f , (2) has another advantage
over (I) . In (I) the variables x and y are
absolutel y e s sentialin def finning the funct tion
f : the obj ect level lapproach, by definit ion,
is dedic cat ted to de scrib bing functio ons by des s- -
cribing their values for all arguments , in
this s cas se denoted by x and y . But in (2) ,
as we shall see, , the function variables x
and y are not es sential in definin g f ; their
purpose is (a) to make the definit ion more
readable and (b) to provide the variables of
an algebraic law about f .

Let us try to derive a "proper" , variable-
free definit tion of f from the def finition (2) .

Since (2) is to hold for all functions x
and y,, we might ask if there are particular
functions s I and s 2 such that [Sl ,S 2] is the

identity on pairs, the domain on which f is
to be defined. If s I and s 2 exist, then, in

the domain of pairs, fo [sl s 2] = f, and so,

if we substitute s I and s 2 for x and y in

(2) , we get

(3) f = negos I ~ 0; +o [sqrtos I , s 2]

For [Sl ,S 2] to be the identity on pairs, it

is neces ss ary and suf ficient that the func- -
tions s I and s 2 satisfy

Sl O [x,y] :x and s2o [x,y] = y

when both x and y are def fined. Now of
course the selector functions I and 2 have
this s propert y and are the funct tions that
we want for s I and s2, since [1,2] is the

identit ty function on pairs :

[I,2]] :<x ,y> = < 1 :<x, ,y >, 2 :<x, ,y>> = <x, ,y>.

Substit tuting thes se values in (3) gives s
(4) f = negol ÷ 0; +o [sqrtol , 2] ,
which defines the sam~ function a s (I) and

(2) on the domain of pairs. But the right
side of (4) is defined for sequences of any
length whos se firs st two e lements are numbers .
If we want f to be undefined for allnon-
pair rs, we must insert a predicate that t
ensures this s:

(5) f = eqo [[[1 1, 2I,id] ÷ E;

where eq is the equali it ty function, id is
the identity function, E is the right side

of (4) , and [is the everywhere- undefined
function. Now (5) defines exactly the
funct tio on we intend by (I) and (2) : it is
undef fined for arguments that are not pair rs s
of numbers .

In the two preceding sections we have
tried to give an informal idea of how "ex-
tended" FP definit ions using function vari-
ables can be used to make easil ly readable
de finit ions that corres spond exact tly to ob-
j ect level ldefinit ions. We have indicated
how thes se extended definit io ns serve as
useful laws for reas soning about the defined
function and others that use it. . And we
have indicated how extended defin nit ions can
be converted to proper, variable-free ones s.

The technical def finit ions and theorems
needed to make the noti6n of extended def f-
ini tio ons precis e and to prove the equival-
ence of the functions defined by an extend-
ed definit ion and by the corres sponding pro-

per definit ion are to be found in [Backus
8 1] .

6. tSiaofne cleovmpelu taptrioognr amrsu.l es; "terse" func-
Another advantage of the function level l

approach concerns the eliminatio n of the
obj ect level function if-then-el se, a
function that mus st be non-s stric t to be
meaningful (i.e. . it must be defined for
some undefined argument s) . Obj ect level
functional languages require at least this
one non-s strict function. As Manna et a l..
[73]] and Cadiou [72]] observe, bottom-up

computation rules s are not " safe" " for comput-
ing lea st fixed points in systems wi th non-
strict t func tions , thus s bot tom-up rules s ((giv-
ing the simples st operational semantics) are
not safe in obj ect t level languages s using if-
then-els e, hence the simplest operatio onal
semantics s are incompat tib ble wi th fixed point t
semanti cs s in suc h languages .

On the other hand, , functi on level lan-
guages s can use condi it tion, the lifted vers sion
of if-then-el ls e, a non- stric ct t func tional ; alll
functions can then be strict and bottom-up
rules s become sa fe for computing lea st f ixed
point ts. It is interes sting to note that t the
obj ect t level lview ha s so domi nat ted our think- -
ing that Manna and Cadio ou, de spit te the thor-
oughnes ss of thei r studies s of fixed points,
never considered the possi ble exi stence of
systems wi th allstrict functi ons s and hence

o f sa fe bottom-up computat tion. . (For a fuller
discussion of thi s point see [Williams 8 0] .))

