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Abstract. We investigate how to take advantage of the particular features of the Calculus of Inductive
Constructions in the framework of hardware verification. First, we emphasize in a short case study the use
of dependent types and of the constructive aspect of the logic for specifying and synthesizing combinatorial
circuits. Then, co-inductive types are introduced to model the temporal aspects of sequential synchronous
devices. Moore and Mealy automata are co-inductively axiomatized and are used to represent uniformly
both the structures and the behaviors of the circuits. This leads to clear, general and elegant proof processes
as is illustrated on the example of a realistic circuit: the ATM Switch Fabric. All the proofs are carried out
using Coq.
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1. Introduction

In recent years formal methods have been used increasingly in the verification of circuit designs and have
appeared to be a good alternative to test and simulation techniques which have the drawback of being non
exhaustive. Among them, model checking methods based on BDDs [Bry86] have the advantage to be fully
automated. However they can lead to a combinatorial explosion of the state space and moreover they are
not generic since the verification is for circuits of fixed size.

Formal specification combined with mechanical verification is a profitable approach for achieving the high
levels of assurance required of safety-critical digital systems. In this paper we present a study for specifying
and verifying circuits in Type Theory, and more precisely in the Calculus of Inductive Constructions (CC).
The motivation for choosing this logical framework is threefold. First, its expressiveness makes it possible
to give clear, accurate and generic specifications, to reason elegantly about them, and to obtain general and
reusable results. Second, it rests on firm logical foundations. Third, it is implemented as a proof assistant,
the Coq system [Tea01]. The latter, as it relies on a small kernel of rules, can be regarded as very reliable.
Thus, we investigate thoroughly how to take advantage of the particular features of CC (dependent types,
higher-order logic, inductive and co-inductive types, extraction) in the framework of hardware verification.
All the proofs are carried out using Coq.
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The first part of this work deals with combinatorial circuits and their representation with dependent types.
It has often been argued that dependent types are very valuable for specifying hardware precisely and re-
liably. As one can lose a lot of time in reasoning about invalid specifications, it is important to be able to
detect errors early, when type-checking the specifications. This is made possible by using dependent types.
However CC dependent types are known to be rather tricky to use in practice. One of our contribution is to
provide several Coq reusable axiomatizations (for handling lists, numeration systems, repetitive arithmetic
structures) in which generic properties and theorems have been proven. Moreover, when a lot of information
is carried within the types, problems such type incompatibility can occur later on, during the proof process.
So, another point of interest of our work is a feasibility study on practical examples. We start by a small
sized case study based on [HDL90]. Its significance comes from the heavy use of various kinds of dependent
types. We also experiment on this example with the Coq extraction mechanism for synthesizing a class of
circuits [CGJ96].

Then, this study is extended to sequential synchronous circuits. In addition to dependent types that we still
use to give a precise description of their combinatorial parts, we introduce co-inductive types to take into
account the temporal aspects of their specification.

Starting from a co-inductive representation of the history of the values carried by the wires, we model uni-
formly by means of Mealy and Moore automata both the structures and the behaviors. These two notions
are thus considered as descriptions of the same entity, represented at different abstraction levels. Automata
are axiomatized as fixpoints, representing non-ending processes that compute an infinite output sequence
in response to an infinite input sequence. The set of automata is equipped with algebraic composition rules
and with an equivalence relation which is proved to be a congruence for the composition rules. This makes
a hierarchical approach possible since, in a modular device, a pre-proven sub-component can be replaced
by its expected behavior. This axiomatization includes a co-inductive lemma about automata equivalence
from which follow all the correctness proofs in the practical cases. This lemma captures once and for all the
temporal aspects of the proofs, that are thus clearly separated from the combinatorial parts. This makes the
proof process general, efficient and elegant.

We apply this methodology to a real non trivial device, namely the Fairisle ATM Switch Fabric. This circuit
has been designed, built, and used at the University of Cambridge [LM91] [LM90] and has been widely used
as a benchmark by the international hardware community. In spite of the complexity of the device, and
due to the abstract description of automata, we obtain compact representations with high level transition
functions on rich data types [CJ99].

This paper is organized as follows. Section 2 is a brief introduction to the Calculus of Inductive Constructions.
Section 3 deals with combinatorial circuits, dependent types, and extraction. Section 4 is dedicated to
axiomatizing automata. Then, in section 5, we demonstrate the feasibility of our approach on the ATM
Switch Fabric. Finally, in section 6, we compare our study to other related work and we conclude in section 7.

2. A Brief Overview of the Calculus of Inductive Constructions

The Calculus of Inductive Constructions (CC) has been introduced by T.Coquand and G.Huet [CH85] and
enriched with inductive types by C.Paulin-Mohring [PM96] and co-inductive types by E. Giménez [Gim96].
Simultaneously, successive versions of the system were implemented, resulting in the Coq proof assistant
[Tea01], a tactic oriented proof-checker. In Coq, developments can be split into various parameterized mod-
ules to be separately verified. Thus, several developments can share modules that, being compiled once and
for all, are loaded quickly. Let us now review the main features of CC (for readability, we do not use in this
paper the exact Coq syntax).

The Curry-Howard isomorphism

CC provides in a uniform logical framework both a functional programming language for specifications and a
higher order intuitionistic logic for reasoning about specifications. Indeed, its logic relies on the propositions-
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as-types correspondence: a proposition is a type and a proof is a term inhabiting this type, so that proving
amounts to type checking. In fact, a term t, inhabitant of a type A, can be both interpreted as an element
of the set A and as a proof of the proposition A. For this reason, types are classified in two twin sorts, Prop
and Set, corresponding to their two possible semantics.

Inductive and Co-inductive types

The calculus also makes it possible to define inductive and co-inductive types. Such a type is characterized
by a finite set of typed constructors. Each constructor corresponds to an introduction rule of the underlying
natural deduction system. Inductive types represent least fixpoints, whereas co-inductive types represent
greatest fixpoints. As an illustration, let us review the various notions of lists that can be defined in the
system.

Let A be a parameter of type Set, one can define the following types:

Inductive list:Set := nil:list | cons:A→list→list.
CoInductive c list : Set := c nil : c list | c cons : A→c list→c list.
CoInductive Stream : Set := Cons : A→Stream→Stream.

All these types denote sets of lists the elements of which are in A. Inductive type list is the set of the
well-founded (finite) lists. Co-inductive type Stream is the set of the infinite lists. Co-inductive type c list
is the set of all the finite or infinite lists. Let us mention that these types depend on parameter A, that is
discharged outside the current Coq section. For instance, outside the section, the type Stream is polymorphic
and the type of the streams of elements in A is (Stream A).

Inductive reasoning

An induction principle is associated with each inductive type (and is automatically generated by the system
Coq). It corresponds to an elimination rule for reasoning on the terms in the free algebra generated by the
constructors. Here is the induction principle for the type list:

(∀P : list → Prop) ((P nil) → ((∀a : A)(∀l : list)(P l) → (P (cons a l))) → (∀l : list)(P l)).

