
19 7T7h Ae C1M97 7T AuCriMn gT uAriwnagr Ad wLaerdc twuraes presented to John Backus putations called Fortran. This same group designed the first

19 77 ACM Turing Award Lecture

The 1977 ACM Turing Award was presented to John Backus putations called Fortran. This same group designed the first

at the ACM Annual Conference in Seattle, October 17. In intro-
ducing the recipient, Jean E. Sammet, Chairman of the Awards
Committee, made the following comments and read a portion of
the final citation. The full announcement is in the September
1977 issue of Communications, page 681.

"Probably there is nobody in the room who has not heard of
Fortran and most of you have probably used it at least once, or at
least looked over the shoulder of someone who was writing a For-
tran program. There are probably almost as many people who
have heard the letters BNF but don't necessarily know what they
stand for. Well, the B is for Backus, and the other letters are
explained in the formal citation. These two contributions, in my
opinion, are among the half dozen most important technical
contributions to the computer field and both were made by John
Backus (which in the Fortran case also involved some col-
leagues) . It is for these contributions that he is receiving this
year's Turing award.

The short form of his citation is for 'profound, influential,
and lasting contributions to the design of practical high-level
programming systems, notably through his work on Fortran, and
for seminal publication of formal procedures for the specifica-
tions of programming languages.'

The most significant part of the full citation is as follows:
'. . Backus headed a small IBM group in New York City

during the early 1950s. The earliest product of this group's
efforts was a high-level language for scientific and technical corn-
system to translate Fortran programs into machine language.
They employed novel optimizing techniques to generate fast

machine-language programs. Many other compilers for the lan-
guage were developed, first on IBM machines, and later on virtu-
ally every make of computer. Fortran was adopted as a U.S.
national standard in 1966.

During the latter part of the 1950s, Backus served on the
international committees which developed Algol 58 and a later
version, Algol 60. The language Algol, and its derivative com-
pilers, received broad acceptance in Europe as a means for de-
veloping programs and as a formal means of publishing the
algorithms on which the programs are based.

In 1959, Backus presented a paper at the UNESCO confer-
ence in Paris on the syntax and semantics of a proposed inter-
national algebraic language. In this paper, he was the first to
employ a formal technique for specifying the syntax of program-
ming languages. The formal notation became known as BNF-
standing for "Backus Normal Form," or "Backus Naur Form" to
recognize the further contributions by Peter Naur of Denmark.

Thus, Backus has contributed strongly both to the pragmatic
world of problem-solving on computers and to the theoretical
world existing at the interface between artificial languages and
computational linguistics. Fortran remains one of the most
widely used programming languages in the world. Almost all
programming languages are now described with some type of
formal syntactic definition.' "

NAJCohelang nuBea mcbkPurasr aon gnor fa SPmtyrmloegi?nr agAm BFs eu nLcibtieornaatel dS tfyrloem a nthde Ivtso n
IBM Research Laboratory, San Jose

613 Cofo mmunications AVuogluumst e 12917 8
the ACM Number 8

Associated with the functional style of programming
is an algebra of programs whose variables range over
programs and whose operations are combining forms.
This algebra can be used to transform programs and to
solve equations whose "unknowns" are programs in much
the same way one transforms equations in high school
algebra. These transformations are given by algebraic
laws and are carried out in the same language in which
programs are written. Combining forms are chosen not
only for their programming power but also for the power
of their associated algebraic laws. General theorems of
the algebra give the detailed behavior and termination
conditions for large classes of programs.

A new class of computing systems uses the functional
programming style both in its programming language and
in its state transition rules. Unlike yon Neumann lan-
guages, these systems have semantics loosely coupled to
states--only one state transition occurs per major com-
putation.

Key Words and Phrases: functional programming,
algebra of programs, combining forms, functional forms,
programming languages, yon Neumann computers, yon
Neumann languages, models of computing systems, ap-
plicative computing systems, applicative state transition
systems, program transformation, program correctness,
program termination, metacomposition

CR Categories: 4.20, 4.29, 5.20, 5.24, 5.26

Introduction

Ideeply appreciate the honor of the ACM invitation
to give the 1977 Turing Lecture and to publish this
account of it with the details promised in the lecture.
Readers wishing to see a summary of this paper should
turn to Section 16, the last section.

1. Conventional Programming Languages: Fat and
Flabby

Programming languages appear to be in trouble.
Each successive language incorporates, with a little
cleaning up, all the features of its predecessors plus a few
more. Some languages have manuals exceeding 500
pages; others cram a complex description into shorter
manuals by using dense formalisms. The Department of
Defense has current plans for a committee-designed
language standard that could require a manual as long
as 1,000 pages. Each new language claims new and
fashionable features, such as strong typing or structured
control statements, but the plain fact is that few lan-
guages make programming sufficiently cheaper or more
reliable to justify the cost of producing and learning to
use them.

Since large increases insize bring only small increases
in power, smaller, more elegant languages such as Pascal
continue to be popular. But there is a desperate need for
a powerful methodology to help us think about pro-

614
grams, and no conventional language even begins to
meet that need. In fact, conventional languages create
unnecessary confusion in the way we think about pro-
grams.

For twenty years programming languages have been
steadily progressing toward their present condition of
obesity; as a result, the study and invention of program-

ming languages has lost much of its excitement. Instead,
it is now the province of those who prefer to work with
thick compendia of details rather than wrestle with new
ideas. Discussions about programming languages often
resemble medieval debates about the number of angels
that can dance on the head of a pin instead of exciting
contests between fundamentally differing concepts.

Many creative computer scientists have retreated
from inventing languages to inventing tools for describ-
ing them. Unfortunately, they have been largely content
to apply their elegant new tools to studying the warts
and moles of existing languages. After examining the
appalling type structure of conventional languages, using
the elegant tools developed by Dana Scott, it is surprising
that so many of us remain passively content with that
structure instead of energetically searching for new ones.

The purpose of this article is twofold; first, to suggest
that basic defects in the framework of conventional
languages make their expressive weakness and their
cancerous growth inevitable, and second, to suggest some
alternate avenues of exploration toward the design of
new kinds of languages.

2. Models of Computing Systems

Underlying every programming language is a model

of a computing system that its programs control. Some
models are pure abstractions, some are represented by
hardware, and others by compiling or interpretive pro-
grams. Before we examine conventional languages more
closely, it is useful to make a brief survey of existing
models as an introduction to the current universe of
alternatives. Existing models may be crudely classified
by the criteria outlined below.

2.1 Criteria for Models
2.1.1 Foundations. Is there an elegant and concise

mathematical description of the model? Is it useful in
proving helpful facts about the behavior of the model?
Or is the model so complex that its description is bulky
and of little mathematical use?

2.1.2 History sensitivity. Does the model include a
notion of storage, so that one program can save infor-
mation that can affect the behavior of a later program?
That is, is the model history sensitive?

2.1.3 Type of semantics. Does a program successively
transform states (which are not programs) until a termi-
nal state is reached (state-transition semantics)? Are
states simple or complex? Or can a "program" be suc-
cessively reduced o simpler "programs" to yield a final

Cofo mmunications VAougluumste 12917 8
he ACM Number 8

"normal form program," which s the result (reduction
semantics)?

2.1.4 Clarity and conceptual usefulness of programs.
Are programs of the model clear expressions of a process
or computation? Do they embody concepts that help us
to formulate and reason about processes?

2.2 Classification of Models
Using the above criteria we can crudely characterize

three classes of models for computing systems--simple
operational models, applicative models, and von Neu-
mann models.

2.2.1 Simple operational models. Examples: Turing
machines, various automata. Foundations: concise and
useful. History sensitivity: have storage, are history sen-
sitive. Semantics: state transition with very simple states.
Program clarity: programs unclear and conceptually not
helpful.

2.2.2 Applicative models. Examples: Church's
lambda calculus [5], Curry's system of combinators [6],
pure Lisp [17], functional programming systems de-
scribed in this paper. Foundations: concise and useful.
History sensitivity: no storage, not history sensitive. Se-
mantics: reduction semantics, no states. Program clarity:

programs can be clear and conceptually useful.
2.2.3 Von Neumann models. Examples: yon Neu-

mann computers, conventional programming languages.
Foundations: complex, bulky, not useful. History sensitiv-
ity: have storage, are history sensitive. Semantics: state
transition with complex states. Program clarity: programs
can be moderately clear, are not very useful conceptually.

The above classification is admittedly crude and
debatable. Some recent models may not fit easily into
any of these categories. For example, the data-flow
languages developed by Arvind and Gostelow [1], Den-
nis [7], Kosinski [13], and others partly fit the class of
simple operational models, but their programs are clearer
than those of earlier models in the class and it is perhaps
possible to argue that some have reduction semantics. In
any event, this classification will serve as a crude map of
the territory to be discussed. We shall be concerned only
with applicative and von Neumann models.

3. Von Neumann Computers

In order to understand the problems of conventional
programming languages, we must first examine their
intellectual parent, the von Neumann computer. What is
a von Neumann computer? When yon Neumann and
others conceived it over thirty years ago, it was an

elegant, practical, and unifying idea that simplified a
number of engineering and programming problems that
existed then. Although the conditions that produced its
architecture have changed radically, we nevertheless still
identify the notion of "computer" with this thirty year
old concept.

In its simplest form a von Neumann computer has

615

hree parts: a central processing unit (or CPU), a store,
and a connecting tube that can transmit a single word
between the CPU and the store (and send an address o
the store). Ipropose to call this tube the yon Neumann
bottleneck. The task of a program is to change the
contents of the store in some major way; when one
considers that this task must be accomplished entirely by
pumping single words back and forth through the von
Neumann bottleneck, the reason for its name becomes
clear.

Ironically, a large part of the traffic in the bottleneck
is not useful data but merely names of data, as well as
operations and data used only to compute such names.
Before a word can be sent through the tube its address
must be in the CPU; hence it must either be sent through
the tube from the store or be generated by some CPU
operation. If the address is sent from the store, then its
address must either have been sent from the store or
generated in the CPU, and so on. If, on the other hand,

the address is generated in the CPU, it must be generated
either by a fixed rule (e.g., "add l to the program
counter") or by an instruction that was sent through the
tube, in which case its address must have been sent . ..
and so on.

Surely there must be a less primitive way of making
big changes in the store than by pushing vast numbers
of words back and forth through the von Neumann
bottleneck. Not only is this tube a literal bottleneck for
the data traffic of a problem, but, more importantly, it is
an intellectual bottleneck that has kept us tied to word-
at-a-time thinking instead of encouraging us to think in
terms of the larger conceptual units of the task at hand.
Thus programming is basically planning and detailing
the enormous traffic of words through the von Neumann
bottleneck, and much of that traffic concerns not signif-
icant data itself but where to find it.

4. Von Neumann Languages

Conventional programming languages are basically
high level, complex versions of the von Neumann com-
puter. Our thirty year old belief that there is only one
kind of computer is the basis of our belief that there is
only one kind of programming language, the conven-
tional--von Neumann--language. The differences be-
tween Fortran and Algol 68, although considerable, are
less significant than the fact that both are based on the

programming style of the von Neumann computer. Al-
though Irefer to conventional languages as "von Neu-
mann languages" to take note of their origin and style,
Ido not, of course, blame the great mathematician for
their complexity. In fact, some might say that Ibear
some responsibility for that problem.

Von Neumann programming languages use variables
to imitate the computer's storage cells; control statements
elaborate its jump and test instructions; and assignment
statements imitate its fetching, storing, and arithmetic.

Communication Augus 1978
of Volume 21
the ACM Number 8

The assignment statement is the yon Neumann bottle-
neck of programming languages and keeps us thinking
in word-at-a-time terms in much the same way the
computer's bottleneck does.

Consider a typical program; at its center are a number
of assignment statements containing some subscripted
variables. Each assignment statement produces a one-
word result. The program must cause these statements to
be executed many times, while altering subscript values,
in order to make the desired overall change in the store,
since it must be done one word at a time. The program-
mer is thus concerned with the flow of words through
the assignment bottleneck as he designs the nest of
control statements to cause the necessary repetitions.

Moreover, the assignment statement splits program-
ming into two worlds. The first world comprises the right
sides of assignment statements. This is an orderly world
of expressions, a world that has useful algebraic proper-
ties (except that those properties are often destroyed by
side effects). It is the world in which most useful com-
putation takes place.

The second world of conventional programming lan-
guages is the world of statements. The primary statement
in that world is the assignment statement itself. All the
other statements of the language exist in order to make
it possible to perform a computation that must be based
on this primitive construct: the assignment statement.

This world of statements is a disorderly one, with few
useful mathematical properties. Structured programming
can be seen as a modest effort to introduce some order
into this chaotic world, but it accomplishes little in
attacking the fundamental problems created by the
word-at-a-time von Neumann style of programming,
with its primitive use of loops, subscripts, and branching
flow of control.

Our fixation on von Neumann languages has contin-
ued the primacy of the yon Neumann computer, and our
dependency on it has made non-von Neumann languages
uneconomical and has limited their development. The
absence of full scale, effective programming styles
founded on non-von Neumann principles has deprived

designers of an intellectual foundation for new computer
architectures. (For a brief discussion of that topic, see
Section 15.)

Applicative computing systems' lack of storage and
history sensitivity is the basic reason they have not
provided a foundation for computer design. Moreover,
most applicative systems employ the substitution opera-
tion of the lambda calculus as their basic operation. This
operation is one of virtually unlimited power, but its
complete and efficient realization presents great difficul-
ties to the machine designer. Furthermore, in an effort
to introduce storage and to improve their efficiency on
von Neumann computers, applicative systems have
tended to become engulfed in a large von Neumann
system. For example, pure Lisp is often buried in large
extensions with many von Neumann features. The re-
sulting complex systems offer little guidance to the ma-
chine designer.

616
5. Comparison of von Neumann and Functional
Programs

To get a more detailed picture of some of the defects
of von Neumann languages, let us compare a conven-
tional program for inner product with a functional one
written in a simple language to be detailed further on.

5.1 A von Neumann Program for Inner Product

c ~0

for i.~ Istep 1until n do
c .~ c + a[i]xb[i]

Several properties of this program are worth noting:
a) Its statements operate on an invisible "state" ac-

cording to complex rules.
b) It is not hierarchical. Except for the right side of

the assignment statement, it does not construct complex
entities from simpler ones. (Larger programs, however,
often do.)

c) It is dynamic and repetitive. One must mentally
execute it to understand it.

d) It computes word-at-a-time by repetition (of the
assignment) and by modification (of variable i).

e) Part of the data, n, is in the program; thus it lacks
generality and works only for vectors of length n.

f) It names its arguments; it can only be used for
vectors a and b. To become general, it requires a proce-
dure declaration. These involve complex issues (e.g., call-
by-name versus call-by-value).

g) Its "housekeeping" operations are represented by
symbols in scattered places (in the for statement and the
subscripts in the assignment). This makes it impossible
to consolidate housekeeping operations, the most com-
mon of all, into single, powerful, widely useful operators.

Thus in programming those operations one must always
start again at square one, writing "for i ~ .." and
"for j ~ . ." followed by assignment statements sprin-
kled with i's and j's.

5.2 A Functional Program for Inner Product

Def Innerproduct
--- (Insert +)o(ApplyToAll x)oTranspose

Or, in abbreviated form:

Def IP --- (/+)o(ax)oTrans.

Composition (o), Insert (/), and ApplyToAll (a) are
functionalf orms that combine existing functions to form
new ones. Thus fog is the function obtained by applying
first g and then f, and af is the function obtained by
applyingf to every member of the argument. If we write
f:x for the result of applying f to the object x, then we
can explain each step in evaluating Innerproduct applied
to the pair of vectors << 1, 2, 3>, <6, 5, 4>> as follows:

IP:<< 1,2,3>, <6,5,4>> =
Definition of IP ~(/+)o(c~x)oTrans: << 1,2,3>, <6,5,4>>
Effect of composition, o ~(/+):((ax):(Trans:

<< 1,2,3>, <6,5,4>>))

oCfo mmunications VAuolguumste 12917 8
the ACM Number 8

Applying Transpose (/+):((ax): << 1,6>, <2,5>, <3,4>>)
Effect of ApplyToAll, et (/+): <x: <1,6>, ×:<2,5>, x: <3,4>>

Applying x (/+): <6,110, 12>
Effect of Insert, / +: <6, +: <10,12>>
Applying + +: <6,22>
Applying + again 28

Let us compare the properties of this program with
those of the yon Neumann program.

a) It operates only on its arguments. There are no
hidden states or complex transition rules. There are only
two kinds of rules, one for applying a function to its
argument, the other for obtaining the function denoted
by a functional form such as composition, fog, or
ApplyToAll, of, when one knows the functionsf and g,
the parameters of the forms.

b) It is hierarchical, being built from three simpler
functions (+, x, Trans) and three functional forms fog,
af, and /f

c) It is static and nonrepetitive, in the sense that its
structure is helpful in understanding it without mentally
executing it. For example, if one understands the action
of the forms fog and af, and of the functions x and
Trans, then one understands the action of ax and of
(ax)oTrans, and so on.

d) It operates on whole conceptual units, not words;
it has three steps; no step is repeated.

e) It incorporates no data; it is completely general; it

works for any pair of conformable vectors.
f) It does not name its arguments; it can be applied to

any pair of vectors without any procedure declaration or
complex substitution rules.

g) It employs housekeeping forms and functions that
are generally useful in many other programs; in fact,
only + and ×are not concerned with housekeeping.
These forms and functions can combine with others to
create higher level housekeeping operators.