Perhaps s the mo st impor tant t advant tage of
the function level lapproach is that it makes s
po s sib ble a more powerf fulland ter se sty le of
programmin ng than is possible at the obj ect
level l, , a style that o ften ha s no obj ect t lev-
elcounterpart of comparable simpl ic ci it ty.
Furthermore, thi s ter se style is often much
easier to reason about. . Let me illustrate
thi s point with an example e simi lar to one
in [Wi lliams 8 1] .

Wi llliams defines s the func tion "lengt th" "
a t the function level as follows:

(6) length = /+ o ~#
Thi s means s (a) apply (wi th apply-to-all o f 1)
the everywhere-1 function to every member
of an argument t sequence e, giving a seq uence
of a ll 1 ' s, , then (b) sum thi s (wi th /+)) ,
thereby g iving the leng th o f the origin nal.

Thi s de finit tio on uses s the PFOs s insert t (/) ,
composit tion (o) and app ly-to-all (~) to
bui ld leng th f rom the func t ions s + and 1 .
It is not c lear what obj ect level lde f init tio on
might approximate (6) wi thout the se PFOs. .
Thus, , unlike our earlier example, (6) is
not the lift of any obj ect t level lde f init tion.
The usual obj ect level definit tion of length
is recursive:

(7) length: :x = if null: :x then 0

else + :< I, length: (tl :x) >

The lifted vers sion of (7) , with the variable
removed, is

(8) length = null ÷ 0 ; +o [1, lengthotl]

One indicatio on of the use fulnes ss s of the gen-
eral l theorems of the FP style is that one
can use the general solution for all " lin-
ear" " equations [Backus 8 1] to prove that
(8) and (6) de fin ne the same function.

But the proof of a theorem about length
is often much ea sier when it starts s with the

c lo sed form (6) than when it starts with the
recurs sive definit tions (7) or (8) . For ex-
ample, , the fol lowing theorem has a re lative-
ly simple proof when length is defined by
(6) , whereas s its proof is harder and involves s
induct tion when length is defined by (7) .
THEOREM lengtho apndro [f ,g]] = +o [lengtho f, ,~]
for allfunctions f and g when g is defin ned,
where apndr is append on the right: :

apndr: :<<Xl, ... , Xn>, y> = <Xl ,. . . ,Xn, Y> •

Thi s theorem is a lifted version of one
that says: : the length of a sequence s = f :x
with an element (g :x)) added on the right, , is

one greater than the length of s .
The proof uses the following identities :

(a) ~ho apndro o [f ,g]] = apndro o [~ho f,, hog]]

(b) if h is as sociative then \ h = /h

(c) \ h o apndro o If ,g]] = ho [\ hof f,, g]]

(d) ~ og =

proof We transform the left side of the
equation into the right by the use of- the
above identit ties.

lengtho apndro [f,g]

:/+ o e~o o apndro [f,g] by def of length

= /+oapndro[elof, log] by (a)

= \+oapndro[~lof, 1] by a(nb)d (+(d)a ssoc)
= + o [\+ o e~o of, 1] by (c)

= + o [/+ o ~lo of f, 1] by (b)

= + o [lengtho f, 1] by def of length

D

mbstoeycroleThme ei,tn egopr nosieefn laymtc aienloif xa pcrrot enhswsisits etrdhue,c x tat mehpaefls uenif ceutrini sc ottnitosh o nau ttn,hdl aeetrva seftlata reenr d

and to rea son about. .