Total functions can be defined by structural recursion on terms the type of which is inductive. For example,
the length of finite lists is defined by:

fix length. (λl : list) (cases l of nil ⇒ O | (cons l′) ⇒ 1 + (length l′)).

Co-inductive reasoning

Recursive functional terms ranging over a co-inductive type T can be interpreted

• either (if T is in sort Set) as lazy recursive programs that compute infinite objects,

• or (if T is in sort Prop) as proofs using as hypothesis the proposition T itself: this corresponds to a
recursive call in the proof term.

Such a term must satisfy a syntactic guard condition to be well-formed: the recursive calls must occur under
a constructor of T. This condition is dual to the fact that, when defining functions by structural induction
on a well-founded term, the recursive calls must apply to strict subterms of the initial argument.

In the rest of this paper we shall write σ0 for the head of a stream σ and σ′ for its tail. Thus, the mapping
of a function f on a stream σ is defined as follows (for simplicity, we do not mention the types):

fix Map. λf λσ (Cons (f σ0) (Map f σ′)).
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This term is well-formed since the recursive call to Map is guarded by the constructor Cons. We describe a
co-inductive proof in detail in section 4.3.2.

Our methodology for verifying synchronous sequential circuits relies on encoding by streams the history of
the values carried by the wires. Moreover, we shall use a predicate ∼ that represents the extensional equality
over the streams and which is defined co-inductively by:

CoInductive ∼: Stream→Stream→Prop :=
eqS:(∀σ:Stream)(∀τ:Stream) σ0=τ0 → σ’∼τ’→ σ ∼ τ

Dependent types

In CC, types can depend on terms. For example, one can define the type of dependent lists as follows:

Inductive d list:nat->Set:=
d nil:(d list O) | d cons:(n:nat)A→(d list n)→(d list (n+1))

For all n of type nat, (d list n) is a type that depends on term n. It is interpreted as the sets of length-n
lists. In this study, we make heavy use of dependent lists, to give a precise encoding of circuit ports. The
number of input and output wires is verified when type-checking the specifications. This prevents from tack-
ling the proof process with erroneous or unreliable descriptions of the circuit.

Extraction

As the underlying logic is constructive, proofs are effective. This implies in particular that any proof of a
statement of the form: (∀x:A)(∃y:B)(P x y) is a pair (f:A→B, p) where f is a program that, for all x:A,
computes a witness y=(f x) and p is a proof of the proposition: (∀x:A)(P x (f x)). In this sense, such a
term can be viewed as a certified program since f is accompanied with a “certificate” p ensuring that it meets
some property. It is then interesting to be able to erase the logical part of the proof term (whose type is in
sort Prop), exactly as a compiler ignores comments. In such a way, one obtains the purely computational
component f (whose type is in sort Set) which has been proved to be correct. This is how the system Coq
can provide a mechanism which automatically extracts from a term the certified computational part.

The following section handles combinatorial circuits. It exemplifies the use of dependent lists for specifying
connections and the use of the Coq extraction mechanism for synthesizing a certain class of arithmetic cir-
cuits. Then we present a more significant investigation, involving a co-inductive axiomatization of automata,
a hierarchical methodology for verifying sequential synchronous circuits and the certification of a rather
complex device.

3. Combinatorial Aspects and Dependent Types

We focus in this section on the practicality of CC dependent types for describing some combinatorial aspects
of circuits. CC dependent types are known to be difficult to use in practice. This comes from the fact that
there is no rule of the form:

p : A(t) q : (t=s)
p : A(s)

Here the equality under consideration is Leibniz equality, which is in general undecidable. Thus, such a rule
would make the type checking undecidable. Therefore, it is impossible to encode in the calculus some quite
natural statements. For example, it is impossible to express that a dependent length-n list is the empty list
d nil whenever n equals 0. Indeed, if l is a term of type (d list n), even under the hypothesis n = 0, the
term l = d nil is not typable since:
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Fig. 1. A transposed connection

– l is of type (d list n),
– d nil is of type (d list 0),
– such an equality, to be typable, requires the two terms to have the same type.

Very often, nice ideas on integrating much information into types must be given up due to this kind of
problems that can also occur later on, during the proof process. However, the benefit of dependent types
for hardware specifying is well known (see for example [HDL90, Lee92]). As CC provides many valuable
features and is implemented in a very reliable system, it appeared to us that it was of interest to investigate
whether or not dependent types can be handled significantly to specifying circuits. We answer positively this
question, and in order to simplify the work of potential hardware verifiers with Coq, we provide substantial
general libraries. Let us give some examples.

3.1. Ports and Connections

Contrary to model checking methods, interactive verification using a proof assistant allows us to deal with
circuits with parameterized size. Such circuits can be modeled using types that depend on this parameter.
In that way, specification errors can be detected early by the type checker, before starting the proof process.
Here is an example that illustrates how a systematic use of dependent lists can circumvent such errors.

The ports of a circuit composed of n identical m-ports modules, can be specified by a length-n list of length-m
lists of boolean values. Then, connections between such devices are described by functions on dependent lists.
Figure 1 depicts the particular case of a tranposed connection between a circuit with 3 outputs of 4 booleans
and a circuit with 4 inputs of 3 booleans. Such a connection amounts in fact to compute the transposed
matrix of a 3×4 matrix. More generally, it is specified by a function transpose, of type:

(∀n,m:nat)(d list (d list Bool n) m) →(d list (d list Bool m) n).

This function is defined by recursion on n and uses two functions that take in argument a list of lists and
compute the list of their heads and the list of their tails.

Such an approach leads to performing proofs at specification time. This is illustrated by the next example.
It is quite technical and is not essential for the rest of the paper.
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Fig. 2. A linear arithmetic structure

Example Let A be a set on which Leibniz equality is decidable. One can define inductively a predicate
member that expresses that an element a of type A occurs in a dependent list l:

Inductive member: A→(∀n:nat)(d list n)→Set:=
eq hd : (∀n:nat)(∀l:(d list n)) (member a (n+1) (d cons n a l))|
in tl: (∀b:A)(∀n:nat)(∀l:(d list n)) (member a n l) → (member a (n+1) (d cons n b l)).

We can now define a function remove that removes the first occurrence in a list l of an element that is
member of l. Such a function takes as arguments not only the element a to be removed, a natural num-
ber n, and a length-(n+1) list l, but also a proof p that a is in l. Therefore, such a function as type
(∀a:A)(∀n:nat)(∀l: (d list (n+1))) (member a (n+1) l)→(d list n). It has the following form:

fix remove.λa:A λn:nat
Cases n of

O => λl: (d list 1) λp:(member a 1 l) d nil|
(m+1) => λl: (d list (n+1)) λp:(member a (n+1) l)

if a=(head n l) then (tail (n+1) l)
else (d cons m

(head n l)
(remove a m (tail (n+1) l) q)).