Section 14 sketches a kind of system designed to
make the above functional style of programming avail-
able in a history-sensitive system with a simple frame-
work, but much work remains to be done before the
above applicative style can become the basis for elegant
and practical programming languages. For the present,
the above comparison exhibits a number of serious flaws
in von Neumann programming languages and can serve
as a starting point in an effort to account for their present
fat and flabby condition.

6. Language Frameworks versus Changeable Parts

Let us distinguish two parts of a programming lan-
guage. First, itsf ramework which gives the overall rules
of the system, and second, its changeable parts, whose
existence is anticipated by the framework but whose
particular behavior is not specified by it. For example,
the for statement, and almost all other statements, are
part of Algol's framework but library functions and user-

defined procedures are changeable parts. Thus the
framework of a language describes its fixed features and

617

provides a general environment for its changeable fea-
tures.

Now suppose a language had a small framework
which could accommodate a great variety of powerful
features entirely as changeable parts. Then such a flame-
work could support many different features and styles
without being changed itself. In contrast to this pleasant
possibility, von Neumann languages always seem to have
an immense framework and very limited changeable
parts. What causes this to happen? The answer concerns
two problems of von Neumann languages.

The first problem results from the yon Neumann
style of word-at-a-time programming, which requires
that words flow back and forth to the state, just like the
flow through the von Neumann bottleneck. Thus a von
Neumann language must have a semantics closely cou-
pled to the state, in which every detail of a computation
changes the state. The consequence of this semantics
closely coupled to states is that every detail of every
feature must be built into the state and its transition
rules.

Thus every feature of a von Neumann language must
be spelled out in stupefying detail in its framework.

Furthermore, many complex features are needed to prop
up the basically weak word-at-a-time style. The result is
the inevitable rigid and enormous framework of a von
Neumann language.

7. Changeable Parts and Combining Forms

The second problem of von Neumann languages is
that their changeable parts have so little expressive
power. Their gargantuan size is eloquent proof of this;
after all, if the designer knew that all those complicated
features, which he now builds into the framework, could
be added later on as changeable parts, he would not be
so eager to build them into the framework.

Perhaps the most important element in providing
powerful changeable parts in a language is the availabil-
ity of combining forms that can be generally used to
build new procedures from old ones. Von Neumann
languages provide only primitive combining forms, and
the von Neumann framework presents obstacles to their
full use.

One obstacle to the use of combining forms is the
split between the expression world and the statement
world in von Neumann languages. Functional forms
naturally belong to the world of expressions; but no
matter how powerful they are they can only build expres-

sions that produce a one-word result. And it is in the
statement world that these one-word results must be
combined into the overall result. Combining single words
is not what we really should be thinking about, but it is
a large part of programming any task in von Neumann
languages. To help assemble the overall result from
single words these languages provide some primitive
combining forms in the statement world--the for, while,
and if-then-else statements--but the split between the

oCfo mmunications VAoulguumst e 129 !7 8
the ACM Number 8
two worlds prevents the combining forms in either world
from attaining the full power they can achieve in an
undivided world.

A second obstacle to the use of combining forms in
von Neumann languages is their use of elaborate naming
conventions, which are further complicated by the sub-
stitution rules required in calling procedures. Each of
these requires a complex mechanism to be built into the
framework so that variables, subscripted variables,
pointers, file names, procedure names, call-by-value for-
mal parameters, call-by-name formal parameters, and so
on, can all be properly interpreted. All these names,
conventions, and rules interfere with the use of simple
combining forms.

8. APL versus Word-at-a-Time Programming

Since Ihave said so much about word-at-a-time
programming, Imust now say something about APL
[12]. We owe a great debt to Kenneth Iverson for showing
us that there are programs that are neither word-at-a-
time nor dependent on lambda expressions, and for
introducing us to the use of new functional forms. And
since APL assignment statements can store arrays, the
effect of its functional forms is extended beyond a single
assignment.

Unfortunately, however, APL still splits program-
ming into a world of expressions and a world of state-
ments. Thus the effort to write one-line programs is
partly motivated by the desire to stay in the more orderly
world of expressions. APL has exactly three functional
forms, called inner product, outer product, and reduc-
tion. These are sometimes difficult to use, there are not
enough of them, and their use is confined to the world
of expressions.

Finally, APL semantics is still too closely coupled to
states. Consequently, despite the greater simplicity and
power of the language, its framework has the complexity
and rigidity characteristic of von Neumann languages.

9. Von Neumann Languages Lack Useful
Mathematical Properties

So far we have discussed the gross size and inflexi-
bility of von Neumann languages; another important
defect is their lack of useful mathematical properties and
the obstacles they present to reasoning about programs.
Although a great amount of excellent work has been
published on proving facts about programs, yon Neu-
mann languages have almost no properties that are
helpful in this direction and have many properties that
are obstacles (e.g., side effects, aliasing).

Denotational semantics [23] and its foundations [20,
21] provide an extremely helpful mathematical under-
standing of the domain and function spaces implicit in
programs. When applied to an applicative language
(such as that of the "recursive programs" of [16]), its

618
foundations provide powerful tools for describing the
language and for proving properties of programs. When
applied to a von Neumann language, on the other hand,
it provides a precise semantic description and is helpful
in identifying trouble spots in the language. But the
complexity of the language is mirrored in the complexity
of the description, which is a bewildering collection of
productions, domains, functions, and equations that is

only slightly more helpful in proving facts about pro-
grams than the reference manual of the language, since
it is less ambiguous.

Axiomatic semantics [11] precisely restates the in-
elegant properties ofvon Neumann programs (i.e., trans-
formations on states) as transformations on predicates.
The word-at-a-time, repetitive game is not thereby
changed, merely the playing field. The complexity of this
axiomatic game of proving facts about von Neumann
programs makes the successes of its practitioners all the
more admirable. Their success rests on two factors in
addition to their ingenuity: First, the game is restricted
to small, weak subsets of full von Neumann languages
that have states vastly simpler than real ones. Second,
the new playing field (predicates and their transforma-
tions) is richer, more orderly and effective than the old
(states and their transformations). But restricting the
game and transferring it to a more effective domain does
not enable it to handle real programs (with the necessary
complexities of procedure calls and aliasing), nor does it
eliminate the clumsy properties of the basic von Neu-
mann style. As axiomatic semantics is extended to cover
more of a typical von Neumann language, it begins to
lose its effectiveness with the increasing complexity that
is required.

Thus denotational and axiomatic semantics are de-
scriptive formalisms whose foundations embody elegant

and powerful concepts; but using them to describe a von
Neumann language can not produce an elegant and
powerful language any more than the use of elegant and
modem machines to build an Edsel can produce an
elegant and modem car.

In any case, proofs about programs use the language
of logic, not the language of programming. Proofs talk
about programs but cannot involve them directly since
the axioms of von Neumann languages are so unusable.
In contrast, many ordinary proofs are derived by alge-
braic methods. These methods require a language that
has certain algebraic properties. Algebraic laws can then
be used in a rather mechanical way to transform a
problem into its solution. For example, to solve the
equation

ax +b x= a+ b

for x (given that a+b # 0), we mechanically apply the
distributive, identity, and cancellation laws, in succes-
sion, to obtain

(a + b)x = a + b
(a + b)x = (a + b) l
x l.

Communications August 1978
of Volume 2 1
the ACM Number 8

Thus we have proved that x = 1 without leaving the
"language" of algebra. Von Neumann languages, with
their grotesque syntax, offer few such possibilities for
transforming programs.

As we shall see later, programs can be expressed in
a language that has an associated algebra. This algebra
can be used to transform programs and to solve some
equations whose "unknowns" are programs, in much the
same way one solves equations in high school algebra.
Algebraic transformations and proofs use the language
of the programs themselves, rather than the language of
logic, which talks about programs.

10. What Are the Alternatives to von Neumann
Languages?

Before discussing alternatives to von Neumann lan-
guages, let me remark that Iregret the need for the above
negative and not very precise discussion of these lan-
guages. But the complacent acceptance most of us give
to these enormous, weak languages has puzzled and
disturbed me for a long time. Iam disturbed because
that acceptance has consumed a vast effort toward mak-
ing von Neumann languages fatter that might have been
better spent in looking for new structures. For this reason
Ihave tried to analyze some of the basic defects of

conventional languages and show that those defects can-
not be resolved unless we discover a new kind of lan-
guage framework.

In seeking an alternative to conventional languages
we must first recognize that a system cannot be history
sensitive (permit execution of one program to affect the
behavior of a subsequent one) unless the system has
some kind of state (which the first program can change
and the second can access). Thus a history-sensitive
model of a computing system must have a state-transition
semantics, at least in this weak sense. But this does not
mean that every computation must depend heavily on a
complex state, with many state changes required for each
small part of the computation (as in von Neumann
languages).

To illustrate some alternatives to von Neumann lan-
guages, Ipropose to sketch a class of history-sensitive
computing systems, where each system: a) has a loosely
coupled state-transition semantics in which a state tran-
sition occurs only once in a major computation; b) has
a simply structured state and simple transition rules; c)
depends heavily on an underlying applicative system
both to provide the basic programming language of the
system and to describe its state transitions.

These systems, which Icall applicative state transition
(or AST) systems, are described in Section 14. These
simple systems avoid many of the complexities and

weaknesses of yon Neumann languages and provide for
a powerful and extensive set of changeable parts. How-
ever, they are sketched only as crude examples of a vast
area of non-von Neumann systems with various attrac-
tive properties. Ihave been studying this area for the

619
past three or four years and have not yet found a
satisfying solution to the many conflicting requirements
that a good language must resolve. But Ibelieve this
search has indicated a useful approach to designing non-
yon Neumann languages,

This approach involves four elements, which can be
summarized as follows.

a) A functional style of programming without varia-
bles. A simple, informal functional programming (FP)
system is described. It is based on the use of combining
forms for building programs. Several programs are given
to illustrate functional programming.

b) An algebra of functional programs. An algebra is
described whose variables denote FP functional pro-
grams and whose "operations" are FP functional forms,
the combining forms of FP programs. Some laws of the
algebra are given. Theorems and examples are given that
show how certain function expressions may be trans-
formed into equivalent infinite expansions that explain
the behavior of the function. The FP algebra is compared
with algebras associated with the classical applicative
systems of Church and Curry.

c) Aformalfunctionalprogramming system. A formal
(FFP) system is described that extends the capabilities
of the above informal FP systems. An FFP system is
thus a precisely defined system that provides the ability
to use the functional programming style of FP systems
and their algebra of programs. FFP systems can be used
as the basis for applicative state transition systems.

d) Applicative state transition systems. As discussed
above. The rest of the paper describes these four ele-
ments, gives some brief remarks on computer design,
and ends with a summary of the paper.

11. Functional Programming Systems (FP Systems)

11.1 Introduction
In this section we give an informal description of a

class of simple applicative programming systems called
functional programming (FP) systems, in which "pro-
grams" are simply functions without variables. The de-
scription is followed by some examples and by a discus-
sion of various properties of FP systems.

An FP system is founded on the use of a fixed set of
combining forms called functional forms. These, plus
simple definitions, are the only means of building new
functions from existing ones; they use no variables or
substitution rules, and they become the operations of an
associated algebra of programs. All the functions of an
FP system are of one type: they map objects into objects
and always take a single argument.

In contrast, a lambda-calculus based system is
founded on the use of the lambda expression, with an
associated set of substitution rules for variables, for
building new functions. The lambda expression (with its
substitution rules) is capable of defining all possible
computable functions of all possible types and of any
number of arguments. This freedom and power has its

Communications August 1978
of Volume 2 l

the ACM Number 8

disadvantages as well as its obvious advantages. It is
analogous to the power of unrestricted control statements
in conventional languages: with unrestricted freedom
comes chaos. If one constantly invents new combining
forms to suit the occasion, as one can in the lambda
calculus, one will not become familiar with the style or
useful properties of the few combining forms that are
adequate for all purposes. Just as structured program-
ming eschews many control statements to obtain pro-
grams with simpler structure, better properties, and uni-
form methods for understanding their behavior, so func-
tional programming eschews the lambda expression, sub-
stitution, and multiple function types. It thereby achieves
programs built with familiar functional forms with
known useful properties. These programs are so struc-
tured that their behavior can often be understood and
proven by mechanical use of algebraic techniques similar

to those used in solving high school algebra problems.
Functional forms, unlike most programming con-

structs, need not be chosen on an ad hoc basis. Since
they are the operations of an associated algebra, one
chooses only those functional forms that not only provide
powerful programming constructs, but that also have
attractive algebraic properties: one chooses them to max-
imize the strength and utility of the algebraic laws that
relate them to other functional forms of the system.

In the following description we shall be imprecise in
not distinguishing between (a) a function symbol or
expression and (b) the function it denotes. We shall
indicate the symbols and expressions used to denote
functions by example and usage. Section 13 describes a
formal extension of FP systems (FFP systems); they can
serve to clarify any ambiguities about FP systems.

11.2 Description
An FP system comprises the following:
l) a set O of objects;
2) a set F of functions f that map objects into objects;
3) an operation, application;
4) a set F of functional forms; these are used to combine
existing functions, or objects, to form new functions in
F;
5) a set D of definitions that define some functions in F
and assign a name to each.

What follows is an informal description of each of
the above entities with examples.

11.2.1 Objects, O. An object x is either an atom, a
sequence <x~, o. ,x,> whose elements xi are objects, or
± ("bottom" or "undefined"). Thus the choice of a set A
of atoms determines the set of objects. We shall take A
to be the set of nonnull strings of capital letters, digits,
and special symbols not used by the notation of the FP
system. Some of these strings belong to the class of atoms
called "numbers." The atom ,~ is used to denote the
empty sequence and is the only object which is both an
atom and a sequence. The atoms T and F are used to
denote "true" and "false."

620
There is one important constraint in the construction

of objects: if x is a sequence with ± as an element, then
x = ±. That is, the "sequence constructor" is "±-pre-
serving." Thus no proper sequence has ± as an element.

Examples of objects

± 1.5 ~ AB3 <AB, 1, 2.3>
<,4, <, C>, D> <.,4, ±> = _1_

11.2.2 Application. An FP system has a single oper-
ation, application. Iff is a function and x is an object,
thenf:x is an application and denotes the object which

is the result of applying f to x.f is the operator of the
application and x is the operand.

Examples of applications

+:<•,2> = 3 tI:<A,B,C> = <B,C>
I:<A,B,C> = A 2:<A,B,C> = B

11.2.3 Functions, F. All functionsf in F map objects
into objects and are bottom-preserving:f± = ±, for allf
in F. Every function in F is either primitive, that is,
supplied with the system, or it is defined (see below), or
it is af unctionalf orm (see below).

It is sometimes useful to distinguish between two
cases in whichf:x=±. If the computation forf:x termi-
nates and yields the object ±, we sayfis undefined at x,
that is, f terminates but has no meaningful value at x.
Otherwise we sayf is nonterminating at x.

Examples of primitive functions
Our intention is to provide FP systems with widely

useful and powerful primitive functions rather than weak
ones that could then be used to define useful ones. The
following examples define some typical primitive func-
tions, many of which are used in later examples of
programs. In the following definitions we use a variant
of McCarthy's conditional expressions [17]; thus we write

pl ~ el; ... ;p~ ~ en; en+t

instead of McCarthy's expression

(pl ~ el . .. pn ~ en, T---~ en+l).

The following definitions are to hold for all objects x, xi,

y,yi, Z, Zi:

Selector functions
1:X ~ X=<X1, ... ,Xn> ~Xl; ±
and for any positive integer s

S:X ~X = <Xl,. .., X n>& n -> S~ Xs ; ±
Thus, for example, 3:<A,B,C> = C and 2:<A > = ±.
Note that the function symbols l,2, etc. are distinct from
the atoms 1, 2, etc.