7. sgCortmarpummcairtniusgr;oen oaobnjdfe crFteP avsason.nd inlfgau.mn bcdtai ons tlyelvee lp,r op
So far we have discus ss sed a number o f

rlsietkaysle eon tsoo veferxo tr eanpn dr oebftjheaerctrti n dgli secavu eslfs uinoocnnte i. owni tNhol wea v eIml owroeu ld
"spleamcbidfai c stcyolmep"a,r istohna t oufs etdh e iFnP lsamtbydlae wcialtch ultuhse
b66a]s,e d flroamng tuhage esv ielwipkeo inLtI SPo f anpdr ogIrSaWmI M st[rLuacntduirn e.

In thi s section we shall lpoint out some
of the basic differences between the FP and
the lambda styles of functional programming.
We shall suggest that (a) the FP style leads
to " structured" functional programs, where-
as the lambda style leads to unstructured
ones, and that (b)) the FP style encourages
reasoning at the "function level" whereas
the lambda style leads to reasoning at the
"obj ect level l"" In general, we sugges st that
the FP style offers a framework in which one
can perceive and reason about program struc-
ture, truths, and transformations at a high-
er level of generality than that presently
avail lable for reasoning about lambda style
programs.

What do we mean by the " struct ture" of a
program? In a conventional, yon Neumann
language, a program is "structured" if it

has s single entry and exit t points and is buil lt t
up from subprograms of this s same kind by a

s(mPaFOlls) s. et Foorf epxroagmpralme,-f ortmhien gp rogorpaemr ations
p = if a then (while b do c) else d

is buil lt from an expression a and two pro-

bgoipwfiroyfs-a tmtihtpsht h,ieeiw on shn-i .Pe(lF ltweOhhs-e eidl .wohe o iplebienr I- atddtsiooi t .osf cn i) rfsiiTathnrf uds-s tts hdu etpbnbhrp-yeore golrg"starsehma et-m ra urcPcgoiFtumOsup m reobensu"tei dl t
In simil lar terms FP programs are complete-

ly structured. For exampl e, the program

(I) f :p ÷ q; ; h o [r r, ,s]

employs the PFO, , condition, to buil ld f from
three programs, p, , q, , and ho [r, ,s], where the

attehind doir nb dys .f otrfho em ttPhFehOes e cproinsogs trbrauumic lttih obna yn d ftrhtohe me PppFrrOoo ggcrroaammmp so sfior-r m-
In contrast to the FP emphasis on the use

of program-forming operations to bui ld struc-
tured programs at the function level, the
lambda style emphasiz es obj ect-forming oper-
ations and is more often concerned with

ctloiomognbusei n. ionfg F o(roI b) jeexicasmt psl et,h ant hew itlha mbcdoam bisntiynlge afnuna-c -
(2) f = ix.. (p :x ÷ q: :x; h (r: :x, ,s:x))

In (I) we simply combine the functions
p, , q, , h, , r,, and s to form the function f .
In (2) we are given the same functions to
start with and want to define the same result.
But we proceed quite differently. We begin
by introducing an "obj ect" x, , and from it

whtacn(oied ormnb: f xiohn,c(rseomr :: nxdxtr)i,:,hstxe i: oxao)ann nbajddl e wcisftt:tisxhno a lfpttlo:hoyxre , m f wooeqtbr :hjmxee c, cot tmh"-berrfi e:onsxoreu,bm l jitepna"c:gn,xt d , aosqnp:: xex,r a-
hlopBaryab vimjbemewcda rtarist .yo i snpftgyraO olnrgel "r,ypia xrmo.al-d"tafu m ocbritedmhndi ai, ns f gar bvpo'sonetit orn tpatreoc afrtn adistoot finhoowe rn em o[bouCjifsheut er c ttciht hneh t weoe 4 1].
the des sired function.

As the above example shows, the typical
method of bui lding a function f in the lamb-
da style is to immediately descend from the
level of functions (those supplied to bui ld
f) to the level lof obj ects, and there combine
obj ects to form the des sired "re sult-obje ct"..
One then a scends to the function level lby
abstraction of the origin nal "obj ec ct ts" , i.e. .,
the obj ect varia ables . This s down-then-up-
again approach and its concern with obj ect-
forming operations avoids the use of PFOs
that could achieve the same re sult more
directly; theref fore it obscures the " struc-

ture" " of the program.