In the recursive call above, term q is a proof that a is in the tail of l. It is built from the proof of a
previously established lemma that states that if an element of a list l is not equal to its head, then it is
member of its tail.

We provide a 1000 lines library dedicated to such functions on dependent lists [CJa, CJb].

3.2. Numeration Systems and Regular Architectures

In order to verify a certain class of arithmetic circuits, one has to handle numeration systems. We have
axiomatized such notions, making use of various kind of dependent types. In addition to dependent lists, we
use subsets of type {x:A | (P x)}. A term inhabiting such a type is a pair made of an element a of A and a
proof p of (P a). A numeration system is defined by a base b of type {x:nat | x>0}. In this system a digit
is a term of type {x:nat | x < b}, and a numeral N is a length-n list of digits. Such a numeral N denotes
a natural number v that we define by structural recursion on N, and we prove that v <bn. Thus one can
associate with any numeral of type (d list digit n) its value V of type {x:nat | x<bn}.

This serves as a basis for an experimentation on the specification and the verification of a class of linear
arithmetic architectures as suggested in [HD92]. These combinatorial circuits (Fig. 2) are connections of
identical cells with 4 ports : a carry-in, a carry-out, and two inputs xi et yi. Globally, such a connection can
be viewed as a device with a carry-in, a carry-out, and two inputs that are the numerals constituted of the
digits xi and yi. It is specified by an inductive relation Connection of type:
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Connection :(∀n:nat) A →(d list B n)→ (d list C n)→ A → Prop

We prove a theorem of factorization on the arithmetic relations susceptible of being implemented by this
kind of linear devices. Let us consider relations R (Fig. 3) of type :

R :(∀b:nat) A → {x:nat | x<b} → {x:nat | x<b} →A →Prop

Given a natural number b, such relations apply to an element I in set A, two natural numbers X and Y less
than b, and an element O in A.

Informally, such a relation is said to be proper if the two arguments I and O are equal whenever X and Y are
null. R is said to be factorizable if it holds on X and Y whenever it holds for the quotients and the remainders
of the euclidean divisions of X and Y by a natural number n (with adequate values for I and O).

The factorization theorem states that provided the relation R is proper and factorizable, (R bn) is imple-
mented by a Connection of n cells that implement (R b). By this theorem, one can verify the whole class
of linear architectures that realize such proper and factorizable arithmetic relations (comparison, addition,
subtraction, multiplication by a constant, division by a constant, remainder modulo a constant).

Let us mention that we also have experimented Coq extraction on this example. For that, the theorem of
factorization is stated existentially. More precisely, assuming that R is proper and factorizable, one proves
that for all a in A, for all natural numbers n, and for all length- n numerals X and Y:

(∃ a’:A) (R bn a VX VY a’)

where VX and VY are the values of X and Y in type {x:nat | x<bn}. As the underlying logic is constructive,
the proof term contains an algorithm that constructs from an input a a witness a’ that satisfies (R bn a
VX VY a’). Therefore, a certified functional description of an architecture that implements (R bn) can be
extracted from the proof. This is a step towards circuits synthesis, but it remains work to obtain concrete
descriptions (in VHDL for example) from such high level descriptions.

The rest of this paper is dedicated to a methodology for verifying sequential synchronous devices, based on
a co-inductive axiomatization of automata, and to an application to a true circuit. Let us point out that,
although we shall essentially emphasize the co-inductive aspect of the specifications, we shall keep using
dependent lists to give accurate encodings of the component ports.
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4. Sequential Circuits and Co-inductive Axiomatization of Automaton Algebra

We propose an approach to specify and verify sequential circuits, suggested by the expressiveness of CC. It
is founded in particular on higher-order co-inductive representations, also involving dependent types.

When we started thinking about a general axiomatization for synchronous sequential circuits, it appeared
that it would basically rely on the way the history of the values carried by the wires would be represented.
We adopt an algebraic approach, in which these infinite sequences are encoded as co-inductive streams (cf.
section 2). This leads to neat specifications in which no time parameters need handling. A register, for in-
stance, is merely a function consing its initial value to its input stream (fig. 4).

The problem was then to avoid re-introducing any time parameter in the following. It was out of the ques-
tion, for example, to use functions that access the tth element of a given stream or to represent expected
behaviors by timing diagrams. Indeed, using such descriptions leads to working with temporal statements
such as: “at all time points t comprised between the initial instant t0 and t1, the signal s is high”. . . Thus we
opted for representations by finite state machines that can be viewed as devices which compute an infinite
sequence of outputs in response to an infinite sequence of inputs.

4.1. Specification and Verification Strategy

Mealy and Moore automata [Mea55, Moo56] have been widely used for modeling circuit structures. It ap-
peared to us that this notion is also an adequate and elegant model for representing behaviors that are
described by the designers in an informal way. In this uniform framework for encoding both the structures
and the behaviors, these two notions are considered as descriptions of the same entity, represented at differ-
ent abstraction levels.

Automata are encoded as recursive functions processing on co-inductive streams. Let us mention that our
encoding is quite general since it also applies to machines with an infinite number of states. Then, we in-
troduce a notion of equivalence on these automata, so that establishing a circuit correctness amounts to
proving that its structural automaton is equivalent to its behavioral automaton. The equivalence relation
being co-inductive, the proof is performed co-inductively. It relies on a single generic lemma which is in fact
a proof schema that underlies any correctness proof, and captures the temporal aspects of the reasoning.

The set of automata can be equipped with composition rules [HU79, Boo67]. We axiomatize this algebraic
structure in CC and we use it to give modular descriptions of architectures. Thus, complex device verification
processes are decomposed into the verification of simpler sub-components. We establish that the equivalence
relation on automata is a congruence for the composition rules. This makes a hierarchical approach possible
since, in a modular device, a pre-proven sub-component can be replaced by its expected behavior.
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Fig. 5. Representation of a Mealy automaton

As it will be illustrated in section 5, the description of the automata we handle is very abstract (for ex-
ample a transition function may involve a complex algorithm over the natural numbers). This kind of high
level representations, that are depicted by clear transition diagrams, appears to be more trustworthy than
other ones that are based on low level tools (like timing diagrams or low level automata). Moreover, the
automata we handle have a small number of states. This is due to the fact that a lot of information is carried
in the rich state data structures and by the transition and output functions (see section 5.3.2).

We also introduce dependent types whenever they contribute to a better precision of the specifications.
They can be used jointly with co-inductive types to encode, for instance, a n boolean signal as a stream of
length-n lists of booleans.

4.2. Specification of Mealy and Moore Automata

We present two variants of the notion of automaton, due to Mealy [Mea55] and Moore [Moo56]. The defi-
nitions are similar except that in a Mealy automaton, the output depends on the current state and on the
input, whereas it only depends on the current state in a Moore automaton. It can be shown that the two
notions are equivalent.