Tail
tl:x --- x=<xl> ~~b;

x=<xl . .. , xn> & n _>2 -~, <x2, ... ,xn>; ±
Identity
id:x ~ x

Communications August 1978
of Volume 21
the ACM Number 8

Atom

atom:x m s an atom ~ T; x~J_ F; _
Equals
eq:x = x=<y,z> & y y=z-- -~ T; x=<y,z> & y y~z-- -~ F; _

Null
nulhx w_ x=th ~ ~ T; x~j. + F; J_

Reverse
reverse:x x w_ x=ff ~f;

X=<Xl, .. Xn> ~<Xn, .. XI>; "

Distribute from left; distribute from right
disthx =- x=<y,ff> ~if;

x=<y,<Zl Zn>> -'> <<y, zl> .. .<y, Zn>>; j"
distr:x ~ x=<ff,y> + if;

x=<<y~, .. y~>,z> ~<<yl,z> <y.,z>>; j,

Length
length:x ~ x=<x~ xn> ~n; x=~ ~0; J_

Add, subtract, multiply, and divide
+:x w_ x=<y,z> & y,z are numbers- -~y+z; J_
-:x ~ x=<y,z> & y,z are numbers ~y-z; J_
x :x w_ x=<y,z> & y,z are numbers +yxz; J_
+:x ~x=<y,z> & y,z are numbers ---~ y+z; J_

(where y+0 = j-)

Transpose
trans:x ~ x=<~ . .. ~> ~~;

X=<Xl, ... ,Xn> "-> <yl, ... ,yrn>; j"
where
Xi-~-<Xil, ... ,Xim> and

yj=<x~j. .. Xnj>, l_<i_<n, l_<j_<m.

And, or, not
and :x =- x=<T,T> ~ T;

x=< T,F> V x=<F, T> V x=<F,F> ~F;i
etc.

Append left; append right
apndhx -= x=<y,~> ---~ <y>;

x=<y,<& zn>> ~<y,z l, .. , zn>; j,
apndr:x -= x=<$,z> ~<z>;

X=<<yl yn>,Z> "'> <ill yn,Z>; j"

Right selectors; Right tail
lr:x -= x=<x~, .. ,Xn> ~ Xn;l
2r:x ~ x=<xl, .. ,x,> & n_>2 ~ x,_~; J_
etc.
tlr:x~ x=<xl> ~$;

x=<x~, .. .Xn> & n_>2 ~<Xl, .. ,Xn-~>; i

Rotate left; rotate right
rothx w x=$ ~~; x=<xl> ~<x~>;

x=<x~ ... Xn> & n_>2 ~<x2, .. , Xn,X~>; J-
etc.

11.2.4 Functional forms F. A functional form is an

expression denoting a function; that function depends on
the functions or objects which are the parameters of the
expression. Thus, for example, iff and g are any func-
tions, then fog is a functional form, the composition off

621
nd , f and re ts parameters, and t denotes he
unction uch hat, or any object x,

(fog): x =f:(g:x).

Some unctional orms may have objects as parameters.
For e example, or any object x,is unctional form, he
constant function of x x, so hat for any object y y

~: y= _ y=J_- + J_; x.

In particular, 5_ s the everywhere-j, function.
Below we give some functional forms, many of which

are used later in this paper. We use p,f, and g with and
without subscfipts to denote arbitrary functions; and x,
xl Xn, y as arbitrary objects. Square brackets [...] are
used to indicate the functional form for construction,
which denotes a function, whereas pointed brackets
<...> denote sequences, which are objects. Parentheses
are used both in particular functional forms (e.g., in
condition) and generally to indicate grouping.

Composition
(fog):x w-f:(g:x)

Construction
[fi fn]: X ----- <fl:X f,:x> (Recall that since
< ... J_ . .. > = J_ and all functions are j,-preserving, so
is [fi . .. fi].)
Condition
(p- -->f , g):x --- (p:x)=T-+ f:x; (p:x)=F-+ g:x; j,

Conditional expressions (used outside of FP systems to
describe their functions) and the functional form condi-
tion are both identified by "-->". They are quite different
although closely related, as shown in the above defini-
tions. But no confusion should arise, since the elements
of a conditional expression all denote values, whereas
the elements of the functional form condition all denote
functions, never values. When no ambiguity arises we
omit right-associated parentheses; we write, for example,
p~ ---->fl ;p2 - -->f2 g for (pl -->fi; (p2 -->j ~; g)).

Constant (Here x is an object parameter.)
i:y ~y=J_ ~ J-; x

Insert

/f:x ~ x=<xl> ~ xl; x=<xl, .. ,Xn > & n_>2
"-+f:<Xl, /f:<x2 Xn>>; j"

If f has a unique fight unit ui ~ J-, where
f:<x,ur> ~ {x, J_} for all objects x, then the above
definition is extended :/f:~ = ur. Thus

/+ :<4,5,6> = +:<4, + :<5, +:< 6>>>
= +:<4, + :<5,6>> = 15

/+ :,/,=0

Apply to all
of:x -= x=,~ ~~;

X=<X1 ... Xn> ~<f:Xl .. . f:xn>; J

oCfo mmunications VAuolguumste 12917 8
the ACM Number 8

Binary to unary (x is an object parameter)
(bu f x) :y ~ f: <x,y>

Thus

(bu + 1): :x = l+x

While
(while p f) :x ~p :x = T ~(while p f): ~f: x);

p:x=F---~ x; .1_

The above functional forms provide an effective
method for computing the values of the functions they
denote (if they terminate) provided one can effectively

apply their function parameters.

11.2.5 Definitions. A definition in an FP system is an
expression of the form

Def !-= r

where the left side 1is an unused function symbol and
the right side r is a functional form (which may depend
on/). It expresses the fact that the symbol lis to denote
the function given by r. Thus the definition Def last 1 -=
l oreverse defines the function lastl that produces the
last element of a sequence (or 2). Similarly,

Def last -= nullotl ~ 1; lastotl

defines the function last, which is the same as lastl. Here

linas td: e<ta1i,l2 i>s :h ow the definition would be used to compute
last: <1,2> =
definition of last (nullotl ~ 1; lastotl):<l,2>
action of the form (p---~f ,g) lastotl:<l,2>

since nullotl:<l,2> = null:<2>
=F F

action of the formf og last :(tl:<l,2>)
definition of primitive tail last: <2>
definition of last (nullotl --~ 1; lastotl)):<2>

action of the form (p--~ g) 1:<2>

since nullotl:<2> = null:$ = T

definition of selector 1 72

The above illustrates the simple rule: to apply a
defined symbol, replace it by the right side of its defini-
tion. Of course, some definitions may define nontermi-
nating functions. A set D of definitions is wellf ormed if
no two left sides are the same.

11.2.6 Semantics. It can be seen from the above that
an FP system is determined by choice of the following
sets: (a) The set of atoms A (which determines the set of
objects). (b) The set of primitive functions P. (c) The set
of functional forms F. (d) A well formed set of definitions
D. To understand the semantics of such a system one
needs to know how to compute f:x for any functionf
and any object x of the system. There are exactly four
possibilities forf :
(l)fis a primitive function;
(2)fis a functional form;
(3) there is one definition in D, Deff-= r; and
(4) none of the above.
Iff is a primitive function, then one has its description

622
and knows how to apply it. Iffis a functional form, then
the description of the form tells how to compute f: x in
terms of the parameters of the form, which can be done
by further use of these rules. Iffis det'med, Deff m r, as
in (3), then to fmdf:x one computes r:x, which can be
done by further use of these rules. If none of these, then

f:x -= ±. Of course, the use of these rules may not
terminate for somefand some x, in which case we assign
the value f: x ~ _1_

11.3 Examples of Functional Programs
The following examples illustrate the functional pro-

gramming style. Since this style is unfamiliar to most
readers, it may cause confusion at first; the important
point to remember is that no part of a function definition
is a result itself. Instead, each part is a function that must
be applied to an argument to obtain a result.

11.3.1 Factorial.

Def !~ eqO ~ 1; xo[id, !osubl]

where

Def eqO -= eqo[id, O]
Def subl ~ -o[id, i]

Here are some of the intermediate expressions an FP
system would obtain in evaluating !:2 :

!:2 ~(eq0 ~ 1; ×o[id, !osubl]):2
×o[id, [osubl] :2

x :<id:2, !osub1 :2> ~x :<2, !:1>
x:<2, x:<l, !:0>>

X :<2, x :<1,1 :0>> ~x :<2, x :<1,1>>
x: :< <2,1> ~2.

In Section 12 we shall see how theorems of the algebra
of FP programs can be used to prove that ! is the
factorial function.

11.3.2 Inner product. We have seen earlier how this
definition works.

Def IP ~ (/+)o(a×)otrans

11.3.3 Matrix multiply. This matrix multiplication
program yields the product of any pair <m,n> of con-
formable matrices, where each matrix m is represented
as the sequence of its rows:

m = <ml, .. ,mr>
where mi = <rail, .. ,mid> for i= 1, .. ,r.

Def MM ~ (aalP) o(adistl) od istro [1, transo 2]

The program MM has four steps, reading from right to
left; each is applied in turn, beginning with [1, transo2],
to the result of its predecessor. If the argument is <re,n>,
then the first step yields <m,n'> where n' = trans :n. The
second step yields <<ml,n'>, .. ,<mr,n'>>, where the
mi are the rows of m. The third step, adistl, yields

<distl :<ml,n'>distl:<mr,n'>> = <pl pr>

where

Communications August 1978
of Volume 21

the ACM Number 8

pi = distl:<mi, n'> = <<ml,nl'>, ..., <mi,nfso'>ri>= 1. ... ,r
and nj' s the jth column of n n (the jth ow of n n'). Thus pi,
a sequence of r row and column pairs, corresponds o he
i-th product row. The operator aalP, or a(alP), causes
alP to be applied o each pi, which in turn causes IP to
be applied to each row and column pair in each pi. The
result of the last step is therefore the sequence of rows
comprising the product matrix. If either matrix is not
rectangular, or if the length of a row of m differs from
that of a column of n, or if any element of m or n is not
a number, the result is Z.

This program MM does not name its arguments or
any intermediate results; contains no variables, no loops,
no control statements nor procedure declarations; has no
initialization instructions; is not word-at-a-time in na-
ture; is hierarchically constructed from simpler compo-
nents; uses generally applicable housekeeping forms and
operators (e.g., af, distl, distr, trans); is perfectly general;
yields ± whenever its argument is inappropriate in any
way; does not constrain the order of evaluation unnec-
essarily (all applications of IP to row and column pairs
can be done in parallel or in any order); and, using
algebraic laws (see below), can be transformed into more

"efficient" or into more "explanatory" programs (e.g.,
one that is recursively defined). None of these properties
hold for the typical von Neumann matrix multiplication
program.

Although it has an unfamiliar and hence puzzling
form, the program MM describes the essential operations
of matrix multiplication without overdetermining the
process or obscuring parts of it, as most programs do;
hence many straightforward programs for the operation
can be obtained from it by formal transformations. It is
an inherently inefficient program for von Neumann
computers (with regard to the use of space), but efficient
ones can be derived from it and realizations of FP
systems can be imagined that could execute MM without
the prodigal use of space it implies. Efficiency questions
are beyond the scope of this paper; let me suggest only
that since the language is so simple and does not dictate
any binding of lambda-type variables to data, there may
be better opportunities for the system to do some kind of
"lazy" evaluation [9, 10] and to control data management
more efficiently than is possible in lambda-calculus
based systems.

11.4 Remarks About FP Systems
11.4.1 FP systems as programming languages. FP

systems are so minimal that some readers may find it
difficult to view them as programming languages.

Viewed as such, a functionfis a program, an object x is
the contents of the store, andf:x is the contents of the
store after programfis activated with x in the store. The
set of definitions is the program library. The primitive
functions and the functional forms provided by the
system are the basic statements of a particular program-
ming language. Thus, depending on the choice of prim-

623

tive functions and functional forms, he FP ramework
provides for a a large class of languages with various styles
and capabilities. The algebra of programs associated
with each of these depends on ts particular set of func-
tional forms. The primitive functions, functional forms,
and programs given in this paper comprise an effort o
develop just one of these possible styles.

11.4.2 Limitations of FP systems. FP systems have
a number of limitations. For example, a given FP system
is a fixed language; it is not history sensitive: no program
can alter the library of programs. It can treat input and
output only in the sense that x is an input andf:x x is the
output. If the set of primitive functions and functional
forms is weak, it may not be able to express every
computable function.

An FP system cannot compute a program since func-

tion expressions are not objects. Nor can one define new
functional forms within an FP system. (Both of these
limitations are removed in formal functional program-
ming (FFP) systems in which objects "represent" func-
tions.) Thus no FP system can have a function, apply,
such that

apply: <x,y> --- x :y

because, on the left, x is an object, and, on the right, x
is a function. (Note that we have been careful to keep
the set of function symbols and the set of objects distinct:
thus 1is a function symbol, and 1is an object.)

The primary limitation of FP systems is that they are
not history sensitive. Therefore they must be extended
somehow before they can become practically useful. For
discussion of such extensions, see the sections on FFP
and AST systems (Sections 13 and 14).

11.4.3 Expressive power of FP systems. Suppose two
FP systems, FP1 and FP2, both have the same set of
objects and the same set of primitive functions, but the
set of functional forms of FP1 properly includes that of
FP2. Suppose also that both systems cart express all
computable functions on objects. Nevertheless, we can
say that FP1 is more expressive than FP2, since every
function expression in FP2 can be duplicated in FP1, but

by using a functional form not belonging to FP2, FP1 can
express some functions more directly and easily than
FP2.
Ibelieve the above observation could be developed

into a theory of the expressive power of languages in
which a language A would be more expressive than
language B under the following roughly stated condi-
tions. First, form all possible functions of all types in A
by applying all existing functions to objects and to each
other in all possible ways until no new function of any
type can be formed. (The set of objects is a type; the set
of continuous functions [T---~U from type T to type U is
a type. IffE[T---~U] and tET, thenfi in U can be formed
by applying f to t.) Do the same in language B. Next,
compare each type in A to the corresponding type in B.
If for every type, A's type includes B's corresponding

Communication Augus 1978
of Volum e2
the ACM Numbe 8

type, then A is more expressive than B (or equally
expressive). If some type of A's functions is incomparable
to B's, then A and B are not comparable in expressive
power.

11.4.4 Advantages of FP systems. The main reason

FP systems are considerably simpler than either conven-
tional languages or lambda-calculus-based languages is
that they use only the most elementary fixed naming
system (naming a function in a definition) with a simple
fixed rule of substituting a function for its name. Thus
they avoid the complexities both of the naming systems
of conventional languages and of the substitution rules
of the lambda calculus. FP systems permit the definition
of different naming systems (see Sections 13.3.4 and
14.7) for various purposes. These need not be complex,
since many programs can do without them completely.
Most importantly, they treat names as functions that can
be combined with other functions without special treat-
ment.

FP systems offer an escape from conventional word-
at-a-time programming to a degree greater even than
APL [12] (the most successful attack on the problem to
date within the von Neumann framework) because they
provide a more powerful set of functional forms within
a unified world of expressions. They offer the opportu-
nity to develop higher level techniques for thinking
about, manipulating, and writing programs.

12. The Algebra of Programs for FP Systems

12.1 Introduction

The algebra of the programs described below is the
work of an amateur in algebra, and Iwant to show that
it is a game amateurs can profitably play and enjoy, a
game that does not require a deep understanding of logic
and mathematics. In spite of its simplicity, it can help
one to understand and prove things about programs in
a systematic, rather mechanical way.

So far, proving a program correct requires knowledge
of some moderately heavy topics in mathematics and
logic: properties of complete partially ordered sets, con-
tinuous functions, least fixed points of functionals, the
first-order predicate calculus, predicate transformers,
weakest preconditions, to mention a few topics in a few
approaches to proving programs correct. These topics
have been very useful for professionals who make it their
business to devise proof techniques; they have published
a lot of beautiful work on this subject, starting with the
work of McCarthy and Floyd, and, more recently, that
of BurstaU, Dijkstra, Manna and his associates, Milner,
Morris, Reynolds, and many others. Much of this work
is based on the foundations laid down by Dana Scott
(denotational semantics) and C. A. R. Hoare (axiomatic
semantics). But its theoretical level places it beyond the
scope of most amateurs who work outside of this spe-
cialized field.

If the average programmer is to prove his programs

624

correct, he will need much simpler techniques than those
the professionals have so far put forward. The algebra of
programs below may be one starting point for such a
proof discipline and, coupled with current work on al-
gebraic manipulation, it may also help provide a basis
for automating some of that discipline.

One advantage of this algebra over other proof tech-
niques is that the programmer can use his programming
language as the language for deriving proofs, rather than
having to state proofs in a separate logical system that
merely talks about his programs.

At the heart of the algebra of programs are laws and
theorems that state that one function expression is the
same as another. Thus the law [f,g]oh _~ Ifo h, goh] says
that the construction off and g (composed with h) is the
same function as the construction of (f composed with
h) and (g composed with h) no matter what the functions
f,g, and h are. Such laws are easy to understand, easy to
justify, and easy and powerful to use. However, we also
wish to use such laws to solve equations in which an
"unknown" function appears on both sides of the equa-
tion. The problem is that iffsatisfies some such equation,
it will often happen that some extensionf ' off will also

satisfy the same equation. Thus, to give a unique mean-
ing to solutions of such equations, we shall require a
foundation for the algebra of programs (which uses
Scott's notion of least fixed points of continuous func-
tionals) to assure us that solutions obtained by algebraic
manipulation are indeed least, and hence unique, solu-
tions.