It is clear that it is the use of lambda
abstraction as the princip al PFO that leads
to the obj ect-oriented, structure-obscuring
nature of the lambda style. If a funct tion
f maps obj ects into obj ects and is bui lt
by lambda abstraction, f = Ix..E, then x
must be an obj eqt variable (since the argu-
ment of f is an obje ect) and E must denote
an obj ect (since the re sult of f is an ob-
ject) .

The re lative struct turel es sness s o f lambda
style programs makes it difficult to recog-
nize even simple re lationships between pro-
grams. For example, it is harder to recog-
nize an instance of the following simple
identit ty in the lambda style,

(3) ly.. ((Ix .< f: :x x, g:x >) : (h:y) =

ly. .<I Ix. (f : (h :x))) :y, , Ix. . (g : (h :x)) :y>

than it is to recogniz e the more struct tured
FP law

(4) [f ,g] o h = [f o h, ,go oh] ,
which is the same identit ty expressed at the
function level, without the superfl uous
application of functions to "abstract" ob-
jects that is required by lambda abstract-
ion and that demotes this s statement about
functions to substatements about obj ect s.
(The identit y (3) is un likel y to be recog-

nized as a useful function level lidentity
for a second reas son: if it is simpl liif fied
to eliminate x, , both sides reduce to

ly..<f f: (h :y) g : (h: :y y)>

and the functional relationship has vanis sh-
ed. .))

The simpler structure of FP-s style programs
is important if programming is to become a
mathematical discipline that is usef ful to
the ordinary practitioner. Such a di sci-
pline can be he lpful by providing a body
of carefully proven general laws and theo-
rems about programs. The simpler the struc-
ture of programs, the more ea sil ly c an a
programmer recogniz e that the maj jor struc-
ture of his program provides an instance of
one or more theorems that will help him
prove its correctnes s or make it more e ffi-

cient. .
If it is difficult to recogniz ze an in-

stance of a simple law like (4) when expres ss-
ed in the lambda style, , then the chances s of
recogniz zing instances of important theorems
are very small l.. For exampl le, Wi lliiams [8 0]
proves s the fo llowing theorem for all n> 1
and for all functions f , a , b , and c :

(5) [f , 2 oa] no [b, c] =
[\fo [b,c, ,aocan-l oc], anoc] ,

where fn+1 = fof n. It is unlikely anyone

is going to recogniz e an instance of such a
theorem when hi s program and the theorem are
expres ss sed in the lambda style, , simp ly because
of the sheer complexit y of its statement.

We have seen how the lambda style tends
to obscure the function level structure of
a program. The need to move from the func-
tion level down to the obj ect level leads to
an over-reliance on obj ect level lreasoning.
In ei ther the FP or lambda style it is some- -
times s necessary to reas son at the obj ect lev-
e l: : to show that t f=f f' ' one may have to show
that for every obj ect x, , f :x is the same
obj ect as f ' :x.. (Such reasoning can be done
in a lifted form at the function level.)

But of ten such reasoning is unneces sary and
tends to lose touch with important function
level identit ies. For example, consider the
following obj ect level definitions of f
and f ' .

f :x :4x + g (3 3x)

where g :x = even(x) + x; ; 2x .
f' ' :x = even(3 x) + 7x; ; 10x .

In trying to prove f :x = f ' :x at the obje ect
level, one may be lead int to cons sidering var-
ious cases and making various calculations.

tIfuhfn,e nc toiwnoe n t gheelt e ovtehle r(ushianngd , m if ifsor ex"pmruelstsiepdl y atby tih"e),
f = +o[m4, g°m 3]

or where g = even ÷ id; m 2

f = +o [m 4, , (even + id; m2) om3]