A Mealy automaton (Fig. 5) is defined by 5 parameters as follows.

Definition 1. A Mealy automaton is a 5-uple (I, O, S, Trans, Out) where I, O and S are respectively
the set of inputs, the set of outputs and the set of states. Trans is the transition function, of type I→S→S
and Out is the output function, of type I→S→O.

Given an initial state s, the Mealy machine computes an infinite output sequence in response to an infinite
input sequence inp. It can then be viewed as a function that we shall call Mealy function, of type:
(Stream I)→S→(Stream O)

It is recursively defined as follows:

fix Mealy. λinp λs (Cons (Out inp0 s) (Mealy inp’ (Trans inp0 s))).

The first element of the output stream is the result of the application of the output function Out to the first
input inp0 and to the initial state s. The tail of the output stream is then computed by a recursive call to
Mealy on the tail inp’ of the input stream and the new state (Trans inp0 s). This recursive call occurs
just under the constructor Cons of the co-inductive type Stream, and that is the guarded condition to be
met for the term to be well-formed.

This function Mealy depends in fact on the 5 parameters (I, O, S, Trans, Out) defining the automaton.
As the first three parameters can be synthesized from the last two, we will denote it by (Mealy Trans Out).

The stream of all the successive states from the initial one can be obtained similarly, as a fixpoint States
of type (Stream I)→S→(Stream S), defined as follows:
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sTrans Oute

Fig. 6. Representation of a Moore automaton

fix States. λinp λs (Cons s (States inp’ (Trans inp0 s))).

One can notice that, with this encoding, the output stream (Mealy inp s) can be defined without referring
to the state stream, contrary to what happens when infinite sequences are defined as functions on the natural
numbers. Indeed, in this case, the output sequence (on)n:nat, and the state sequence (sn)n:nat, are defined
by :

(∀n:nat) on=(Out inpn sn) and sn+1=(Trans inpn+1 sn)

Moore automata are described in Fig. 6. The Moore function associated with such an automaton is of type
(Stream I)→S→(Stream O) and is defined similarly to the Mealy function. It is well known, and we shall
formally establish, that these two notions are equivalent in the sense that any Mealy machine can be simu-
lated by a Moore machine and conversely.

Let us now axiomatize the inter-connection rules which express how a complex machine can be decomposed
into simpler ones.

4.3. Modularity

Three basic inter-connection rules are defined on the set of automata [Boo67]. They represent the parallel
composition, the sequential composition and the feedback composition of synchronous sequential devices.

4.3.1. Parallel Composition

In this paragraph we consider two Mealy automata respectively defined by the two following 5-uples:

(I1, O1, S1, Trans1, Out1) and (I2, O2, S2, Trans2, Out2)

and we define their Mealy functions

A1 := (Mealy Trans1 Out1) and A2 := (Mealy Trans2 Out2).

In the following and when this does not introduce ambiguity, A1 and A2 will be employed to denote both the
automata and their Mealy functions.

The parallel composition of A1 and A2 is described in Fig. 7. The two objects, on each side of the schema,
need comments :

- f=(f1, f2) builds from the current input i the pair of inputs (f1(i), f2(i)) for A1 and A2.
- output is of type O1×O2 →O and computes the global output from the outputs of A1 and A2.

More formally, the parallel composition of the two automata is defined by the following function over the
input streams and initial states:

parallel : (Stream I)→ S1 → S2 →(Stream O) :=
λinp λs1 λs2 (Map output (Prod o1 o2)).

where, ∀j∈ {1, 2}, oj = (Aj (Map fj inp) sj) is the output stream of Aj for initial state sj. The global
output stream is obtained by mapping the function output on the pointwise product of the output streams
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of A1 and A2.

This parallel composition is not an automaton. But it can be shown that it is equivalent to a Mealy automa-
ton called PC in the following sense: if a certain relation holds on the initial states, in response to the same
input streams, the output streams for parallel composition and PC are equivalent. The type of its states is the
product of the types of states of A1 and A2. Its transition function and its output function are respectively
defined by:

(∀i:I)(∀s1:S1)(∀s2:S2)
(Trans PC i (s1, s2))=((Trans1 (f1 i) s1), (Trans2 (f2 i) s2))
(Out PC i (s1, s2))=(output (Out1 (f1 i) s1) (Out2 (f2 i) s2)).

The following lemma states the equivalence between the parallel composition and this automaton.

Lemma 2. Let PC be the Mealy function (Mealy Trans PC Out PC). For all states s1 of type S1, s2 of type
S2, and for all input stream inp of type (Stream I) the following relation holds:

(parallel inp s1 s2) ∼ (PC inp (s1,s2))

Proof. Let us clarify on this simple example how a proof term can be built by co-inductive reasoning. This
proof consists in two steps:

(1) prove that the heads of the two streams are equal

(2) assuming that their tails are equivalent (co-induction hypothesis), deduce from (1) that the streams are
equivalent.

For the reader familiar to type theory, we give the proof term. Its type being co-inductive, this term is a
fixpoint in which the recursive call corresponds to applying the co-induction hypothesis. In the case of this
lemma, it is particularly compact. Let us call it Equiv parallel PC. It is defined as follows:

fix Equiv parallel PC. λs1 λs2 λinp (eqS h (Equiv parallel PC s1’ s2’ inp’)).

Let us recall that eqS is the constructor of predicate ∼ (see section 2). The term h is a proof of the equality
of the heads of the two streams under consideration, inp’ is the tail of inp and s1’ and s2’ are the new
states computed as follows:
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Out1Trans1 s1 s2 Out2Trans2 oo’

A1 A2

i

Fig. 8. Sequential Composition of two Mealy Automata

s1’= (Trans1 (f1 inp0) s1) and s2’= (Trans2 (f2 inp0) s2)

One can notice that Coq co-induction is easier to use than Park’s co-induction principle, which requires to
find an invariant. Moreover such co-inductive proofs are to be compared with those obtained when encoding
infinite sequences by functions over the natural numbers. They are shorter and more elegant since they do
not require handling indices nor performing induction on the natural numbers.

The terms parallel and PC that have been defined in this paragraph depend in fact on several parameters.
When these parameters are not clear from the context, we shall explicitly mention them. We shall write
for example (PC Trans1 Trans2 out1 out2 f output) instead of PC. In the Coq proof assistant, it is not
mandatory to indicate the types of inputs, outputs and states, since they can be synthesized from the other
parameters. This parameters management is handled by the section mechanism. Outside a parameterized
section, the parameters are discharged and appear explicitly in the terms that are defined in the section and
that depend on the parameters.