Our goal is to develop a foundation for the algebra
of programs that disposes of the theoretical issues, so
that a programmer can use simple algebraic laws and
one or two theorems from the foundations to solve
problems and create proofs in the same mechanical style
we use to solve high-school algebra problems, and so
that he can do so without knowing anything about least
fixed points or predicate transformers.

One particular foundational problem arises: given
equations of the form

f =- p0 ~qo; ... ;pi~qi; Ei(f), (1)

where the pi's and qi's are functions not involvingf and
El(f) is a function expression involvingf , the laws of the
algebra will often permit the formal "extension" of this
equation by one more "clause" by deriving

Ei(f) -= pi+l ~qi+l; Ei+l(f) (2)

which, by replacing Ei(f) in (1) by the fight side of (2),
yields

f ~ p0 ~ q0; ... ;pi+l ~qi+l; Ei+~(f). (3)
This formal extension may go on without limit. One
question the foundations must then answer is: when can
the least f satisfying (1) be represented by the infinite
expansion

f ~ po ---, qo; ... ;pn ~qn; ... (4)

in which the final clause involvingf has been dropped,

oCfo mmunications VAuolguumste 129! 7 8
the ACM Number 8
so that we now have a solution whose right side is free
off's? Such solutions are helpful in two ways: first, they
give proofs of "termination" in the sense that (4) means
that f: x is defined if and only if there is an n such that,
for every iless than n,pi: x = F and pn :X = T and qn :X

is defined. Second, (4) gives a case-by-case description
off that can often clarify its behavior.

The foundations for the algebra given ina subsequent
section are a modest start toward the goal stated above.
For a limited class of equations its "linear expansion
theorem" gives a useful answer as to when one can go
from indefinitely extendable equations like (1) to infinite
expansions like (4). For a larger class of equations, a
more general "expansion theorem" gives a less helpful
answer to similar questions. Hopefully, more powerful
theorems covering additional classes of equations can be

found. But for the present, one need only know the
conclusions of these two simple foundational theorems
in order to follow the theorems and examples appearing
in this section.

The results of the foundations subsection are sum-
marized in a separate, earlier subsection titled "expan-
sion theorems," without reference to fixed point con-
cepts. The foundations subsection itself is placed later
where it can be skipped by readers who do not want to
go into that subject.

12.2 Some Laws of the Algebra of Programs
In the algebra of programs for an FP system variables

range over the set of functions of the system. The "op-
erations" of the algebra are the functional forms of the
system. Thus, for example, [fig]oh is an expression of
the algebra for the FP system described above, in which
f, g, and h are variables denoting arbitrary functions of
that system. And

[f,g]oh ~ [foh, goh]

is a law of the algebra which says that, whatever func-
tions one chooses forf , g, and h, the function on the left
is the same as that on the right. Thus this algebraic law
is merely a restatement of the following proposition
about any FP system that includes the functional forms
[fig] and fog:

PROPOSITmN: For all functionsf , g, and h and all objects
x, ([f,g]oh):x ~ If oh, goh]:x.
PROOF:
([f,g]oh):x = [f,g]: :(h: :x)

by definition of composition
= <f:(h: x), g:(h:x)>

by definition of construction
= <(foh):x, (goh) :x>

by definition of composition
= [foh, goh] :x

by definition of construction []

Some laws have a domain smaller than the domain
of all objects. Thus 1o[f,g] -=fdoes not hold for objects
x such that g:x = _1_ We write

625

definedog) > lo If,g] mf

to indicate that the law (or theorem) on the right holds
within the domain of objects x for which definedog:x
= T. Where

Def defined ~

i.e. defined:x ~ x=Z ~Z; T. In general we shall write

a qualified functional equation:

p -->--~f~ g

to mean that, for any object x, whenever p:x = T, then
f:x = g:x.

Ordinary algebra concerns itself with two operations,
addition and multiplication; it needs few laws. The al-
gebra of programs is concerned with more operations
(functional forms) and therefore needs more laws.

Each of the following laws requires a corresponding
proposition to validate it. The interested reader will find
most proofs of such propositions easy (two are given
below). We first define the usual ordering on functions
and equivalence in terms of this ordering:

DEFINITIONf_<g iff for all objects x, eitherf:x = ±, or
f:x = g:x.
DEFINITIONf~ g ifff~_g and g'~f.

It is easy to verify that _< is a partial ordering, thatf_<g
means g is an extension offi and thatf-=g ifff:x = g:x
for all objects x. We now give a list of algebraic laws
organized by the two principal functional forms in-
volved.

I Composition and construction
I.l [fl. .. . fn]og ~ [flog. .. ,fnog]
1.2 ctfo[g, . .. g.] ~. [fog, . .. fOgn]

1.3 If°[g1 gn]
------f °[gl, /f°[g2 . .. g,]] when n_~.2
-= f°[gl, f°[g2 . .. ,f °[gn-,, gn].-.]]

fro[g] _- -g
1.4 fo[~,g] _-- (bufx)og
1.5 l o If1 f.] -<fl

so[fi. .. . f.. .. fn] -<fi for any selector s, s_<n
defmedofi (for all i~s, l_<i_<n) ---~---~

11..56 .1 t[lfolo[)ql .]. <... ~fn oannd]o [gx. gn] --= [fls°og[lf ,.. f,fnn°]gn -]= fi
defmedofi ---~t-lo--[~a ttl,o ..[.f.i.] fn~] --< If2. fn] for n_>2

and tlo[fl fn] ---- -[f2. .. . fn] for nW_2
1.7 distlo[f, [g~. .. ,gn]] =-- [[f,g i]. .. [f,g n]]

defmedof--~-~ distlol[f,f f] ~
The analogous law holds for distr.

1.8 apndlo[f, [gl. .. gn]] ~- [f,g l . .. gn]
nullog- --~-o apndlo[f,g] ~- If]

1A.9n d so[.o.n.. fio .r. .a.p]n ~d-r, _& r everse, rotl, etc.
11..1101 apapinrd&lon o[ftoogn, ualfloohl] ~~ o)f oapndlo[g,h]

apndlo[[1 o 1,2], distro[tlo 1,2]] ~- distr

oCfo mmunications VAoulguumst e 12917 8
the ACM Number 8

Wheref&g m apandiro [mf ,gat];o m ~ F; eqo[length,2]
II Composition and condition (fight associated paren-
theses omitted) (Law II.2 is noted in Manna et al. [16],
p. 493.)
II.1 (p-+f, g)oh -- - poh -->f oh; goh
II.2 ho(p---)~ g) _- -p ~hoj~ hog
II.3 oro[q,notoq] --~--~ ando[p,q] ---~J

ando[p,notoq] ~g; h -= p ---> (q-~f, g); h
II.3. 1 p --> (p----)f; g); h -= p --~ f; h
III Composition and miscellaneous
III. 1 .~of<

III.l.l dioeff_m=edfo o£f --~~- -i-) kof_--
III.2 fold =- idof~f
III.3 pair)) lodistr ~ [1o l,2] also:

pair >) lotl -= 2 etc.

IIIIII..54 nau(fllogog)- -w)_- -a>f oa faogg ~
IV Condition and construction
IV.1 [af. .. (p ~g; h), ... ,f,]

~g g- + [af . .. g, f.]; [af . .. h . .. fn]
IV.I.I [af (p, -) gl; ... ;pn --'> gn; h) fm]

-= P~ --~ [aft. .. gl . .. fm];
•. . ;p. --~ [af. .. g, . .. fm]; [af. .. h . .. fm]

This concludes the present list of algebraic laws; it is by
no means exhaustive, there are many others.

Proof of two laws
We give the proofs of validating propositions for laws

I.lO and I.ll,which are slightly more involved than most
of the others.

PROPOSITION 1

apndl o [fog, afoh] _-- of o apndl o [g,h]
PROOF. We show that, for every object x, both of the
above functions yield the same result.
CASE 1. h:x is neither a sequence nor ~.
Then both sides yield Z when applied to x.
CASE 2. h:x = 'b. Then
apndlo[fog, afoh]: x

= apndl: <fog:x, ,~> = <f'(g:x)>
afoapndlo[g,h]: x

= afoapndl: <g:x, ~> = af:<g:x>
= <f.'(g:x)>

CASE 3. h:x = <yx y.>. Then

apndlo[fog, afoh]: x
= apndl: <fog:x, af: <yl y.>>
= <f:(g:x), f:yx f.'yn >

afoapndlo[g,h]: x
= ofoapndl: <g:x, <yl y yn>>

= af.'<g:x, y yl y yn>
<f.'(g:x), f.'yl f.-y° >]

26

PROPOSITION 2

Pair & notonullo I---~--
apndlo[[12, 2], distro[tl o 1211 -= distr

PwRhOerOeFf. &W eg sish othwe tfhuantc btiootnh: saidnedso p[rfo, dgu]c, ea nthde F s am_-e-f oref. sult
when applied to any pair <x,y>, where x # if, as per the
stated qualification.
CASE 11 X is an atom or .1_ .T hen distr: <x,y> -- Z, since
x # ~. The left side also yields Z when applied to <x,y>,
since tlo 1 :<x,y> = Z and all functions are ±-preserving.
CASE 2. x = <X~ . .. ,x~>. Then

apndlo[[12, 2], distro[tlo 1, 2]]:<x, y>
= apndl: << 1: x, y>, distr: <tl:x, y>>

= apndl: <<x~,y>, ~> = <<x~,y>> if tl:x =
-- apndl: <<xl,y>, <<x2,y> . .. , <Xn,y>>>

if tl:x ~
= <<xl,y> . .. ,<Xn,y>>

= distr: <x,y> []

12.3 Example: Equivalence of Two Matrix
Multiplication Programs

We have seen earlier the matrix multiplication pro-
gram:

Def MM -= aaIP o adistl o distr o [I, transo2].

We shall now show that its initial segment, MM', where

Def MM' -= aaIP o adistl o distr,

can be defined recursively. (MM' "multiplies" a pair of
matrices after the second matrix has been transposed.
Note that MM', unlike MM, gives ± for all arguments
that are not pairs.) That is, we shall show that MM'
satisfies the following equation which recursively defmes
the same function (on pairs):

f~ null o I--) ~; apndlo[alpodistlo[1 o 1, 2],fo[tlo 1, 2]].

Our proof will take the form of showing that the follow-
ing function, R,

Def R ~ nullo 1 ~~;
apndlo[aIPodistlo[1 o 1, 2], MM'o[tlo 1, 2]]

is, for all pairs <x,y>, the same function as MM'. R
"multiplies" two matrices, when the first has more than
zero rows, by computing the first row of the "product"
(with aIpodistlo[lo 1, 2]) and adjoining it to the "prod-
uct" of the tail of the first matrix and the second matrix.
Thus the theorem we want is

pair ~ ~ MM'~ R,

from which the following s immediate:

MM =- MM' o [1, transo2] ~- R o [1, transo2];

where

Def pair ~- atom ~F; eqo [length, 2].

THEOREM: pair-- ~--~ MM' ~ R
where

Cofo mmunicat;~ns AVuogluumst e 12917 8
he A ACM Number 8
Def MM' m aalP o adistl o distr
Def R ~ nullo I~~;

apndlo[aIpodistlo[l 2, 2], MM'o[tlo 1, 2]]

PROOF.
CASE 1. pair &n ullol))M MM'- =R.
ppaaiirr&&nnuuUllooll ;> si~~nRMce-M =d'~i-s= tr : b<yidf,exf>o f=R ~

by def of distr
and a)qO = ~ by def of Apply to all.
And so: aaIP o adistl o distr: <,0,x> = ~.
Thus pair & hullo 1) > MM' -= R.
CASE 2. pair & notonullo 1)) MM' -= R.

pair & notonullo l~R ~ R', (1)

by def of R and R', where

Def R' ~ apndlo[aIPodistl°[l 2, 2], MM'o[tlo 1, 2]].

We note that

R' -= apndlo[fog, afoh]

where

gf ~-= [a1IP2,o 2d] istl
h ~ distro[tlo 1, 2]
af-= a(aIPodistl) ~ aaIpoadistl (by III.4). (2)

Thus, by 1.10,

R' -= afoapndlo[g,h]. (3)

Now apndlo[g,h] ~ apndlo[[l 2, 2], distro[tlo 1, 2]],
thus, by I.11,

pair & notonuno I--~---~ apndlo[g,h] -= distr. (4)

And so we have, by (1), (2), (3) and (4),

pair & notonullo 1 --~.--> R ~ R'
afodistr ~ aaIpoadistlodistr ~- MM'.

Case 1 and Case 2 together prove the theorem. []

12.4 Expansion Theorems
In the following subsections we shall be "solving"

some simple equations (where by a "solution" we shall
mean the "least" function which satisfies an equation).
To do so we shall need the following notions and results
drawn from the later subsection on foundations of the
algebra, where their proofs appear.

12.4.1 Expansion. Suppose we have an equation of
the form

f-= E(f) (El)

where E(f) is an expression involvingf. Suppose further
that there is an infinite sequence of functionsfi for i= 0,
1, 2 . .. ,each having the following form:

j.Ai+-l -m- £p o ~ q0; -.. ;pi ~ qi; i (E2)

627
where the pi's and qi's are particular functions, so that E
has the property:

E(fi) -=fi+l for i= 0, 1, 2. . .. (E3)

Then we say that E is expansive and has the fi's as
approximating functions.

If E is expansive and has approximating functions as
in (E2), and iff is the solution of (El), then f can be
written as the infinite expansion

f-= po --~ q0; ... ;pn ~qn; ..- (E4)

meaning that, for any x,fix # ± iff there is an n >_ 0
such that (a) pi:x = Ffor all i< n, and (b)p pn:x = T, and
(c) qn:X # ±. When f.'x # Z, then jqx = q,:x for this n.
(The foregoing is a consequence of the "expansion theo-
rem".)

12.4.2 Linear expansion. A more helpful tool for
solving some equations applies when, for any function h,

E(h) ~p0 ~ q0; El(h) (LEI)

and there exist pi and qi such that

El(pi ~qi; h) ~pi+l ~qi+l; El(h)
for i= 0, 1, 2. .. (LE2)

and

El(i) ~ J_. (LE3)

Under the above conditions E is said to be linearly

expansive. If so, andfis the solution of

f ~ E(f) (LEa)

then E is expansive and f can again be written as the
infinite expansion

fw-p o-- -~ q0;' ... ;pn -''~ qn; ,-. (LE5)

using the pi's and qi's generated by (LEI) and (LE2).
Although the pi's and qi's of (E4) or (LE5) are not

unique for a given function, it may be possible to find
additional constraints which would make them so, in
which case the expansion (LE5) would comprise a can-
onical form for a function. Even without uniqueness
these expansions often permit one to prove the equiva-
lence of two different function expressions, and they
often clarify a function's behavior.

12.5 A Recursion Theorem
Using three of the above laws and linear expansion,

one can prove the following theorem of moderate gen-
erality that gives a clarifying expansion for many recur-
sively defined functions.

RECURSION THEOREM Letf be a solution of

f~p -~ g; Q(f) (1)

where

Q(k) -= ho[i, koj] for any function k (2)

and p, g, h, i, j are any given functions, then

oCfo mmunications VAoulguumst e 129 l7 8
the ACM Number 8

f__ p. _.~ ff , poj ._.~ Q(g) .. ;pojn __~ Q~(g) .. (3

(where Qn(g iho[i Qn-l(g)oj] and jn is join-1 fo
n _ > 2 and

Qn(g) _ __/h [iioj , io J .n-~ ,g°jn] (4)

PROOF We verify thatp ~g; Q(f) is linearly expansive
Let pn qn and k be any functions Then

Q(en ~qn k)
= - ho[i, (p~ ~qn k)oj] by (2)
~ ho[i, (pnoj- --~ qnOj ; k°j)] by ILl
= h°(pn°j- --~ [i, q~oj]; [ikoj]) by IV. . 1
-- - pnoj --~ ho[i, qnOj] ; h°[i, koj] by II.2

pn°j ~ Q(qn); Q(k) by (2) (5)

Thus ifpo ~- p and qo -= g, then (5) gives pl ~ poj and
q~ = Q(g) and in general gives the following functions
satisfying (LE2)

pn ~p °j n and qn m Q~(g). (6)

Finally,

Q(£) -.~= hhoo[[ii,, ££]o j] by III.l.l
ho& by 1.9

---i by IlL 1.1. (7)

Thus (5) and (6) verify (LE2) and (7) verifies (LE3), with
E1 -= Q. If we let Elf) ~ p ~ g; Q(f), then we have
(LE1); thus E is linearly expansive. Since f is a solution
off ~ E(f), conclusion (3) follows from (6) and (LE5).
Now

Qn(g) m ho[i, Qn-l(g)oj]
ho[i' ho[ioj ' ho[iojn-1, gojn]]]

by I. 1, repeatedly

/ho[i, ioj, ... iojn-~,'goj n] by 1.3 (8)

Result (8) is the second conclusion (4). []
12.5.1 Example: correctness proof of a recursive

factorial function. Letf be a solution of

f=- eq0 ~]; xo[id, fos]

where

Def s = -o[id,]] (subtract 1).