Now anyone famil liar wit th FP theorems would
eit ther (a)) recogniz e the firs st expres sion
for f as a form linear in g [Backus 81 1] and
use the propert ie s of such forms to obtain
the des sir ed res sult or (b) he would recogniz e
the combined expres sion for f as s an ins stance
of the simple theorem

ho [i, (p+q; ;r)o j] =
po oj ÷ h o [i,qo j] ; ho [i,ro j]

that gives, in this cas e,

f = evenom 3 ÷ +o [m4 ,idom3] ; +o[m4,m2om3]

or, after simpl if ic ation,

f = evenom 3 ÷ m7 ; m1 0 •

Thi s is an extremel ly simp le example; ;
consequently the obj ect level rea soning
needed to show that f :x = f ' ::x for every
x is simple. . However, if instead of the
subprograms m.x we had used others s requiring

comp lex ca lculations , the obj ect t leve l
reasoning might have become much more dif-
ficult unless s the reasoner happened to rec-

ogni ze the usefulnes s of the function level
identities that the FP approach makes clear. .
Much obj ect t level reasoning can be compared
to proving (a+b) c = ac+bc for given numbers s
a , b , and c by doing ari thmetic instead of

bnyum buesrisn,g aeilgtheebrra .m ethIofd a,i s b,v iacb laer,e bsumat lli f
they are very large, , then algebra is defi-
nitely better!

One further dif ference between the lambda
and FP styles is worth noting. Languages
in the former style tend to use functions
of more than one argument, whereas allFP
functions are unary. Thus in the lambda
style, if h (x, ,y y) is a function of two ar-
guments and the values of g (x)) are pairs
<y ,z> >, then the following locutions are
needed to express the function f , where

f :x = h (y, ,z) where g :x = <y , z> >

or, , using se lector functions and lambda
abstraction,

f = lx..h(1: (g :x)) 2 : (g :x)))

In the FP style h would be a function on
pairs, h:<y, ,z >, therefore the definition
of f woul ld be

f = ho o g .
Thus the use of n-ary functions in the lamb-
da style is another important factor that

obscures program, funct tion levellstructure
and leads to obje ect level lreas soning. (The
PFO "construction" is important in a style
using only unary functions; it is the PFO
used to buil ld a subprogram to create an
argument for a function on tupl les; e. .g. ,
if h is defined on pairs, then f = ho r,s]
corres ponds to f :x = h((r r: x, s: :x) .)

To summariz e: use of lambda abstraction
as the primary program-forming operation
obscures function level structure of pro-
grams buil lt wit th it. By requiring a de-
scent to obje ect-f orming operations , it t often
leads to unnecessarily y complicated obje ect
level reas onin g, reasonin g that may fail
to take advantage of funct ion level theorems
that can be seen to apply when the function
level struct ure of a program is s made clear.

At this point we must note that we are
not proposing the FP style as a panacea.
When object levelr asoning is s neces sary,
as it t oft ten is s (e. .g. , when a proof depends
on the detail ed properties of a primitive
function) , then lambda expres sions can be

he lpful (but of course we would propose
using the lifted function level analogue)).

The lambda abstraction PFO is more power-
ful than any or all of the PFOs of the FP
style. . Using lambda abstraction one can de-
fine alllof the FP PFOs s and an infinit ty of
others . But this reminds s one of the rela-
tionship between Fortran and the convention-
al "structured languages ". Using IFs and
GOTOs in the former, , one can model l the
" struct tured" PFOs allowed in the latter and

one can model lan infinit ty of other PFOs. .
Thus, , just as one can wri te

" s truct tured" programs in For tran, so one can
wri te " structured" " functio onal programs in
LISP or ISWIM. . But just a s it is ea sier to
see the structure of a program wri tten in
Pa scallrather than in Fortran, so it is
ea sier to see the structure of a funct tio onal
program wri tten in FP rather than in LISP
or ISWIM, , since FP and Pa scal are de sig gned
to emphasiz ze program struc ture whereas s LISP
and Fortran tend to obscure it..