4.3.2. Sequential Composition

Let us now consider two automata

(I, O’, S1, Trans1, Out1) and (O’, O, S2, Trans2, Out2)

the output set of the first one being the input set of the second one and let us define their Mealy functions:

A1 := (Mealy Trans1 Out1) and A2 := (Mealy Trans2 Out2).

The sequential composition is described in Fig. 8 and merely corresponds to the composition of the functions
A1 and A2. As in the previous paragraph, we show that this composition is equivalent to an automaton SC
the states of which are pairs composed of a state of A1 and a state of A2. The transition and output functions
of SC are defined by:

(∀i:I)(∀s1:S1)(∀s2:S2)
(Trans SC i (s1, s2))= ((Trans1 i s1), (Trans2 (Out1 i s1) s2))
(Out SC (s1, s2))= (Out2 (Out1 i s1) s2))

More precisely, we have the following lemma:

Lemma 3. Let SC be the Mealy function (Mealy Trans SC Out SC). For all states s1 of type S1, s2 of type
S2, and for all input stream inp of type (Stream I) the following relation holds:

(A2 (A1 inp s1) s2) ∼ (SC inp (s1,s2))

The proof is similar to that of the previous paragraph.

4.3.3. Feedback Composition

The previous two rules have been presented on Mealy automata but they could have been defined on Moore
automata as well. For the feedback composition, at least one automaton must be a Moore automaton. With-
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Fig. 9. Feedback Composition

out this restriction, the specified interconnection is not correct since the current output depends on itself.

Let us consider a Mealy automaton and a Moore automaton, the output set of the first one being the input
set of the second one. They are defined respectively by the 5-tuples:

(I1, O, S1, Trans1, Out1) and (O, O2, S2, Trans2, Out2)

The corresponding Mealy and Moore functions are defined as usual by:

A1 := (Mealy Trans1 Out1) and A2 := (Moore Trans2 Out2).

Let I be the set of the feedback composition inputs. The function input of type I*O2 →I1 (where the
operator * denotes the cartesian product) is a parameter which computes the current input of A1 from the
current input i and the output of A2. The following function out computes the current output of the device:

out:= λi λs1 λs2 (Out1 (input (i, (Out2 s2))) s1)

The functions updating the states are defined by:

upd1:= λi λs1 λs2 (Trans1 (input (i, (Out2 s2))) s1)
upd2:= λi λs1 λs2 (Trans2 (out i s1 s2) s2)

We can now specify the feedback function that computes the output stream produced by the device repre-
sented in Fig. 9 with states having s1 and s2 as initial values, and in response to an input stream inp:

fix feedback. λinp λs1 λs2 (Cons (out inp0 s1 s2) (feedback inp’ s1’ s2’))

where ∀j∈ {1, 2}, sj’= (updj inp0 s1 s2) is the updated state of Aj.

As for the previous two rules, we show that this composition is equivalent to a Mealy automaton FC defined
by the 5-uple (I,O, S1*S2, Trans FC, Out FC) where:

(Trans FC i (s1, s2)) = ((upd1 i s1 s2), (upd2 i s1 s2)))
(Out FC i (s1, s2)) = (out i s1 s2)

The following lemma establishes the equivalence of the two devices.

Lemma 4. Let FC the Mealy function (Mealy Trans FC Out FC). For all states s1 of type S1 and s2 of
type S2, for all input stream inp of type (Stream I), the following equivalence holds:

(feedback inp s1 s2) ∼ (FC inp (s1, s2))
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The proof is analogous to the previous ones.

These three composition rules are sufficient for describing all sequential circuit interconnections [Boo67].

4.4. Automaton Congruence

In this paragraph, we define a notion of congruence over the set of Mealy automata, which is useful in a
hierarchical approach of circuit verification. It makes it possible to replace a pre-proven structural component
by its equivalent behavioral automaton. Informally, we lift the stream equivalence to automata by stating
that two automata are equivalent if their outputs are equivalent streams whenever their inputs are equivalent
streams. It is then a kind of extensional equality on functions on streams.

Definition 5. Let (I, O, S1, Trans1, Out1) and (I, O, S2, Trans2, Out2) be two automata and A1

and A2 their Mealy (or Moore) functions. The automata are said to be equivalent and we write: A1 ≡ A2 if
and only if:

(∀s1:S1)(∃s2:S2)(∀inp:(Stream I))(A1 inp s1) ∼ (A2 inp s2) ∧
(∀s2:S2)(∃s1:S1)(∀inp:(Stream I))(A1 inp s1) ∼ (A2 inp s2).

Lemma 6. The condition A1 ≡ A2 is equivalent to:

(∀s1:S1)(∃s2:S2)(∀inp1,inp2 :(Stream I)) (inp1 ∼ inp2)→(A1 inp1 s1) ∼ (A2 inp2 s2) ∧
(∀s2:S2)(∃s1:S1)(∀inp1,inp2 :(Stream I)) (inp1 ∼ inp2)→(A1 inp1 s1) ∼ (A2 inp2 s2).

Proof. The proof consists in establishing first that for all automata A, for all states s, and for all equivalent
input streams inp1 and inp2, (A inp1 s) ∼ (A inp2 s). Then one uses the transitivity of relation ∼.

Lemma 7. The relation ≡ is an equivalence relation on the set of automata.

The proof is straightforward.

Lemma 8. The relation ≡ over the set of automata is a congruence for the three interconnection rules.

That means that if A1, B1, A2, and B2 are automata, under the conditions over the input, output and state
types for the interconnections to be correct, if A1 ≡ B1 and A2 ≡ B2 then PCA1,A2 ≡ PCB1,B2, SCA1,A2 ≡
SCB1,B2, and FCA1,A2 ≡ FCB1,B2. Here SCA1,A2, PCA1,A2, and FCA1,A2 denote the Mealy automata resulting
from the sequential, parallel and feedback composition of A1 and A2.

Finally, let us state precisely the equivalence between the Moore and Mealy definitions. In the two following
lemmas we denote similarly the automata and their Moore or Mealy functions. It is trivial that for all Moore
automata, there exists an equivalent Mealy automaton.

Lemma 9. Let A = (I, O, S, Trans, Out) be a Moore automaton and let B the Mealy automaton de-
fined by B = (I, O, S, Trans, (λs:S)(λi:I)(Out s)). Then:

(∀s:S)(∀inp:(Stream I)) (A inp s) ∼ (B inp s)

In the converse implication, the two automata process on input streams one of them is the tail of the other.

Lemma 10. For all Mealy automata, there exists an equivalent Moore automaton in the following sense.
Let A = (I, O, S, Trans, Out) be a Mealy automaton. Let us define the functions:

Trans’ := (λi:I)(λ(s,o):S*O)((Trans i s),(Out i s)) and
Out’ := (λ(s,o):S*O)o.