Thenf s satisfies the hypothesis of the recursion theorem
with p m eq0, g -- L h =- x, -- d, and j --.Therefore

f ~- eq0 ~]; eq0os n ~Qn(]); ..
and

Qn(/) =/ ×o id, dos. . dosn -l, osn] .

Now dosk ~ k by II.2 and eq0os n os n -- by
liA, ince q0os~:x mplies defmedosn:x; nd lso
eq0osn:x q0: x n) -- =n. Thus f e q0osn: T,
hen x = a nd

Qn(i): = n x (n -) .(n - n -))
1: (n - n)) = n !.

28
Using these results fo]o~ eq0os n and Qn(]) in the
previous expansion forf we obtain

fix -= x=O --~ 1.. ; x=n
-- ~n X (n l) X .. .x ×1;..

Thus we have proved thatf terminates on precisely the
se of nonnegative integers and that iis the factoria
function thereon.

12.6 An Iteration Theorem
This is really a corollary of the recursion theorem. It

gives a simple expansion for many iterative programs.

ITERATION THEOREM :L etf be the solution (i.e., the least
solution) of

f _-- p --~ g; hofok

then

f _- p ~g;pok ~hogok; ... ;;p ok ~ ~hnogo~; ...

PROOF Let h' =- ho2, i' --- id,f --- k, then

f -= p ~g; h'o[i',fof]

since ho2o[id, fok] ~ hofok by 1.5 (id is defined except
for Z, and the equation holds for _1_) .T hus the recursion
theorem gives

f -= p- -~ g; ... ;pokn- -~ Q"(g); ...
where

Qn(g) ~ ho2o[id, Qn-l(g)ok]
hoQn-l(g)ok _= hnogok ~

by .5 []
12.6.1 Example: Correctness proof for an iterative

factorial function. Letf be the solution of

f~ eq0o l~2;fo[so 1, ×]

where Def s ~ -o[id,]] (substract 1). We want to prove
thatf:<x,l> = x! iff x is a nonnegative integer. Let p
eq0o 1, g ~- 2, h ~ id, k ~ [so 1, ×].Then

f --- p ~g; hofok

and so

f_- -p -.~g; .. ;pod __~ god; .. (1)

by the iteration theorem, since hn ~ id. We want to show
that

pair-- ~--~ kn ~- [an, bn] (2)

holds or every n > ,where

n =- % 1 3)
n X sn--lo l o 1, 1, 2] 4)

Now 2) holds or n 1 by definition of k k. We ssume
t holds or ome > 1 nd prove t hen holds or.Now

air ~ ~+~ = k ko~ w _ so 1,]o[a,, b ,] 5)

ince (2) h olds f or n . A And s o

Cfo mmunications AVougluumste 129 !7 8
he A CM umber 8

pair --~---~ k "+~ =- [S°an, xo[a., bn]] by I.l and 1.5 (6)

To pass from (5) to (6) we must check that whenever an
or bn yield ± in (5), so will the right side of (6). Now

SOan ~. Sn +l° 1 =-- an+l (7)

Xo[an, b,] ~/ X o [sno 1, sn -l° 1. ... so 1, 1, 2]
--= bn+] by 1.3. (8)

Combining (6), (7), and (8) gives

pair-- -~--~ k n+l -= [an+l, bn+l]. (9)

Thus (2) holds for n = 1 and holds for n + lwhenever
it holds for n, therefore, by induction, it holds for every
n _> 1. Now (2) gives, for pairs:

definedokn --~--~ pokn ~_ eq0o lo o[an, bn]
.~ eqOoan ~ eq0os~o I (110)

defmedo~ ---~---~ gok~
2o[an, bn] -- ×o [s~-'ol l so l, 1, 2] (11)

(both use 1.5). Now (1) tells us thatf'<x,l> is defined iff
there is an n such that pok~:<x,l> = Ffor all i< n, and
pok~:<x,l> = T, that is, by (10), eq0osn:x = T, i.e.,
x=n; and gok~:<x,l> is defined, in which case, by (11),

f:<x,l> =/ x:<l, 2. .. x-l, x, 1> = n!,

which is what we set out to prove.
12.6.2 Example: proof of equivalence of two iterative

programs. In this example we want to prove that two
iteratively defined programs,f and g, are the same func-
tion. Letfbe the solution of

f~po I~2; hofo[ko 1, 2]. (1)

Let g be the solution of

g ~po 1~2; go[ko 1, ho2].

Then, by the iteration theorem:

f ~ p0 "--~ q0; ••- ;pn --'~ qn; -•-

g -= pS" --~ qS; • /Otn ""'-> q .t. . .. (4)

where (letting r° ~ id for any r), for n = 0, 1. ..

pn ~_ _po lo[ko l, 2]" ~po lo[k%l l, 2] by 1.5.1 (5)
qn =- h%2o[kol, 2] n --- hno2o[~o 1, 2] by 1.5.1 (6)
p'n _= po lo[ko l, ho2]n --- po lo[kno 1, hno2] by 1.5.1 (7)
q'n --- 2o[ko l, ho2]n =- 2o[k%1, h"o2] by 1•5.1. (8)

Now, from the above, using 1.5,

defmedo2 > > p. Epok"o 1 (9)
defmedohno2 > ~ p ~ ~_ _pok% l (10)
defmedok% l, } q. m q~ mh n°2 (11)

Thus

defmedohno2 ~ > defmedo2 ~ 7' (12)
defmedohno2, } } pn m p~ (13)

and

f ~po ~ q0; •.• ;pn~h"o2; ... (14)
g ~p p~' -'~ q~; .• •, p-' ~hn°2; ... (15)

629

since pn and p~ provide the qualification needed for q,
q~ ~ hno2.

Now suppose there is an x such thatf:x # g:x. Then
there is an n such that pi:x = p~:x = Ffor i< n, and pn:X

p~:x. From (12) and (13) this can only happen when
h%2:x = d_. But since h is _L-preserving, hm°2:x = _1_ for
all m >_ n. Hencejqx = g:x = J_ by (14) and (15). This
contradicts the assumption that there is an x for which
fix # g:x. Hencef~ g.

This example (by J. H. Morris, Jr.) is treated more
elegantly in [16] on p. 498. However, some may fred that
the above treatment is more constructive, leads one more
mechanically to the key questions, and provides more
insight into the behavior of the two functions.

12.7 Nonlinear Equations
The preceding examples have concerned "linear"

equations (in which the "unknown" function does not
have an argument involving itself). The question of the
existence of simple expansions that "solve .. . quadratic"
and higher order equations remains open•

The earlier examples concerned solutions off--- E(f),
where E is linearly expansive. The following example

involves an E(f) that is quadratic and expansive (but
not linearly expansive).

12.7.1 Example: proof of idempotency ([16] p. 497).
Letfbe the solution of

f-= E(f) m p- --~ id;f2oh. (1)

We wish to prove that f- f2. We verify that E is
expansive (Section 12.4.1) with the following approxi-
mating functions:

f./"~ -_== Pj_ --> id; ... ; pohn -1 --> hn-1; 1 for n > 0 ((22ab))
First we note that p --~ fn ~- id and so

p°hi ' >f n°hi ~- hi. (3)

Now E(fo) ~p ---~ id; J_2oh -=fi, (4)

and

E(fm-m-==n) ppppf n- +--~~--~l ~ . iiiidddd;;;; pffpnn°o°ohh((- pp--- o~->~ hf nh-;°i- -dh.~;.;. h .;;.. .p. ..o. .;;h p ;p °np°h ho~ nhn -- -n1-h >~n~ ;f nJhh_°n hn;n- 1;bj_; y fon5 h°_()-)3 lo)-h (5)

Thus E is expansive by (4) and (5); so by (2) and Section
12.4.1 (E4)

f_- -p p~ id; ... ;poh" ~hn; (6)

But (6), by the iteration theorem, gives

f_-- -p ~id;foh. (7)

Now, ifp:x = T, thenf.x = x =f2:x, by (1). Ifp:x = F,
then

fiX = f%h:x by (1)

oCfo mmunications VAuolguumste 12917 8
the ACM Number 8

=-- ff'2.:(xf.o h:x) =fi(f'x) by (7)
Ifp:x is neither T nor F, then~x = .1_ =f2:x. Thus

f___f2.

12.8 Foundations for the Algebra of Programs
Our purpose in this section is to establish the validity

of the results stated in Section 12.4. Subsequent sections
do not depend on this one, hence it can be skipped by
readers who wish to do so. We use the standard concepts
and results from [16], but the notation used for objects

and functions, etc., will be that of this paper.
We take as the domain (and range) for all functions

the set O of objects (which includes ±) of a given FP
system. We take F to be the set of functions, and F to be
the set of functional forms of that FP system. We write
E(f) for any function expression involving functional
forms, primitive and defined functions, and the function
symbol~ and we regard E as a functional that maps a
function f into the corresponding function E(f). We
assume that all f E F are ±-preserving and that all
functional forms in F correspond to continuous function-
als in every variable (e.g., If, g] is continuous in bothf
and g). (All primitive functions of the FP system given
earlier are _l_-preserving, and all its functional forms are
continuous.)

DEFINITIONS Let E(f) be a function expression. Let

ffio+-l ---=£ p o ~ qo; ... ; pi ~ qi; ~ for i = 0, 1. ...

where pi, q~ E F. Let E have the property that

E(f)- ~f+~ for i=0,1,
Then E is said to be expansive with the approximating

functionsf. We write

f-p0 ---) qo; ... ;pn ---) q,; ...

to mean that f- -- limi(f}, where the f have the form
above. We call the right side an infinite expansion off
We takejSx to be defmed iff there is an n _> 0 such that
(a) pi:x = F for all i< n, and (b) p.:x = T, and (c) qn:X

is defmed, in which casef:x = q,:x.

EXPANSION THEOREM Let E(f) be expansive with ap-
proximating functions as above. Let f be the least func-
tion satisfying

f-E(f).

Then

f-p0 ---) q0; ... ;p, ---) qn; .-.

PROOF. Since E is the composition of continuous func-
tionals (from F) involving only monotonic functions
(±-preserving functions from F) as constant terms, E is
continuous ([16] p. 493). Therefore its least fixed pointf
is limi(Ei(j_)} - limi{f} ([161 p . 494), which by defmition
is the above infinite expansion forf []

63O

DEFINITION. Let E(f) be a function expression satisfying
the following:

E(h) -- -p0 --* q0; El(h) for all h E F (LE1)

where pi E F and qi E F exist such that

El(pi ~ qi; h) ~pi+y ~qi+l; El(h)
for all h ~ F and i= 0, 1. .. (LE2)

and

Ea(i) --- i. (LE3)

Then E is said to be linearly expansive with respect to
these pi's and qi's.

LINEAR EXPANSION THEOREM Let Ebe linearly expansive
with respect to pi and qi, i= 0, 1. .. .Then E is expansive
with approximating functions

.~1+~1 i ~ p0 "--)'q 0; ,.-;pi ~ qi; £- ((12))
PROOF. We want to show that E(f) ~f+l for any i_> 0.
Now

E(fo) ~po ~ q0; E1 (J_) ~po ~ qo; £ ~fi (3)
by (LEI) (LE3) (1).

Let i> 0 be fixed and let

f --- p0 ---) qo; wl (4a)
Wl ~pl ~ ql; W2 (4b)
etc.

Wi-a ~ pi-1 ~ qi-1; ~- (4-)

Then, for this i> 0

E(fi) =- po ~ qo; El(f) by (LE1)
El(f) ~- p~ --~ q~; El(W~) by (LE2) and (4a)
El(w1) --- p2 ~qz; Effw2) by (LE2) and (4b)

etc.

El(wi-1) ~ ppii ~~ qqii;; Ei ~ (bi)y (LbEy3 ()L E2) and (4-)
Combining the above gives

E(f) ~f+x for arbitrary i> 0, by (2). (5)

By (3), (5) also holds for i= 0; thus it holds for all i_> 0.
Therefore E is expansive and has the required approxi-
mating functions. []

COROLLARY If E is linearly expansive with respect to p~
and qi, i= 0, 1. .. andfis the least function satisfying

f-= E(f) (LE4)

then

f~p0 ~ q0; ... ;pn~qn; (LE5)

12.9 The Algebra of Programs for the Lambda Calculus
and for Combinators

Because Church's lambda calculus [5] and the system
of combinators developed by Sch6nfinkel and Curry [6]

oCfo mmunications VAoulguumst e 12917 8
the ACM Number 8

are he primary mathematical systems for representing
he notion of a application of f functions, and because they
are more powerful than FP systems, t s natural o
enquire what an algebra of programs based on hose
systems would look ike.

The lambda calculus and combinator equivalents of
FP composition,f og, are

Xfgx.(f(gx)) - B

where B is a simple combinator defined by Curry. There
is no direct equivalent for the FP object <x,fl> in the
Church or Curry systems proper; however, following
Landin [14] and Burge [4], one can use the primitive
functions prefix, head, tail, null, and atomic to introduce
the notion of list structures that correspond to FP se-
quences. Then, using FP notation for lists, the lambda
calculus equivalent for construction is ~fgx.<fx,gx>. A
combinatory equivalent is an expression involving prefix,
the null list, and two or more basic combinators. It is so

complex that Ishall not attempt to give it.
If one uses the lambda calculus or combinatory

expressions for the functional forms fog and [fig] to
express the law 1.1 in the FP algebra, [fig]oh
[foh, goh], the result is an expression so complex that the
sense of the law is obscured. The only way to make that
sense clear in either system is to name the two function-
als: composition m B, and construction ~ A, so that Bfg
_--fog, and Afg -= [fig]. Then 1.1 becomes

B(Afg)h -= A(Bfh)(Bgh),

which is still not as perspicuous as the FP law.
The point of the above is that if one wishes to state

clear laws like those of the FP algebra in either Church's
or Curry's system, one finds it necessary to select certain
functionals (e.g., composition and construction) as the
basic operations of the algebra and to either give them
short names or, preferably, represent them by some
special notation as in FP. If one does this and provides
primitives, objects, lists, etc., the result is an FP-like
system in which the usual lambda expressions or com-
binators do not appear. Even then these Church or Curry
versions of FP systems, being less restricted, have some
problems that FP systems do not have:

a) The Church and Curry versions accommodate
functions of many types and can define functions that

do not exist in FP systems. Thus, Bf is a function that
has no counterpart in FP systems. This added power
carries with it problems of type compatibility. For ex-
ample, in fog, is the range of g included in the domain
off? In FP systems all functions have the same domain
and range.

b) The semantics of Church's lambda calculus de-
pends on substitution rules that are simply stated but
whose implications are very difficult to fully compre-
hend. The true complexity of these rules is not widely
recognized but is evidenced by the succession of able
logicians who have published "proofs" of the Church-
Rosser theorem that failed to account for one or another

663

of hese complexities. (The Church-Rosser heorem, or
Scott's proof of t he existence of a model [22], s required
o show hat t he ambda c calculus h has a consistent seman-
tics.) The definition of pure Lisp contained a related
error for a considerable period (the "funarg" problem).
Analogous problems attach o Curry's system as well.

In contrast, the formal (FFP) version of FP systems
(described in the next section) has no variables and only
an elementary substitution rule (a function for its name),
and it can be shown to have a consistent semantics by a

relatively simple fixed-point argument along the lines
developed by Dana Scott and by Manna et al [16]. For
such a proof see McJones [18].

12.10 Remarks
The algebra of programs outlined above needs much

work to provide expansions for larger classes of equations
and to extend its laws and theorems beyond the elemen-
tary ones given here. It would be interesting to explore
the algebra for an FP-like system whose sequence con-
structor is not .J_-preserving (law 1.5 is strengthened, but
IV.11 is lost). Other interesting problems are: (a) Find
rules that make expansions unique, giving canonical
forms for functions; (b) find algorithms for expanding
and analyzing the behavior of functions for various
classes of arguments; and (c) explore ways of using the
laws and theorems of the algebra as the basic rules either
of a formal, preexecution "lazy evaluation" scheme [9,
10], or of one which operates during execution. Such
schemes would, for example, make use of the law
1o [fig] _<fto avoid evaluating g:x.

13. Formal Systems for Functional Programming
(FFP Systems)

13.1 Introduction
As we have seen, an FP system has a set of functions

that depends on its set of primitive functions, its set of

functional forms, and its set of definitions. In particular,
its set of functional forms is fixed once and for all, and
this set determines the power of the system in a major
way. For example, if its set of functional forms is empty,
then its entire set of functions is just the set of primitive
functions. In FFP systems one can create new functional
forms. Functional forms are represented by object se-
quences; the first element of a sequence determines
which form it represents, while the remaining elements
are the parameters of the form.

The ability to define new functional forms in FFP
systems is one consequence of the principal difference
between them and FP systems: in FFP systems objects
are used to "represent" functions in a systematic way.
Otherwise FFP systems mirror FP systems closely. They
are similar to, but simpler than, the Reduction (Red)
languages of an earlier paper [2]

We shall first give the simple syntax of FFP systems
then discuss their semantics informally giving examples,
and fmally give their formal semantics.

oCfo mmunication VAuolguumste 1 2917 8
the ACM Numbe r 8

13.2 Syntax
We describe the set O of objects and the set E of

expressions of an FFP system. These depend on the
choice of some set A of atoms, which we take as given.