It is perhaps s going too far to say that
lambda style languages s are the "Fortrans" "
of functional progran~in g languages , since
they are more powerf full than Fortran. How-
ever, , LISP ha s been around almos st a s long a s
Fortran and it and other lambda style lan-
guages s tend to produce unstruct tured programs,
a s indi cat ted above. . Theref fore perhaps it is
time to begi n de signing a new generation of
func tioonal languages , languages s tha t em-
pha siz ze functio on level lstruct ture and func- -
tion level lrea sonin ng, languages s whose pro-
grams and program-forming operat tions compris se
a space of mathemat ical obj ects.

Acknowledgments
Iam gratef full to Gordon Plotkin for his

he lpful di scus ssion of ca tegory theory y and
re lat tions ships be tween certai in a spect ts s of it
and some laws concernin ng PFOs s of FP. . I am
also grateful to John H. . Wi llliia ams for many
discuss sions of some of the ques stio ons dis- -
cus sed in the paper. .

Re ferences

Backus s, , J. . (19 7 8)) Can progr rammin g be lib-
era ted from the von Neumann style? ? A
func tional l s tyle and its algebra of

programs. CACM 21, 8 .
Backus, , J. . (19 8 1) The a lg eb bra of funct tio on-

al programs: function level lrea sonin ng,
linear equat tio ons, and ex tended de fini- -
tions s. . Proc. . Internatio onal Col loQuiu m
on the Formal liiz zatio n of Programmin g
Concepts , Penis scola, Spain (Apri l)) ,
LNOe.c tu1r0e7, NSoptersin gienr -CVoemrpluatge,r HSeciiednelcbee, rg.

Backus, , J. . (198 1a)) Is computer science

based on the wrong fundamental concept

Por(firOt occh"t.mpo birecoI rng)tLr aaemrn("ngt?auo ta igaoeApnsnpa,e l ae rIx)SFt.yIe mPnp doeTsdCi 2u,c mo nAcmoesnt petAr.l dgaom-,
Burstall, R. and Goguen, J. . A. . (19 8 0)) The

semantics s of CLEAR, , a specification

lSHaceniidegenuclagbee,e r. gN.o .L ec8t6u, reS prNiontgeesr -iVne rCloamgp,u ter
Cadiou, J.. M. . (1 9 7 2)) Recursive definit tions

Dtofie optnp.sa.,r tiSaRtlae npfofrourtn dc tCiSUo-n2ni6sv6 . ,a CnodS tmtaphnueftioerrr d .Sc coimepnuctea -
Chucrocnhv,e rsAi.o n(. 1941P)r incTehteo nc aUlcnuilvi. oPrfe slsa,m bda

Princeton.

Guttag, , J . V. . and Horning, J. . J. . (1 9 7 8))
The algebraic specification of abstract
data types. Acta Informatica 1 0 .

Landin, , P . J. . (1 966)) The next 7 00 program-
ming languages. CACM 9, 3 .

MacwN oeLrwk aniYenog,r k.mS .at h(e1m9a7t1i)c ianC.a tegoSrpireisn gefro-rV etrhlea g,
Manna, , Z . , Ness s, , S . , and Vui llemin, J. .

(19 7 3)) Inductive methods for proving
properties of programs. CACM 16, 8 .

Thatcher, J . W. . , Wagner, E. . G. ., and Wright,
J. . B. . (19 7 8)) Data type speci fication:

NfpACieaMwcr aa tmSYeioyrotmknep roiszt(iaeMuctamyhi)noi.onq n u eTashn.ed o rtyPh er oocfp.o wCeoTrme pnutothfi nAsgnp,ne ucai-l
Williams, J. . H. . (198 0) On the development

of the algebra of functional programs.
Report RJ2983, IBM Research Laboratory,
S an Jos se. .

Williams, J. . H. . (198 1) Notes on the FP
style of functional programming. Lec-
ture notes s for the course "Functional
Programming and its Applications" , Univ. .
of Newcas stle upon Tyne (July)) .

Zi lles, S . N. . (1979 9)) An introduction to

HSdaeciitedane clabele,gr egbN.ro .as . 86, LSepcrtiunreg erN-oVteersl aign, Computer

i0

i0