Let B be the Moore automaton defined by B = (I, O, S*O, Trans’, Out’). Then:

(∀i:I)(∀inp:(Stream I))(∀s:S) (A (Cons i inp) s) ∼ (B inp (Trans i s) (Out i s))

Proofs. The proofs of both lemmas are performed by co-induction.
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4.5. Proof Schema for Circuit Correctness

Proving that a circuit is correct amounts to proving that, under certain conditions, the output stream of
the structural automaton and that of the behavioral automaton are equivalent. We present in this section a
generic lemma, all our correctness proofs rely on. It is in fact a kind of pre-established proof schema which
handles the main temporal aspects of these proofs. Let us first introduce some specific notions.

In the following, we consider two Mealy automata :

A1 = (I,O, S1,Trans1,Out1) and A2 = (I, O, S2, Trans2, Out2)

that have the same input set and the same output set.

Invariant. Given p streams, a relation which holds for all p-tuples of elements at the same rank is called an
invariant for these p streams. For instance, if p=3, a predicate inv is defined co-inductively as follows.

Let I, S1 and S2 be three sets, P: I→S1→S2 →Prop be a predicate, and inp, st1, st2 three variables of
respective type (Stream I), (Stream S1), and (Stream S2). The predicate P is said to be invariant on the
streams inp, st1, st2 and one writes (inv P inp st1 st2) if P holds on the heads of the streams and if
P is invariant on the tails of the streams.

Invariant state relation. Let R: S1→S2→Prop and P: I→S1→S2 →Prop be two predicates. R is invariant
under P for the automata A1 and A2, if and only if:

(∀i:I)(∀s1:S1)(∀s2:S2) (P i s1 s2) → (R s1 s2) → (R (Trans1 i s1) (Trans2 i s2)).

Output relation. Let R: S1→S2→Prop be a relation over the states of two automata. R is an output rela-
tion if it is strong enough to induce the equality of the outputs, that is if and only if:

(∀i:I)(∀s1:S1)(∀s2:S2) (R s1 s2) → (Out1 i s1) = (Out2 i s2).

We can now set forth the equivalence lemma:

Lemma 11. Let P: I→S1→S2→Prop and R: S1→S2→Prop be two predicates. Let us assume that R is an
output relation that is invariant under P, and that holds on two initial states s1 and s2. Then, for all input
streams inp:

(inv P inp SS1 SS2) → (A1 inp s1) ∼ (A2 inp s2)

where ∀j∈ {1, 2}, SSj = (States Transj Outj inp sj) is the stream of the states of Aj.

In other words if R is an output relation invariant under P that holds for the initial states, if P is an invariant
for the common input stream and the state streams of each automata, then the two output streams are
equivalent.

Proof. The proof of this lemma is done by co-induction.

This theorem will be systematically invoked when establishing the correctness of a circuit component as an
equivalence between its structural automaton and its behavioral automaton.

5. Certification of a Real Circuit

In this section, we outline the certification process of a realistic circuit. It illustrates our methodology and
gives evidence of its feasibility.
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Fig. 10. Arbitration Unit

5.1. The 4 by 4 Switching Element

Designed and implemented at Cambridge University by the Systems Research Group, the Fairisle 4 by 4
Switch Fabric is the central part of an experimental local area network based on Asynchronous Transfer Mode
(ATM). This communication mode consists in sending data on a network by creating virtual connections.
Each machine communicates with others via its switch. The main role of such a device is performing switching
of data from four input ports to four output ports and arbitrating data clashes according to the output port
requests made by the input ports. We focus here on its ARBITRATION unit, which is its most significant
part, as far as specification and verification are concerned. This unit decodes requests from input ports and
priorities between data to be sent, and then it performs arbitration. It is the interconnection of 3 modules
(Fig.10) :

• FOUR ARBITERS which performs the arbitration for all output ports, following the Round Robin algorithm,

• TIMING which determines when the arbitration process can be triggered,

• PRIORITY DECODE which decodes the requests and filters them according to their priority. Its structure is
essentially combinatorial.

As an illustration of section 4.5, we present in detail the verification of TIMING, which is rather simple but
significant enough to illustrate the proof of equivalence between a structural automaton and a behavioral
automaton. Then, we shall present how ARBITRATION is verified by joining together the various correctness
results of its sub-modules. This will illustrate not only the hierarchical aspect of our approach, but also that
the real objects we have to handle are in general much more complex than those presented on the example
of TIMING.

5.2. Verification of the Unit Timing

The unit TIMING can be specified and proved directly, that is without any decomposition. It is essentially
composed of a combinatorial part connected to two registers as shown in Fig.11.

5.2.1. Structural Description

The structure of TIMING corresponds exactly to a Mealy automaton. Its transition function represents the
boxed combinatorial part in Fig. 11. The state is the pair of the two register values, encoded as a length-2
list of booleans. The unit input consists of a wire fs and a 4 wires signal act that is encoded by a length-4
dependent list of booleans. So, the parameters representing the input, output, and state types are instanti-
ated as follows:

I := bool * (d list bool 4)
O := bool
S := (d list bool 2).
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The functions neg and andb are the boolean negation and conjunction. The inverters and the four inputs
and gates are defined by:

INV := neg.
AND4 := (λa,b,c,d:bool) (andb a (andb b (andb c d))).

The automaton representing the circuit in Fig. 11 is defined by means of its transition function Trans Timing
and its output function Out Timing as follows:

Trans Timing : I→S→S := λ(fs, act) λ(s1, s2) (List2 (AND4 (OR4 act) s2 (INV fs) (INV s1))
(OR2 fs (AND2 (INV s1) s2)))

Out Timing:I -> S -> O := λi λ(s1, s2) s1

Structure TIMING := (Mealy Trans Timing Out Timing).

In the definitions above, List2 denotes the operator that builds a length-2 list from its two components.

5.2.2. Behavioral Description

The expected behavior is presented in Fig. 12. The output is a boolean value that indicates when the ar-
bitration can be triggered. This output is false in general. When the frame start signal fs goes high, the
device waits until one of the four values carried by act is true. In that case the output takes the value true
during one time unit and then it goes low again. The type of the states is defined inductively as the set
S beh={START t, WAIT t, ROUTE t}.

The transition function trans T and the output function out T are defined by cases. The automaton
Behavior TIMING is obtained as usual by an instantiation of Mealy.

5.2.3. Proof of Correctness

The proof of correctness relies on the notions introduced in section 4.5. To prove the equivalence between
Behavior TIMING and Structure TIMING we apply lemma 11. For that, we have to define a relation between
the state (s1, s2) of the structure and the state s of the behavior. This relation, namely R Timing, expresses
that the first register value s1 equals the output of the behavior in the state s (note that the value of this
output does not depend on the current input), that insures that the relation is an output relation. It also
expresses constraints between s and the second register s2 of the structure.

R Timing:S beh→S→Prop := λs λ(s1, s2)
((∀i:I)s1=(Out T i s)) ∧ (s = START t ∧ s2 = false ∨

s = WAIT t ∧ s2 = true ∨
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Fig. 13. The Arbitration Structure as an Interconnection of Automata

s = ROUTE t ∧ s2 = true).