We assume that T (true), F (false), ~ (the empty se-
quence), and # (default) belong to A, as well as "num-
bers" of various kinds, etc.
1) Bottom, ±, is an object but not an atom.
2) Every atom is an object.
3) Every object is an expression.
4) If xlxn are objects [expressions], then
<xl . .. Xn> is an object [resp., expression] called a
sequence (of length n) for n _> 1. The object [expression]
xi for 1 _< i _~ n, is the ith element of the sequence
<xl . .. xi . .. Xn>. ('h is both a sequence and an atom;
its length is 0.)
5) If x and y are expressions, then (x:y) is an expression
called an application, x is its operator and y is its operand.
Both are elements of the expression.
6) If x = <xl, ... ,Xn> and if one of the elements of x is
±, henx = ±. Th atis,< < ± . .. >= ±.
7) All objects and expressions are formed by finite use
of the above rules.

A subexpression of an expression x is either x itself or
a subexpression of an element of x. An FFP object is an
expression that has no application as a subexpression.
Given the same set of atoms, FFP and FP objects are
the same.

13.3 Informal Remarks About FFP Semantics
13.3.1 The meaning of expressions; the semantic

function #. Every FFP expression e has a meaning, ~te,

which is always an object; #e is found by repeatedly
replacing each innermost application in e by its meaning.
If this process is nonterminating, the meaning of e is ±.
The meaning of an innermost application (x:y) (since it
is innermost, x and y must be objects) is the result of
applying the function represented by x toy, just as in FP
systems, except that in FFP systems functions are rep-
resented by objects, rather than by function expressions,
with atoms (instead of function symbols) representing
primitive and defmed functions, and with sequences
representing the FP functions denoted by functional
forms.

The association between objects and the functions
they represent is given by the representation function, p,
of the FFP system. (Both p and # belong to the descrip-
tion of the system, not the system itself.) Thus if the
atom NULL represents the FP function null, then
pNULL -- null and the meaning of (NULL:A) is
#(NULL:A) = (pNULL):A = null:A = F.
From here on, as above, we use the colon in two senses.
When it is between two objects, as in (NULL:A), it
identifies an FFP application that denotes only itself;
when it comes between a function and an object, as in
(pNULL):A or null:A, it identifies an FP-like application
that denotes the result of applying the function to the
object.

The fact that FFP operators are objects makes pos-

632
sible a function, apply, which is meaningless in FP
systems:

apply:<x,y> = (x:y).

The result of apply:<x,y>, namely (x:y), is meaningless
in FP systems on two levels. First, (x:y) is not itself an
object; it illustrates another difference between FP and
FFP systems: some FFP functions, like apply, map ob-
jects into expressions, not directly into objects as FP
functions do. However, the meaning of apply:<x,y> is
an object (see below). Second, (x:y) could not be even an
intermediate result in an FP system; it is meaningless in
FP systems since x is an object, not a function and FP
systems do not associate functions with objects. Now if
APPLY represents apply, then the meaning of
(APPL Y:<NULL,A>) is

i~(AP PL Y:< N ULL,A >)
= #(~APPL Y):<NULL,A>)
= #(apply:<NULL,A>)
= #(NULL:A) = #((oNULL):A)
= #(null:A) =/ LF = F.

The last step follows from the fact that every object is its
own meaning. Since the meaning function # eventually

evaluates all applications, one can think of
apply:<NULL,A> as yielding Feven though the actual
result is (NULL:A).

13.3.2 How objects represent functions; the repre-
sentation function p. As we have seen, some atoms
(primitive atoms) will represent the primitive functions of
the system. Other atoms can represent deffmed functions
just as symbols can in FP systems. If an atom is neither
primitive nor defmed, it represents ±, the function which
is ± everywhere.

Sequences also represent functions and are analogous
to the functional forms of FP. The function represented
by a sequence is given (recursively) by the following rule.

Metacomposition rule

(p<Xl. .. Xn>):y ~- (0Xl):<<Xl. .. Xn>, y>,

where the xi's and y are objects. Here pxl determines
what functional form <x~. ...x,> represents,
and x2 . .. x, are the parameters of the form (in FFP, xl

itself can also serve as a parameter). Thus, for example,
let Def pCONST -= 2o l; then <CONST, x> in FFP
represents the FP functional form £, since, by the meta-
composition rule, ify ~ ±,
(p<CONST,x >):y = (pCONST):<<CONST,x >,y>

= 2 ° I:<<CONST, x>,y> = x.

Here we can see that the first, controlling, operator of a
sequence or form, CONST in this case, always has as its
operand, after metacomposition, a pair whose first ele-
ment is the sequence itself and whose second element is
the original operand of the sequence, y in this case. The
controlling operator can then rearrange and reapply the
elements of the sequence and original operand in a great
variety of ways. The significant point about metacom-

Communications August 1978
of Volume 2I

the ACM Number 8

position is that it permits the definition of new functional
forms, in effect, merely by defining new functions. It also
permits one to write recursive functions without a defi-
nition.

We give one more example of a controlling function
for a functional form: Def pCONS -= otapplyotlodistr.
This definition results in <CONS,fi . .. fn>--where the
f~ are objects--representing the same function as
[pfl. .. pfn]. The following shows this.

(p<CONS,fi fn>):X
= (#CONS):<<CONS, fi fn >,X>

by metacomposition

= aapplyotlodistr:<<CONS,fi . .. fn>,X>

by def of pCONS
= aapply:<<f~,x> . .. <fn,X>>

by def of tl and distr and o
= <apply:<fi,x> . .. apply:<fn,X >>

by def of a
= <(fx:x). .. (fn:X)> by def of apply.

In evaluating the last expression, the meaning function
will produce the meaning of each application, giving

pJ~:x as the ith element.
Usually, in describing the function represented by a

sequence, we shall give its overall effect rather than show
how its controlling operator achieves that effect. Thus
we would simply write

(p<CONS, ffi. .. f~>):x = <(ffi:x). .. (f~:x)>

instead of the more detailed account above.
We need a controlling operator, COMP, to give us

sequences representing the functional form composition.
We take pCOMP to be a primitive function such that,
for all objects x,

(p<COMe,fl . .. fn>):x
= (fi:(f2:(... :(f~:x)...))) for n _> 1.

(I am indebted to Paul Me Jones for his observation that

ordinary composition could be achieved by this primitive
function rather than by using two composition rules in
the basic semantics, as was done in an earlier paper
[2].)

Although FFP systems permit the definition and
investigation of new functional forms, it is to be expected
that most programming would use a fixed set of forms
(whose controlling operators are primitives), as in FP, so
that the algebraic laws for those forms could be em-
ployed, and so that a structured programming style could
be used based on those forms.

In addition to its use in defining functional forms,
metacomposition can be used to create recursive func-
tions directly without the use of recursive definitions of
the form Deff ~ E(f). For example, if pMLAST
nullotlo2 ~ lo2; applyo[1, tlo2], then p<MLAST> -=
last, where last:x m x = <xl Xn> ~X~; &. Thus the
operator <MLAST> works as follows:

#(<MLAST>:<A,B>)

633
= #(pMLAST:<<MLAST>,<A,B>>)

by metacomposition
= #(applyo[1, tlo2]:<<MLAST>,<A,B>>)
= ~t(apply:<<MLAST>,>)
= #(<MLAST>:)
= ix(pMLAST:<<MLAST>,>)

= #(lo2:<<MLAST>,>)
=B.

13.3.3 Summary of the properties of p and #. So far
we have shown how p maps atoms and sequences into
functions and how those functions map objects into
expressions. Actually, p and all FFP functions can be
extended so that they are defmed for all expressions.
With such extensions the properties of p and/ ~ can be
summarized as follows:

1) # E [expressions -* objects].
2) If x is an object, #x = x.
3) If e is an expression and e = <el. .. en>, then

#e = <#el, ... ,#en>.
4) p E [expressions ~ [expressions ~expressions]].
5) For any expression e, pe = p~e).
6) If x is an object and e an expression, then

ox:e = px:(ge).
7) If x and y are objects, then #(x:y) = #(Ox:y). In

words: the meaning of an FFP application (x:y) is found
by applying px, the function represented by x, to y and
then finding the meaning of the resulting expression
(which is usually an object and is then its own meaning).

13.3.4 Cells, fetching, and storing. For a number of
reasons it is convenient to create functions which serve
as names. In particular, we shall need this facility in
describing the semantics of det'mitions in FFP systems.

To introduce naming functions, that is, the ability to
fetch the contents of a cell with a given name from a
store (a sequence of cells) and to store a cell with given
name and contents in such a sequence, we introduce
objects called cells and two new functional forms, fetch
and store.
Cells

A cell is a triple <CELL, name, contents>. We use this
form instead of the pair <name, contents> so that cells
can be distinguished from ordinary pairs.
Fetch

The functional form fetch takes an object n as its
parameter (n is customarily an atom serving as a name);
it is written l'n (read "fetch n"). Its definition for objects
n and x is

l"n:x -= x = ~~#; atom:x ~±;
(l:x) = <CELL,n,c> ~c; ~'notl:x,

where # is the atom "default." Thus l'n (fetch n) applied
to a sequence gives the contents of the first cell in the
sequence whose name is n; If there is no cell named n,
the result is default, #. Thus l'n is the name function for
the name n. (We assume that pFETCH is the primitive
function such that p<FETCH, n> ~ l"n. Note that ~n
simply passes over elements in its operand that are not
cells.)

oCfo mmunications VAuolguumste 12917 8
the ACM Number 8
Store and push, pop, purge

Like fetch, store takes an object n as its parameter; it
is written ~n ("store n"). When applied to a pair <x,y>,
where y is a sequence, ,Ln removes the first cell named n
from y, if any, then creates a new cell named n with
contents x and appends it to y. Before defining ~Ln (store
n) we shall specify four auxiliary functional forms.
(These can be used in combination with fetch n and store
n to obtain multiple, named, LIFO stacks within a
storage sequence.) Two of these auxiliary forms are
specified by recursive functional equations; each takes
an object n as its parameter.

(cellname n) ~- atom ~F;

((ppuosp h n)n)= ~- npualil re- q--~o-, $[_l;ae npngtdhl,o [3[]C -E-~L eLq, oh[,[C1E], L2L];, Zh], [I, 2]]; k
(cellna_me n)o 1-o tl; apndlo[l, (pop n)otl]

(purge n) m null ~ ~,; (cellname n)o 1~(purge n)otl;
apndlo[1, (purge n)otl]

~n ~ pair --~ (push n)o[l, (pop n)o2]; ±
The above functional forms work as follows. For
x # 1, (cellname n):x is Tifx is a cell named n, otherwise
it is F. (pop n):y removes the first cell named n from a

sequence y; (purge n):y removes all cells named n from
y. (push n):<x,y> puts a cell named n with contents
x at the head of sequence y; J,n:<x,y> is
(push n):<x, (pop n):y>.

(Thus (push n):<x,y> = y' pushes x onto the top of
a "stack" named n in y'; x can be read by ~n:/ = x and
can be removed by (pop n):y'; thus 1'no(pop n):y' is the
element below x in the stack n, provided there is more
than one cell named n iny'.)

13.3.5 Definitions in FFP systems. The semantics of
an FFP system depends on a fixed set of definitions D
(a sequence of cells), just as an FP system depends on its
informally given set of definitions. Thus the semantic
function # depends on D; altering D gives a new #' that
reflects the altered definitions. We have represented D
as an object because in AST systems (Section 14) we
shall want to transform D by applying functions to it and
to fetch data from it--in addition to using it as the source
of function definitions in FFP semantics.

If <CELL,n,c> is the first cell named n in the se-
quence D (and n is an atom) then it has the same effect
as the FP definition Def n m #c, that is, the meaning of
(n:x) will be the same as that of Oc:x. Thus for example,
if <CELL, CONST,<COMP,2,1>> is the first cell in D
named CONST, then it has the same effect as
Def CONST -= 20 1, and the FFP system with that D
would fred

lt(CONST:<<x,y>,z>) = y

and consequently

#(<CONST, A>:B) = A.

In general, in an FFP system with definitions D, the
meaning of an application of the form (atom:x) is de-

634

pendent on D; if l'atom:D # # (that is, atom is defmed
in D) then its meaning is #(c:x), where c = 1'atom:D, the
contents of the first cell in D named atom. If l'atom:D
= #, then atom is not defmed in D and either atom is
primitive, i.e. the system knows how to compute patom:x,
and #(atom:x) = #(patom:x), otherwise #(atom:x) = ±.
13.4 Formal Semantics for FFP Systems

We assume that a set A of atoms, a set D of defini-
tions, a set P C A of primitive atoms and the primitive
functions they represent have all been chosen. We as-
sume that pa is the primitive function represented by a
if a belongs to P, and that pa = Z if a belongs to Q, the
set of atoms in A-P that are not defined in D. Although
is defined for all expressions (see 13.3.3), the formal

semantics uses its definition only on P and Q. The
functions that p assigns to other expressions x are im-
plicitly determined and applied in the following semantic
rules for evaluating #(x:y). The above choices of A and
D, and of P and the associated primitive functions de-
termine the objects, expressions, and the semantic func-
tion #D for an FFP system. (We regard D as fixed and
write # for #D.) We assume D is a sequence and that ty:D
can be computed (by the function I'Y as given in Section
13.3.4) for any atomy. With these assumptions we define

as the least fixed point of the functional y, where the
function ~-f i s defined as follows for any function g (for
all expressions x, xi, y,yi, z, and w):

(T#)x -= x E A --~ x;
X --- <Xl, ... ,Xn> "--> <,ttXl, ... ,~X,>;
x = (y:z)

(y E A & (l'y:D) = # ~#((py)(#z));
y 6 A & (l'y:D) = w ~#(w:z);
y = <yl yn> "-'> #(yl:<y,z>); #(gy:z)); ±

The above description of # expands the operator of an
application by definitions and by metacomposition be-
fore evaluating the operand. It is assumed that predicates
like "x E A" in the above definition of z# are &-
preserving (e.g., "Z E A" has the value Z) and that the
conditional expression itself is also l-preserving. Thus
0-#)Z -= £ and 0"#)(i:z) -= &. This concludes the seman-

tics of FFP systems.

14. Applicative State Transition Systems
(AST Systems)

14.1 Introduction
This section sketches a class of systems mentioned

earlier as alternatives to von Neumann systems. It must
be emphasized again that these applicative state transi-
tion systems are put forward not as practical program-
ming systems in their present form, but as examples of
a class in which applicative style programming is made
available in a history sensitive, but non-von Neumann
system. These systems are loosely coupled to states and
depend on an underlying applicative system for both

Communications August 1978
of Volume 21
the ACM Number 8

their programming language and the description of their

sothttahete TeAr o tSar aupTpnn lssdiiycetisartotsenitvmsae.n ddsT eythshsectee r iumbrneesdda ces oborlneuyslliod nfw oag lr is saot hp apben le is FcturaFsutePicvdt e.us yressyt eosmtfe m,A b SouTft
systems, it is helpful first to review the basic structure of
a von Neumann system, Algol, observe its limitations,

and compare it with the structure of AST systems. After
that review a minimal AST system is described; a small,
top-down, self-protecting system program for file main-
tenance and running user programs is given, with direc-
tions for installing it in the AST system and for running
an example user program. The system program uses
"name functions" instead of conventional names and the
user may do so too. The section concludes with subsec-
tions discussing variants of AST systems, their general
properties, and naming systems.

14.2 The Structure of Algol Compared to That of AST
Systems

An Algol program is a sequence of statements, each
representing a transformation of the Algol state, which
is a complex repository of information about the status
of various stacks, pointers, and variable mappings of
identifiers onto values, etc. Each statement communi-
cates with this constantly changing state by means of
complicated protocols peculiar to itself and even to its
different parts (e.g., the protocol associated with the
variable x depends on its occurrence on the left or fight
of an assignment, in a declaration, as a parameter, etc.).

It is as if the Algol state were a complex "store" that
communicates with the Algol program through an enor-
mous "cable" of many specialized wires. The complex
communications protocols of this cable are fixed and
include those for every statement type. The "meaning"
of an Algol program must be given in terms of the total
effect of a vast number of communications with the state
via the cable and its protocols (plus a means for identi-
fying the output and inserting the input into the state).
By comparison with this massive cable to the Algol
state/store, the cable that is the yon Neumann bottleneck

of a computer is a simple, elegant concept.
Thus Algol statements are not expressions represent-

ing state-to-state functions that are built up by the use of
orderly combining forms from simpler state-to-state
functions. Instead they are complex messages with con-
text-dependent parts that nibble away at the state. Each
part transmits information to and from the state over the
cable by its own protocols. There is no provision for
applying general functions to the whole state and thereby
making large changes in it. The possibility of large,
powerful transformations of the state S by function
application, S ~ f:S, is in fact inconceivable in the von

Neumann--cable and protocol--context: there could be
no assurance that the new state f:S would match the
cable and its fixed protocols unlessf is restricted to the
tiny changes allowed by the cable in the first place.

We want a computing system whose semantics does

635
not depend on a host of baroque protocols for commu-
nicating with the state, and we want to be able to make
large transformations in the state by the application of
general functions. AST systems provide one way of
achieving these goals. Their semantics has two protocols
for getting information from the state: (1) get from it the
definition of a function to be applied, and (2) get the
whole state itself. There is one protocol for changing the
state: compute the new state by function application.
Besides these communications with the state, AST se-
mantics is applicative (i.e. FFP). It does not depend on
state changes because the state does not change at all

during a computation. Instead, the result of a computa-
tion is output and a new state. The structure of an AST
state is slightly restricted by one of its protocols: It must
be possible to identify a definition (i.e. cell) in it. Its
structure--it is a sequence--is far simpler than that of
the Algol state.

Thus the structure of AST systems avoids the com-
plexity and restrictions of the von Neumann state (with
its communications protocols) while achieving greater
power and freedom in a radically different and simpler
framework.

14.3 Structure of an AST System
An AST system is made up of three elements:
1) An applicative subsystem (such as an FFP system).
2) A state D that is the set of definitions of the

applicative subsystem.
3) A set of transition rules that describe how inputs

are transformed into outputs and how the state D is
changed.

The programming language of an AST system is just
that of its applicative subsystem. (From here on we shall
assume that the latter is an FFP system.) Thus AST
systems can use the FP programming style we have
discussed. The applicative subsystem cannot change the
state D and it does not change during the evaluation of
an expression. A new state is computed along with output
and replaces the old state when output is issued. (Recall

that a set of definitions D is a sequence of cells; a cell
name is the name of a defined function and its contents
is the defining expression. Here, however, some cells
may name data rather than functions; a data name n will
be used in l'n (fetch n) whereas a function name will be
used as an operator itself.)

We give below the transition rules for the elementary
AST system we shall use for examples of programs.
These are perhaps the simplest of many possible transi-
tion rules that could determine the behavior of a great
variety of AST systems.

14.3.1 Transition rules for an elementary AST sys-
tem. When the system receives an input x, it forms the
application (SYSTEM:x) and then proceeds to obtain its
meaning in the FFP subsystem, using the current state
D as the set of definitions. S YSTEM is the distinguished
name of a function defined in D (i.e. it is the "system
program"). Normally the result is a pair

oCfo mmunications VAuolguumste 12917 8
the ACM Number 8

EM:x) = <o,d >

is the s ys em output that res ults from in put x a nd

beco me s the new st te D for he sys tem s next the
Usually d will b e a co py or partl y c hange d copy nam
ld state . If #(SYS TEM:x) is not a pa ir, t he e outp ut tain

ro m essag e and the stat e re mains unchan ged. s
ransit on rules: xcept on condit ns and

Once a n inpu t h as bee n a cepte d, our sys tem SY
acc ept a nother (except <RESE T, x>, see belo w) to d
outp ut h has bee n iss ued a nd the new sta te, if any, cre
d. The sys tem will acc ept t he inpu t < RESE T, x> key
tim e. T here re tw ca es: a) If YS TE M is
in the c urr ent state D, then th syst em aborts i ts
comput ation without altering D and re ats x as t em
o mal input; (b) if SY YST EM is not de efi ned in D, and
is app e nd ed to D as its fi rst ele men . (This e nds
ple te descrip ion of the ran siti on rules fo r our Def

tary AST sy stem.)
TE M is defm ed in D it ca n lw ays prevent

ange in its o wn de finiti on. If it is no t e ined , f -=
nar y input x will pr duc ix(SYST EM:x) = £ c au
e tra nsit on rules y eld" a n erro r m essag e and stat
han ged state; n th ot er and, the in ut it is
T, <CELL , SYSTEM,s >> will def me S YSTEM

rogra m access to the sta te; he fu ctio n
. Our FF P sub bsyst em is requi red d to have on e new whe

e function n, defs, na med DEFS s uch th at for any diff

±,

pDE FS :x = D

is the c urr ent state an d set of d efin itio ons of the "st

stem. This fu nctio n allows p rogram s access t o the the
tate fo r any pur pose , includi ng the esse ntia l one
puting the succ ess or state.

Exa mpl e of a Sy te m Program m
ve d escript ion of our e lement tary AST sy stem, Def

e FF P s bsys em and th FP pri miti es and is
nal forms o f earli er sections , specify a comp le e iiss
sensitive comput ing system. Its inpu t a nd out put is
r is limi ed by its sim le transiti on rules, b ut is
se it is a po w er fu ul system once it s equ ip pe d with
le set of d efin itio ons. As an e xam pl e of its us e w we
scrib e a small s ystem program , its inst lla tion,
ration.

mple e system p program will han dle queries and def

e froarl ua sfeilre pitr omgarianmtasi nthsa, te dvoal unoatt ed aFmFaPg eex tphree sfsiiloe nos,r otrpeea
e, an d allo w a uthori zed users to chan ge the set o of k ey
ons and the sys em program itself. A ll inp uts t D ,
will be of th e f orm m < key,i n put> where ey is a
at det ermi nes both the inpu t cl ass (sy stem -change, last
on,p rogram m, query, u pdate) and als o the iden tity not
se r an d his aut ori ty to use he sys em for the rep
put c ass. W e sha ll no t spe cify a forma t for key. it is
the in p t it self, o f the c las s gi ven b y key.

Genera plan of the sy yst em program . The sta e fro

rAS T sy stem will con tain the def niti ons of all
itive functio ns needed for the sys em program
user s' p rogram s. (Each d efiniti on is in a cel l o f

uenc e D.) In addi tio , there w ill be a ce ll i n D
FILE w ith co ntent s file, which t he syst em main-
e sha l gi ve FP defi niti ons of funct ion ns and late r
w to get th em m in to the syst em in their FF P for m.
nsiti on rules m ake he inp ut he op ran of
M, but our plan n is t o use n am e-fu unctions to refer
so the f irst thi ng w e shal l do with the inpu t is to
wo cel s na med KEY an d IN PUT with co ntents
inp ut an d app end these to D. T his se quenc e of

s one eac h fo r key inp ut, a nd file it will b e the
of our m mai n fu nctio n called s ubsyst em. Subsys-
the n ob tain key by appl yin g TKEY o its op er -
. Thu s th e defi nition
tem --- pair ~ subs yste moJ~ [NONP AIR, defs]

PU To[2, ,~KEyo [1, defs]]

the sys tem to outp ut NONP AIR and lea ve t e
chan ged if the i pu ut is not a p air. O herw se, if
ey ,i n put>, then

input>= <<C EL L,INPUT, input>,
,KEY, key>, dl dn>

=<d.... d.> (W e mi ght h ave co nstru cted a
t operand than the one abo ve, o one wit h jus t three
r key inp ut, a nd file We did not do so b eca use
gram s, unlike subsyst em, would contain many
unctio ns referrin g to data in the ta e, a nd thi s
rd" constru ction of the ope ran would suffice
well.)

The "s ubsys tem" functio . We no w gi e th

init on of the fun ctio n subsyst em, followe d by
planations of its six case s an d aux iliar y function ns.
stem-=

-changeoTKEY--~ [report-ch ange, apply]o[? INPUT, defs];
ion oT K E Y --~ [?INP UT , defs];
moT KE Y --~ system -ch eck oapplyo[T lNPUT, defs];
l"KEY--~ [query-re sponseo[?lNPUT, ~'FILEI,d efs];
?KEY

date, ,LFILEo[update,d efsl]
T, ?FILE];

roro[?KEY,T 1NPUl], defs].

bsyst em has fiv e '~o ~ . f' lau uses and a inal
functio n, for a to tal of six c las ses of inpu s;the
nt of each cl ass is given b elow. Recall that th
of subs yst em is a seq ue nc e of cells co ntain ing
ut, a ndfile as well as all th e d efi ned functio ns of
tha t sub syste m:operand =<outp ut ,n ewstate>.

inputs. In this cas e the resu lt is given b y the
faul) functio n of the def miti on when k ey do s
sfy any of the re cedi ng clauses The ou tput is

rror: <key,i n put>. The sta te is unch an ged since
en b y defs: ope erand = D. (W e lea ve to the re ead er's
tion what th e fun ctio n report-e rror will gen erate
oper and .)

cations 917 8
8

System-change inputs. When

is-system-change. ~K E Y:operand =
is-system-change:key = T,

key specifies that the user is authorized to make a system
change and that input = ~INPUT:operand represents a
functionfthat is to be applied to D to produce the new
statef.'D. (Of courseflD can be a useless new state; no
constraints are placed on it.) The output is a report,
namely report-change: <input,D>.

Expression inputs. When is-expression:key = T, the
system understands that the output is to be the meaning
of the FFP expression input; ~INPUT:operand produces
it and it is evaluated, as are all expressions. The state is
unchanged.

Program inputs and system self-protection. When is-
program:key = T, both the output and new state are

given by (pinput):D = <output,newstate>. If newstate
contains file in suitable condition and the definitions of
system and other protected functions, then
system-check: <output,newstate> =< <output, newstate>.
Otherwise, system-check:< output,newstate>

= <error-report, D>.
Although program inputs can make major, possibly dis-
astrous changes in the state when it produces newstate,
system-check can use any criteria to either allow it to
become the actual new state or to keep the old. A more
sophisticated system-check might correct only prohibited
changes in the state. Functions of this sort are possible
because they can always access the old state for compar-
ison with the new state-to-be and control what state
transition will finally be allowed.

File query inputs. If is-query:key = T, the function
query-response is designed to produce the output =
answer to the query input from its operand <input,fie>.

File update inputs. If is-update:key = T, input speci-
fies a file transaction understood by the function update,
which computes updated-file = update: <input,file>. Thus
J, FILE has <updated-file, D> as its operand and thus
stores the updated fde in the cell FILE in the new state.
The rest of the state is unchanged. The function report-
update generates the output from its operand
<input,fie>.

14.4.3 Installing the system program. We have de-

scribed the function called system by some FP definitions
(using auxiliary functions whose behavior is only indi-
cated). Let us suppose that we have FP definitions for
all the nonprimitive functions required. Then each defi-
nition can be converted to give the name and contents of
a cell in D (of course this conversion itself would be done
by a better system). The conversion is accomplished by
changing each FP function name to its equivalent atom
(e.g., update becomes UPDA TE) and by replacing func-
tional forms by sequences whose first member is the
controlling function for the particular form. Thus
,l, FILEo[update, defs] is converted to

<COMP,<STORE, FILE>,
< CONS, UPDA TE,D EFS>>,

637
and the FP function is the same as that represented by
the FFP object, provided that update ~- p UPDA TE and
COMP, STORE, and CONS represent the controlling
functions for composition, store, and construction.

All FP definitions needed for our system can be
converted to cells as indicated above, giving a sequence
Do. We assume that the AST system has an empty state
to start with, hence SYSTEM is not defined. We want to
define SYSTEM initially so that it will install its next
input as the state; having done so we can then input Do
and all our definitions will be installed, including our

program--system--itself. To accomplish this we enter
our first input
<RESET, <CELL, SYSTEM, loader>>
where loader ~- <CONS, <CONST, DONE>,ID>.
Then, by the transition rule for RESETwhen SYSTEM
is undefined in D, the cell in our input is put at the
head of D -- ~, thus defining pSYSTEM -= ploader v-
[DONE, id]. Our second input is Do, the set of definitions
we wish to become the state. The regular transition rule
causes the AST system to evaluate
#(S YSTEM:Do) = [DONE, id]:Do = <DONE, Do>. Thus
the output from our second input is DONE, the new
state is Do, and pSYSTEM is now our system program
(which only accepts inputs of the form <key,i nput>).

Our next task is to load the file (we are given an
initial value file). To load it we input aprogram into the
newly installed system that contains file as a constant
and stores it in the state; the input is
<program-key, [DONE, store-file]> where

pstore-file --- ~FILEo[file, id].

Program-key identifies [DONE, store-file] as a program
to be applied to the state Do to give the output and new
state D1, which is:

pstore-file:Do = ~,FILEo[file, id]:D0,

oisr DDOo NwEit:hD ao c=e llD cOonNtaEi.n iWnge f ialses uamt iet s thhaeta ds. yTshteem o-cuhtpeuckt
will pass <DONE, Di> unchanged. FP expressions have
been used in the above in place of the FFP objects they
denote, e.g. DONE for <CONST, DONE>.

14.4.4 Using the system. We have not said how the
system's file, queries or updates are structured, so we
cannot give a detailed example of file operations. How-
ever, the structure of subsystem shows clearly how the
system's response to queries and updates depends on the
functions query-response, update, and report-update.

Let us suppose that matrices m, n named M, and N
are stored in D and that the function MM described
earlier is defined in D. Then the input

<expression-key, (MMo[~ M, ~N]o DEFS:#)>

would give the product of the two matrices as output and
an unchanged state. Expression-key identifies the appli-
cation as an expression to be evaluated and since defs:#
= D and [~'M I'N]:D = <re,n>, the value of the expres-
sion is the result MM:<m,n>, which is the output.

oCfo mmunications VAoulguumst e 12917 8
the ACM Number 8

Our miniature system program has no provision for
giving control to a user's program to process many
inputs, but it would not be difficult to give it that

capability while still monitoring the user's program with
the option of taking control back.

14.5 Variants of AST Systems

aboAve wmaoujolrd epxrotevindsieo nco omfb itnhien gA fSoTrm ssy, "stseymstse msu fgogremstse,"d
AfoSr Tbu siyldstiengm as .n Tehwa At SisT, as yssytesmte mfr ofomr msi mwpoleurl,d c toamkep oAneSnTt
jsuysstt eams sa asfu pnacrtaiomneatel rfos ramnd t agkeense rfuantec taio nnesw a sA pSaTra smyestteemrs,
and generates new functions. These system forms would
have properties like those of functional forms and would
become the "operations" of a useful "algebra of systems"
in much the same way that functional forms are the
"operations" of the algebra of programs. However, the
problem of finding useful system forms is much more

adranitfdhfi ecrou tultht,pa sinunt sfci,e x etahdne fdyu nmccuotsmiot bnhsian.n ed lhei sRtoErSyE-sTenSs,i tmivaet chsy isntpeumtss
Moreover, the usefulness or need for system forms is

less clear than that for functional forms. The latter are
essential for building a great variety of functions from
an initial primitive set, whereas, even without system
forms, the facilities for building AST systems are already
so rich that one could build virtually any system (with
the general input and output properties allowed by the
given AST scheme). Perhaps system forms would be

useful for building systems with complex input and
output arrangements.

14.6 Remarks About AST Systems
As Ihave tried to indicate above, there can be

innumerable variations in the ingredients of an AST
system--how it operates, how it deals with input and
output, how and when it produces new states, and so on.
In any case, a number of remarks apply to any reasonable
AST system:

a) A state transition occurs once per major computa-
tion and can have useful mathematical properties. State
transitions are not involved in the tiniest details of a
computation as in conventional languages; thus the lin-
guistic yon Neumann bottleneck has been eliminated.
No complex "cable" or protocols are needed to com-
municate with the state.

b) Programs are written in an applicative language
that can accommodate a great range of changeable parts,
parts whose power and flexibility exceed that of any yon
Neumann language so far. The word-at-a-time style is
replaced by an applicative style; there is no division of
programming into a world of expressions and a world of
statements. Programs can be analyzed and optimized by
an algebra of programs.

c) Since the state cannot change during the compu-
tation of system:x, there are no side effects. Thus inde-

pendent applications can be evaluated in parallel.

638

d) By defining appropriate functions one can, Ibe-
lieve, introduce major new features at any time, using
the same framework. Such features must be built into
the framework of a von Neumann language. Ihave in
mind such features as: "stores" with a great variety of
naming systems, types and type checking, communicat-
ing parallel processes, nondeterminacy and Dijkstra's
"guarded command" constructs [8], and improved meth-
ods for structured programming.

e) The framework of an AST system comprises the
syntax and semantics of the underlying applicative sys-
tem plus the system framework sketched above. By
current standards, this is a tiny framework for a language
and is the only fixed part of the system.

14.7 Naming Systems in AST and von Neumann
Models

In an AST system, naming is accomplished by func-
tions as indicated in Section 13.3.3. Many useful func-
tions for altering and accessing a store can be defined
(e.g. push, pop, purge, typed fetch, etc.). All these defi-
nitions and their associated naming systems can be in-
troduced without altering the AST framework. Different

kinds of "stores" (e.g., with "typed cells") with individual
naming systems can be used in one program. A cell in
one store may contain another entire store.

The important point about AST naming systems is
that they utilize the functional nature of names (Rey-
nolds' GEDANKEN [19] also does so to some extent within
a von Neumann framework). Thus name functions can
be composed and combined with other functions by
functional forms. In contrast, functions and names in
von Neumann languages are usually disjoint concepts
and the function-like nature of names is almost totally
concealed and useless, because a) names cannot be ap-
plied as functions; b) there are no general means to
combine names with other names and functions; c) the
objects to which name functions apply (stores) are not
accessible as objects.