No additional hypothesis is needed to prove that R Timing is an invariant relation over the state streams,
and this means that it is invariant under the True constant predicate over the streams, which is obviously
an invariant.

The correction lemma is stated as follows:

Lemma 12. (∀inp:(Stream I))(∀s:S)(∀s beh:S beh)
(R Timing s beh s)→ (Behavior TIMING inp s beh)∼(Structure TIMING inp s).

In this lemma, as in all the correctness lemmas stating the equivalence between a structural automaton and
a behavioral automaton, the combinatorial part of the proof and the temporal one are clearly separated.
The former essentially consists in proving that R Timing is an invariant under certain condition (True in
this case), which is done by case analysis. The latter follows straightforwardly from lemma 11.

5.3. Hierarchical and Modular Aspects

Let us now illustrate the hierarchical modularity of our approach on the specification and the verification of
an interconnection of several modules, namely the Arbitration unit (Fig. 10). Its structure is described in
Fig. 13.

5.3.1. Structural Description

The structural description is given in several steps (Fig. 14, 15, 16), by using the parallel and sequential
composition rules (PC and SC) on automata presented in section 4.3.

For example, the final definition representing the structure of ARBITRATION as a sequential composition of
two intermediate automata (Fig. 16) is specified by the following definitions. The input type is:
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I := bool * (d list bool 4) * (d list bool 4) * (d list (d list bool 2) 4).

and the circuit architecture is encoded by:

Structure ARBITRATION : (Stream I)→S→(Stream O) := (SC TransTPD TransFA OutTPD OutFA).

where TransTPD and OutTPD are the transition and output functions of the component structure TIMING-
PDECODE ID and TransFA and OutFA those of the component structure FOUR ARBITERS.

5.3.2. Behavioral Description

As for TIMING, the behavior of ARBITRATION was initially given in natural language by the designers. Several
formal descriptions can be derived. For example, in HOL, Curzon uses classical timing diagrams (waveforms)
whereas Tahar, in MDG, specifies it by means of Abstract State Machines (ASM) the states of which are
located according to two temporal axis [TC96]. Our description is more abstract, more compact and closer
to the designers intuition. We represent it, as usual, by a Mealy automaton which is described in Fig. 17. It
is particularly small (only 5 states). This comes from the fact that a great deal of information is expressed
by the states themselves, the output function and the transition function.

The input has the same type I as in the structural description. The current input is then (fs, act, pri,
route). The states are 4-tuples consisting of:

• a label (START A for instance),

• a list g of 4 pairs of booleans, each of them being the binary code of the last input port that gained
access to the output port corresponding to its rank in the list g,

• a list o of 4 booleans indicating if the information of same rank in the list g above is up to date (an
element of g can be out of date if the corresponding output port has not been requested at the previous
cycle),

Structure_TIMINGPDECODE_ID Structure_FOUR_ARBITERS(fs,act,pri,route)

Fig. 16. Structure ARBITRATION
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• the current requests l. It is a list of 4 elements (one for each output port). Each of these elements is
itself a list of 4 booleans (one for each input port) indicating if the input port actually requests the
corresponding output port and if it has a high level of priority or not.

The transition function computes the new state from the information carried by the current state and the
current input. Hence, it is quite complex. Let us explain how g and o are updated. This is done by means
of an arbitration process. Each output port first computes the last port (say last) that got access to this
output port. Then, it makes a call to RoundRobin(4, l, last) where RoundRobin is described as follows :

RoundRobin(n, l, last) = if n=0 then
(last, true)

else
let succ = (last+1) mod 4 in
if succ ∈ l then

(succ, false)
else

RoundRobin (n-1, l, succ)

The list of the first components returned by the 4 calls (one for each output port) to RoundRobin constitutes
the new value of g and the list of the second components, that of o. The new requests are computed by
decoding and filtering the current input.

We do not give the precise definition of the transition function which is rather complex. Let us just make
clear that, at each step, it describes non trivial intermediate functions for arbitrating, filtering, decoding.
This points out an essential feature of our specification: due to the high abstraction level of the CC specifi-
cation language, we can handle automata which have few states but which carry a lot of information. This
allows us to avoid combinatorial explosions and leads to short proofs (few cases have to be considered). We
refer the interested reader to [Jak99] for the full details.
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5.3.3. Proof of Correctness: an outline

The proof of correctness follows from the verification of the modules that compose the Arbitration unit.
We perform it in several steps, hierarchically.

(1) We build behavioral automata for TIMING, FOUR ARBITERS, and PRIORITY DECODE. We prove that these
three automata are equivalent to the three corresponding structural automata.

(2) We interconnect the structural automata and we get the global structural automaton called Structure
ARBITRATION.

(3) In the same way, we interconnect the three behavioral automata in (1) and we get an automaton called
Composed Behaviors.

(4) We show, from (1) and by applying the lemmas stating that the equivalence of automata is a congruence
for the composition rules, that Composed Behaviors and Structure ARBITRATION are equivalent.

(5) We prove that Composed Behaviors is equivalent to the global expected behavior, namely Behavior ARBI-
TRATION. This is the essential part of the global proof and is much simpler than proving directly the equiv-
alence between the structure and the behavior. As a matter of fact, Composed Behaviors is more abstract
than Structure ARBITRATION which takes into account all the details of the implementation.

(6) This final result, namely the equivalence of Behavior ARBITRATION and Structure ARBITRATION, is
obtained easily from (4) and (5) by using the transitivity of the equivalence over the Streams.

Let us point out that lemma 11 has been applied several times (three times in (1) and once in (5)).

Moreover, it is worth noticing that the FOUR ARBITERS unit is itself composed of four sub-units and that its
verification requires again a modular verification process.

6. Discussion and Related Work

As far as related work is concerned, the study closest to ours is that of Curzon, who performs the verification
of the ATM Switch Fabric with the HOL theorem prover [Cur94a, Cur94b]. It was an helpful starting point
for our investigations despite the fact that his approach is completely different. Let us make a comparison
on the example of the Timing unit.

Here is the behavioral representation given by Curzon as a temporal statement. We show it here just to
give an idea of the style of description, not to be understood in detail.

∀ fs, act, re. TIMING_BEH((fs, act), re)=
(∀ ts ta te.∼(fs 0)∧(∀t. ∼(fs (t+1))∨ ∼(EXISTABIT I (act t)))→

(∀ t. ∼(fs t ∧ re t)) ∧
(AFRAME2 ts ta te fs act → STABLE (ts+1) (ta+1) re F ∧

(re (ta+1) = T) ∧
(STABLE (ta+2) (te+1) re F) ∧
(IFRAME ts te fs act →(STABLE (ts+1) (te+1) re F))

In this statement, ts, ta, te, t are natural numbers that represent time points. The signals fs, re, act
are functions on the natural numbers. Such a description is to be compared to the small automaton depicted
in Fig.12.

To establish the correctness of this unit, Curzon proves an implication between the structural specification
and this statement (whereas we prove an equivalence). For that, he introduces a more concrete description
TIMING BEH2, closer to the implementation. First, it is proved that the structure implements TIMING BEH2,
and then that TIMING BEH2 implies TIMING BEH. This requires establishing preliminarily that (∀ t. ∼(fs
t ∧ re t)). This is done by induction on parameter t. In fact, as in general the goals are universal state-
ments on time points, several (sometimes nested) inductions are required. This is to be compared with our
correctness lemma which is an immediate consequence of lemma 11. The effort is focused on establishing
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that a relation on the states is an output relation and that it is invariant. This is quite simple and purely
combinatorial.

This small example illustrates the advantage of getting rid of time parameters and adopting an abstract
algebraic way of specifying. The more challenging the device to be verified, the more important the bene-
fit. The behavior of the Arbitration unit is quite complex. However we could model it as a 5 states automaton.

Moreover, HOL does not provide dependent types and Curzon reported that some errors in his specifi-
cations caused a big loss of time in his verification process. By working with Coq, we could give more precise
encodings and thus avoid such problems. It is worth noticing that a significant part of our results, related to
automata and dependent types libraries, are reusable and available for hardware verifiers. Let us emphasize
that the axiomatization of automata provides a co-inductive notion of congruence. Since it also covers the
case when the set of states is infinite, it applies to systems more general than circuits.

In [PM95] Paulin-Mohring gives a proof of a multiplier, using a codification of streams in type theory, but
she represents circuits as functions of time parameters and then she loses the benefit of handling streams. In
[MJ96] streams are defined in PVS as an uninterpreted non empty data type constrained by axioms about
uninterpreted constructor and accessors functions. This axiomatization is then used to verify a synchronous
fault-tolerant circuit using co-inductive reasoning based on bisimulations. The Lava system developed at
Chalmers University [Lav00] is based on a functional representation of circuits in Haskell. These circuits can
then be simulated by an interpreter and verified by a prover system based on propositional logic. However,
the verification of sequential devices is performed classically by induction over time parameters. Moreover
the nature of the logic used in this system only allows to prove circuits of fixed size. More recently, in [BH01]
the authors give a shallow embedding in Coq of a data-flow synchronous language. For that, they use co-
inductive dependent types for encoding streams with “absent elements” and they apply the “clock as types”
paradigm for expressing static synchronization constraints with a restricted form of dependent types.

The ATM Switch Fabric has been (and is still) widely used as a benchmark in the hardware community. For
example, Schneider et al. [SK95] formally verified it using the verification system Mephisto which is based on
the HOL theorem prover. Although they automated the verification of low-level submodules, they have not
accomplished a complete verification. Other approaches on the Fabric propose abstraction processes in order
to cope with the state explosion problem [LT98]. However, the authors cannot verify the whole fabric. In
[GR96], Garcez et al. verify some properties of the fabric using the HSIS model checking tool. But no model
checking on the whole switch fabric model nor a verification against a high-level specification was reported.
In [TSC+99] Tahar and al. proved the Fabric using MDG (Multiway Decision Graphs). They handle bigger
automata and their proof is more automatic. However it is not reusable. Several comparisons between these
various approaches can be found in [TCJ98, TC99]. More recently, Kort and al. proposed an hybrid method
for using both HOL and MDG [KSC03]. The user must give a modular description of the device and must
provide a behavioral description of its sub-modules. If the circuit cannot be proved automatically by MDG,
due to state explosion, the correctness theorem is split by HOL into subgoals related to the correctness of its
sub-modules. Then, one tries again to have these subgoals automatically established by MDG. Although it
offers more automation, this approach has some drawbacks. First, HOL must trust MDG. Second, it requires
more work in preparing the data, since MDG handles lower level encodings. It also requires the user to
provide behaviors for the sub-modules in case MDG fails in verifying a too big device. Third, the MDG
proof process may not terminate. In this case, some heuristics must be applied, by hand.

7. Conclusion

In this paper, we have thoroughly investigated how to take advantage of the expressiveness of the Calculus
of (Co)-Inductive Constructions (CC) in the field of hardware verification. As far as modeling circuits is
concerned, our approach relies on the use of dependent types, to accurately describe combinatorial features,
and on the use of co-inductive types to take into account the temporal aspects of synchronous sequential
circuits.



Certifying Circuits in Type Theory 23

As handling dependent types requires expertise, we have provided several general libraries that may be
of interest for verifiers. Moreover, we have demonstrated that this way of specifying can be used significantly
in practice. We have shown that technical problems can be overcome both on a small example that involves
various kinds of dependent types, and on a real circuit such the ATM switch fabric. We also have presented,
as a first step in circuit synthesis, a short experiment on the Coq extraction mechanism.

Then, we have proposed a high-level generic methodology, for verifying synchronous sequential circuits in
Coq. It is based on a uniform co-inductive description of the structures and the expected behaviors of circuits
by means of Mealy automata. This algebraic approach makes it possible to get rid of time parameters and
leads to clearer and more elegant descriptions. Moreover, establishing the correctness of sequential circuits
with theorem provers, is generally done by proving a collection of lemmas by (sometimes nested) induction
on the steps of time. Thus, the temporal considerations are omnipresent all along the proof. With our ap-
proach, we capture once and for all in one generic lemma most of the temporal aspects of the proofs. In each
specific case, only combinatorial parts need to be developed. So, the proof process is clarified, simplified and
is made more generic.

Our definition of automata is generic enough to represent in a uniform way, both low level automata that
are related to the structures and more complex ones that represent behaviors. Due to the high abstraction
level of this axiomatization, we get compact behavioral automata. This comes from the complex structure
of the states that carry a lot of information. Therefore the proofs by cases are short but they make use of
high level transition functions on rich data types.

As illustrated in section 5.3, and due to the congruence relation we have defined on automata, the cor-
rectness of a unit is obtained from that of its components. Not only does this lead to clearer and easier
proof processes but also it allows us to use, in a complex verification process, correctness results related to
pre-proven components.

The feasibility of our approach, has been demonstrated on the example of a true non trivial circuit. Our
whole development (including the generic tools and the case study on the linear arithmetic structures) takes
approximatively 13,000 lines.

It would now be interesting to investigate how to make the combinatorial parts of the proof more auto-
matic. Indeed, this is the tedious aspect of our work. Working with Coq requires expertise and is rather time
consuming. The general methodology we have proposed is accompanied by reusable libraries. Jointly with a
way for automatizing combinatorial proofs, we think that it would be a very convenient tool for hardware
verification

The Coq files related to this paper can be found in [CJa] and [CJb].
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