The failure of von Neumann languages to treat
names as functions may be one of their more important
weaknesses. In any case, the ability to use names as
functions and stores as objects may turn out to be a
useful and important programming concept, one which
should be thoroughly explored.

15. Remarks About Computer Design

The dominance of von Neumann languages has left

designers with few intellectual models for practical com-
puter designs beyond variations of the von Neumann
computer. Data flow models [1] [7] [13] are one alterna-
tive class of history-sensitive models. The substitution
rules of lambda-calculus based languages present serious
problems for the machine designer. Bedding [3] has
developed a modified lambda calculus that has three
kinds of applications and that makes renaming of vail-

Communications August 1978
of Volume 2 1
the ACM Number 8

a bles unnecess ary He has develo p ed a mach hin e to e
uate express ion s of this langu age. Fur ther experie nc

nee de d to s how how so un d a b asis this langu ag e is
an effec tive programm ing s tyle and ow effÉ ient

mac hine can
Mag6 [15] has develo p ed a n ovel applica tive mac

built f rom iden ical compon ents (of two kin ds). It e
uates, dire ctly, FP- like and o ther applica tive express
f rom the bot tom u p. It ha no von Neum ann s tore

no add ress regi ster, h nc e no bottlen ec k; it is cap abl
evalua ting m any applicat ion s in para lle ; its bui lt-in

erat ions resem mble e FP opera tors m ore han von Neum
comp uter operati on .t is the fart hest depar ure f

the von Neum ann comp uter th at I h ave s
T here are nume ous indicat ions that the applica

tyl e of programm ing can bec ome m ore powe rful
the von Neum ann s yle. There fo e it is impor tant

programm me s to dev el op a new las ss of history-sens
mo del s of compu ting sys ems that emb ody u ch a

and a void the inhe rent effici ency probl ems that s ee
at ac to lambda-calc ulus b sed syst ms. O nly w
these mo dels and their applica ative langu ages h have pro

heir superi rity over conventi onal langu ges wil

ave the econo mic b asi s to dev lop the new in
comp uter that can best implem ent th em. O nly t
perh aps, wil l w e be ab e to fully ut ilize large-s cale
gr ated cir cui s in a comp uter de sign not lim ite d by

von Neum ann bottlen

16. Summ

The fi teen prece ding sec ion s of this p aper ca
summar ize d as fol

Sec tio n 1. Conventi nal programm ing langu
are l arge, com plex, and inflex ible. T heir lim ited ex

sive p ow er is inadeq ua te to ju stify their size and
Sec tio n 2. The mo del s of compu ting sys ems

und erlie programm ming langu age s fall rou ghly into t
cla sses : (a) si mple operati onal mo dels (e.g., Tu ring

chi nes) , (b) applic tive mo dels e.g. the lam bda c
lus), an (c) von Neum ann mo dels e.g., convent

comp ters and programm ming langua ges). Each clas
mo dels ha an impo tant diffic ulty: The prog am

clas (a are inscrut ble; clas (b) mo dels ca nnot

inform tion rom one prog ram to the ext; las
mo dels have unus able founda ions and prog ams

are concept ually unhel
Se tio n 3. on Neum nn comp ers are

ar ou nd a bottlen eck : the word-at-a- time tube conne
the CPU and the s tore. S in ce a pro ram must m

its ov erall ch an ge i n the sto re by pum ping vast num
of w ords back and orth thr ugh the von Neum

bottle eck , we have g row n up w ith a sty le of prog

ming that con cerns itself with this word-at-a- time tr
thr oug h the bottle neck r ather than wit h the l arger
ce ptual uni ts o f our prob

Se tio n 4. Convent ional langu age s are b ase d o

programm ing s tyle of the von Neum ann compu ter. T
varia bl s = sto rage c ells; assignm ent statem en ts = fe

ing, stor ing, and arithm tic; con trol statem n ts = ju
and test instructi ons. The sym bol := " is the lingu
von Neum ann bottlen ck. Programm in n a conv

tional-- on Neumann--langu ge still conc rns i

with the word-at-a- ime tra affic thro ugh this slig htly m

sophistic ated bottlen eck. Von Neum ann langu ges
plit programm ing n o a w orld of express ons an

f w orld of stateme nts the first of t he se i s an ord erly wo
the sec on d is a disord erly on e, a w orld that struct

programm ing has simpl fied somew hat, but wit ou
tac king the b asic probl em s of the split i tself an d of
word-at-a- time styl e of conventi onal langua

Sec io 5. his sec tion comp r s a von Neum
prog ram a nd a functi onal prog ram for i nner prod uc
r illust at s a num be of probl ems of the for mer
e advant ages o f the la tter: e.g. , the von Neum ann prog
e is repet tive and word-at-a-t me, w rks nly for
vec tors na m ed a a nd b of a g iven le ng th n, and can

be m ade gen era by us f a proce ure declara
w hich has com plex seman tics. The functi onal prog

is nonrepeti ive, d eals ith ve tor as u it , is m

f hierarchi ally construc ted , is comple tely gen ral,
, cre ates "housekeep ing" operat ion s by compo sing h
-evel housekee ping opera tor s. It does not n am e its a

ments, h en ce it requ ire s no proce dure declara
Sec tio n . A programm ing lang age comp is

framew work plus s ome change able p arts. The framew
of a von Neum ann lang uage requ ires that most feat

m mus t be built in o it; it can accommo date only lim
change able p parts e.g., user-def ined procedu res) bec
e t here mus t be det iled provis ion s in the "s ate" an

trans ition rule s fo r al l the n eed ds o f the change able p
s as we ll a fo r al the fea ures built into the framew
-The re aso n the von Neum ann framew wo rk is so infle
is tha t its sema nti cs is too clo sely cou ple d to the s

t e very d eta il of a computa tion cha nge s the s
Sec tio n 7. The change able art s of von Neum

- langu ages have little expre ssive po wer; th is is why
-o f the lang uage mu t be built into the framew ork.
llack of expre ssive p ower re sults from m the inab ility of
f Neum ann langu ag es to effect ivel y use combi ning f
f for buil ding progr ams, w hic h in turn re sults rom
e split betw een expres ions and statem nts. Combi
) f orm a e at their be st in express ons b t in von
t m ann langu ag es an expre ssion n can only pro du uce a s
w ord; h ence expre ssive p ow er i n the w orld of expres
t is m ostly lo st. A fu rther obs tac le t o th e use of combi
g f or ms i s the elab orate use of nam ming convent

Se tio n 8. AP L i the first lang uage not b ase
s the lam bda cal ulus th at i s not word-at-a- time and

n funct ional comb ning fo rms B ut i still re tains m an
-the prob lem s o von Neum ann langu

Se tio n 9. Von Neum ann langu age do not
- u seful prope rtie for reaso ning a bout progr ams. A
matic and denotat onal sema ntic are pr ecise ool
e descr bing and understan ding convent onal progr

Communic A ugus
V ol lu

the Nu um

but they only talk about them and cannot alter their
ungainly properties. Unlike yon Neumann languages,
the language of ordinary algebra is suitable both for
stating its laws and for transforming an equation into its
solution, all within the "language."

Section 10. In a history-sensitive language, a pro-
gram can affect the behavior of a subsequent one by
changing some store which is saved by the system. Any
such language requires some kind of state transition
semantics. But it does not need semantics closely coupled
to states in which the state changes with every detail of
the computation. "Applicative state transition" (AST)
systems are proposed as history-sensitive alternatives to
von Neumann systems. These have: (a) loosely coupled
state-transition semantics in which a transition occurs
once per major computation; (b) simple states and tran-
sition rules; (c) an underlying applicative system with
simple "reduction" semantics; and (d) a programming
language and state transition rules both based on the
underlying applicative system and its semantics. The
next four sections describe the elements of this approach
to non-von Neumann language and system design.

Section 11. A class of informal functional program-
ruing (FP) systems is described which use no variables.
Each system is built from objects, functions, functional

forms, and definitions. Functions map objects into ob-
jects. Functional forms combine existing functions to
form new ones. This section lists examples of primitive
functions and functional forms and gives sample pro-
grams. It discusses the limitations and advantages of FP
systems.

Section 12. An "algebra of programs" is described
whose variables range over the functions of an FP system
and whose "operations" are the functional forms of the
system. A list of some twenty-four laws of the algebra is
followed by an example proving the equivalence of a
nonrepetitive matrix multiplication program and a re-
cursive one. The next subsection states the results of two
"expansion theorems" that "solve" two classes of equa-
tions. These solutions express the "unknown" function
in such equations as an infinite conditional expansion
that constitutes a case-by-case description of its behavior
and immediately gives the necessary and sufficient con-
ditions for termination. These results are used to derive
a "recursion theorem" and an "iteration theorem," which
provide ready-made expansions for some moderately
general and useful classes of "linear" equations. Exam-
ples of the use of these theorems treat: (a) correctness
proofs for recursive and iterative factorial functions, and
(b) a proof of equivalence of two iterative programs. A
final example deals with a "quadratic" equation and
proves that its solution is an idempotent function. The

next subsection gives the proofs of the two expansion
theorems.

The algebra associated with FP systems is compared
with the corresponding algebras for the lambda calculus
and other applicative systems. The comparison shows
some advantages to be drawn from the severely restricted

640
FP systems, as compared with the much more powerful
classical systems. Questions are suggested about algo-
rithmic reduction of functions to infinite expansions and
about the use of the algebra in various "lazy evaluation"
schemes.

Section 13. This section describes formal functional
programming (FFP) systems that extend and make pre-
cise the behavior of FP systems. Their semantics are
simpler than that of classical systems and can be shown
to be consistent by a simple fixed-point argument.

Section 14. This section compares the structure of
Algol with that of applicative state transition (AST)
systems. It describes an AST system using an FFP system
as its applicative subsystem. It describes the simple state
and the transition rules for the system. A small self-
protecting system program for the AST system is de-
scribed, and how it can be installed and used for file
maintenance and for running user programs. The section
briefly discusses variants of AST systems and functional
naming systems that can be defined and used within an
AST system.

Section 15. This section briefly discusses work on
applicative computer designs and the need to develop
and test more practical models of applicative systems as
the future basis for such designs.

Acknowledgments In earlier work relating to this
paper Ihave received much valuable help and many
suggestions from Paul R. McJones and Barry K. Rosen.
Ihave had a great deal of valuable help and feedback in
preparing this paper. James N. Gray was exceedingly
generous with his time and knowledge in reviewing the
first draft. Stephen N. Zilles also gave it a careful reading.
Both made many valuable suggestions and criticisms at
this difficult stage. It is a pleasure to acknowledge my
debt to them. Ialso had helpful discussions about the
first draft with Ronald Fagin, Paul R. McJones, and
James H. Morris, Jr. Fagin suggested a number of im-
provements in the proofs of theorems.

Since a large portion of the paper contains technical
material, Iasked two distinguished computer scientists
to referee the third draft. David J. Giles and John C.
Reynolds were kind enough to accept this burdensome
task. Both gave me large, detailed sets of corrections and
overall comments that resulted in many improvements,
large and small, in this final version (which they have
not had an opportunity to review). Iam truly grateful
for the generous time and care they devoted to reviewing
this paper.

Finally, Ialso sent copies of the third draft to Gyula
A. Mag6, Peter Naur, and John H. Williams. They were

kind enough to respond with a number of extremely
helpful comments and corrections. Geoffrey A. Frank
and Dave Tolle at the University of North Carolina
reviewed Mag6's copy and pointed out an important
error in the definition of the semantic function of FFP
systems. My grateful thanks go to all these kind people
for their help.

Communications August 1978
of Volume 2 1
the ACM Number 8

References

IsNc. ohe. A7m2rav,s i Dnande,pd at . intCsd oimGmoppsltritce.la oStwcioi,n. ,Ks U f.oP. .or Acf oC mnaepliwufot iernrnt ieaarr,pc Ihrreivtteeincre tfu,o rOer c.d tTa. tea1c 9hf7.l o5Rw. e p.

P2a3lnp.. r otpelgiBrBncreaaaermctkkri mluvBisneieg ,l nrag,iJ cn. g hKLPuta.rJ Iaon.Sgg gFReursa-ea7.gm d6euC-ms8oc,, tin niofBgG.n o Rel satlseaeonncnlgolg,us crudOaah ggcaAeetf. sC ts 1effM9moor7r a S3Mrney,t 7dmiatc1upsh-c 8.eat 6miono.and n t Pcimkrloi ansuccenhiddpi n leess .o f
54DW.. a etseClBneuhvyru, egrreRca,e rhWb,a edAi.iHtn. ug.Tn, Rhg Mee Mc aCusBasr.sHl,ic v,u 1el9Bi P7oo5rnfo .nL g, arSmaembpdmta.i -nC1g9o 7nT6ve.e crhsnioiqnu. ePs, rAindcdeitsoonn -U .
Press, Princeton, N.J., 1941.
6. Curry, H.B., and Feys, R. Combinatory Logic, Vol 1. North-
Holland Pub. Co., Amsterdam, 1958.

T7M. eacyh D. 1eM9n7ne3ire.s ,. JN.Bo.. F61ir, sLt vaebr.s fioonr Coofm a pdtar.t aS cflio., wM p.Ir.oTc.,e dCuarem lbarnidgguea,g eM. ass.,

98E.. ngDlFeriwjikeodsotmdra a,C n,lE iffD.Ws., P..N ,A .Ja.Dn,i ds 1c9Wip7il6sie.n e, Do.fS P. rCogOraNmSm sinhgo.u lPdr ennotti ceev-Halaulal,t e its
aa2rn5gd7u -2Rm8.e4 n.M tsil. nIenr A, Eudtso.m, aEtad,i nLbaunrgguha gUe. sP arensds, PErdoginrbaumrmghin, g1, 9S7.6 M, pipc.h aelson
1R0e.c oHredn Tdherisrodn A, CP.M, a nSdy mMpo.r orins, PJr.iHnc.i pJrl.e sA o lfa Pzyro egvraalmuamtoinr. gC Loannf.g uages,
1AC1tol.m aHmntoa. aA,r GeC,aM .C, . 1AJa2.nR,. . 1 10A9 (nO7 6ac,x tp.i po1.m9 965a9t-i1)c,0 53b7.a 6si-s5 8f3o.r computer programming.

641

11IB32..M IK vToes.Jrsi.n oWsnk, ai,K tsP.o. A nA PRdreaostgeara afrmclohwm Ci pntgrr. o, LgYraoanmrgkumtaoignwegn. lWHaniegleiguyha,g tNse, .e NwR.e YYp..o, rRMkC,a r 14c92h66 24.,
1973.

J1.4 .6 ,L 4a (n1d9in64,),P .3J0. 8T-3h2e 0m. echanical evaluation of expressions. Computer
15. Mag6, G.A. A network of microprocessors to execute reduction
languages. To appear in Int. J. Comptr. and Inform. Sci.
16. Manna, Z., Ness, S., and Vuillemin, J. Inductive methods for

4pr91ov-5i0ng2. properties of programs. Comm. A CM 16, 8 (Aug. 1973)

11th78e.4 ir-M 1c9oc5Cm. apruthtya,t iJon. Rbeyc mursacivhei nfue,n cPtt.i o1n. sC oofm smym. AboCliMc e3x,p 4re (sAsiponrisl 1an96d 0),

1t1lAahC98ne..g MpRMura geic1ny3Jencsoi,.o n p5elR lde(ss,e M ,oP pfJa.. cy. RC Aom1J. C697p1hE0l5eDu8)tr,e 9Ac3n,h N0I-eB8sRI-s~M o3Na1s sn-8Red-.ea r s ts h.p ieLmro arppeble.fe,re ttrSyyeap nonecfl e eJc osclsoso esnl,eac Cdne gpaautlp.ia fpgC.l,ie oMc mabataimysve. ed 1 9o7n5 .

No20f. Y. co.R,m e1yp9nu7ot2ald. tiso, nJ. ..DCe. pNto. tSeys sotn. aan dl aItntifcoer-mth,e Socrei.t,i cS yarpapcruosaec hU t.o, Sthyrea ctuhseoe, ry
24t1h. SPrciontcte, Dton. O Cuotnlfin. eo on fI an fmoramth. eSmcia. taicnadl Sthyesot.r, y1 o9f7 c0.o mputation. Proc.
P2P2hro. ilc.So csFoopotuth, ryDt ho. f LIn Satc.tit iCencoecn-etg, hreBeosursce htfioacrre Lmsto,o gdie1c9l,7s M 2f.oe rt hvoadroiolougs yty, paen-df rtehe ec alculi.
23. Scott, D., and Strachey, C. Towards a mathematical semantics

Pfoorl ycotemchpnuitce rI nlastn. goufa Bgerso. oPkrloycn., S19y7ru1p. . on Comptrs. and Automata,

Communications August 1978
of Volume 21
the ACM Number 8

