Using Rewriting to Synthesize Functional
Languages to Digital Circuits

Christiaan Baaij and Jan Kuper

Department of Electrical Engineering, Mathematics, and Computer Science,
University of Twente, Postbus 217, 7500AE Enschede, The Netherlands
{c.p.r.baaij,j.kuper}@utwente.nl

Abstract. A straightforward synthesis from functional languages to dig-
ital circuits transforms variables to wires. The types of these variables
determine the bit-width of the wires. Assigning a bit-width to polymorphic
and function-type variables within this direct synthesis scheme is impossi-
ble. Using a term rewrite system, polymorphic and function-type binders
can be completely eliminated from a circuit description, given only minor
and reasonable restrictions on the input. The presented term rewrite
system is used in the compiler for CAaSH: a polymorphic, higher-order,
functional hardware description language.

1 Introduction

This paper describes the use of a Term Rewriting System (TRS) in the compiler
for CAaSH |1}/2]. CAaSH is a polymorphic, higher-order, functional hardware
description language. The purpose of the CAaSH compiler is to transform a
description in a functional language to a format from which lithography machines
can build an actual chip. The CAaSH compiler actually only provides a part
of this transformation. It creates a low-level representation of the hardware,
called a netlist; industry-standard tools are used for further processing. The
translation from a (functional) description to a netlist is called synthesis in
hardware literature. And the set of rules/transformations that together describe
the conversion procedure from description to netlist is called a synthesis scheme.

The synthesis scheme used by the CAaSH compiler produces a specific normal
form of the description. One aspect of this normal form is that the arguments
and results of functions must have a representable type: a type whose values can
be encoded by a fixed number of bits. This paper only describes the TRS that
is used by the CAaSH compiler to eliminate, in a meaning-preserving manner,
non-representable values from a functional description. Neither the exact normal
form, the simplification TRS used to achieve this normal form, nor the complete
synthesis scheme, are however presented. These aspects will be described in
a future paper. This paper focuses on the TRS for non-representable value
elimination, because it, among other things, transforms higher-order descriptions
to first-order descriptions. Because first-order programs are susceptible to a
greater range of analysis techniques [3], the described TRS has value in a broader
context.

The next subsection gives both a definition for netlists, and an introduction
to synthesis schemes by describing a specific instance for a small functional
language. The definition and introduction are both informal, but hopefully instil
an intuition for the process of transforming a functional description to actual
hardware.

1.1 Netlists & Synthesis

A netlist is a textual description of a digital circuit [4]. It lists the components that
a circuit contains, and the connections between these components. The connection
points of a component are called ports, or pins. The ports are annotated with the
bit-width of the values that flow through them. A netlist can either be hierarchical
or flattened. In a hierarchical netlist, sub-netlists are abstracted to appear as
single components, of which multiple instances can be created. By instantiating
all of these instances, a flattened netlist can be created.

A synthesis scheme defines the procedure that transforms a (functional)
description to a netlist. Synthesis schemes defined for different languages, which
nonetheless have common aspects, will be called a synthesis scheme family. The
CMaSH compiler uses a synthesis scheme, called T¢y, that is an instance of the
larger synthesis scheme family that will be referred to as 7. The following aspects
are shared by all instances of T

It is completely syntax-directed.

— It creates a hierarchical netlist.

Function definitions are translated to components, where the arguments
of the function become the input ports, and the result is connected to the
output port.

— Function application is translated to an instance of the component that
represents the corresponding function. The applied arguments are connected
to the input ports of the component instance.

To demonstrate 7, a simple functional language, £, is introduced in Fig.[[] £
is a pure, simply-typed, first-order functional language. A program in £ consists of
set of function definitions, which always includes the main function. Expressions
in £ can be: variable references, primitives, or function application. Fig. [3| shows
a small example program defined in the presented functional language.

The synthesis scheme for L, called T, is defined by two transformations:
[1, and [Je, in which [], is initially applied to the main function to create
the hierarchical netlist. A graphical, informal, definition of the [[, and [].
transformations is depicted in Fig. [2] Again, the purpose of this subsection is to
give an intuition for the synthesis process, not to give a formal account of 7z. [],
creates a component definition for a function f, where input ports correspond to
the argument of f. [], also creates an output port for the result of the expression
e, which is connected to the outcome of the [J. transformation applied to e.

Fig. |2 shows that [], transforms an argument reference x to a connection
with an input port x. Function application of a function f is transformed to a
component instance of f. [], will be called for the definition of f in case there is

pu=fT=ep Function definitions
0

Argument reference
Primitive
Function application

Fig. 1. £: a simple functional language

[= so——

e [[eoﬂe: T o

— ﬂeoﬂe@i
® €Elle .
[® e = R

Fig. 2. T;: A synthesis scheme for £

[f z=ce]p =

double x =z xx
main x y = (double x) + (double y)

Fig. 3. Example program in £

Fig. 4. Netlist of the example program in Fig. 3| created by T,

no existing component definition. Arguments to f are recursively transformed by
[]e, and the outcome of these transformations are connected to the input ports of
the component f. The process for the transformations of primitives is analogous
to that of functions, except that [], will not be called for the definitions.
Applying the synthesis scheme T, to the example program given in Fig.
results in the (graphical representation of the) netlists depicted in Fig. {4l The
netlist representation of main shows that synthesis schemes belonging to 7
exploit the implicit parallelism present in (pure) functional languages: as there
are no dependencies between the operands of the addition, they are instantiated
side-by-side. During the actual operation of the circuit, electricity flows through

all parts simultaneously, and the instances of double will actually be operating in
parallel.

Synthesis of CAaSH CMaSH has a syntax and a semantics similar to the
programming language Haskell [5] including some of language extensions of
the Glasgow Haskell Compiler (GHC) [6]. These extensions include higher-rank
polymorphism and existential datatypes. CAaSH and Haskell are so similar that
every valid CAaSH description is also a valid Haskell program. Because CAaSH
uses a synthesis transformation belonging to 7T, called T¢), the reverse relation
does not hold. There are (many) Haskell programs that are not valid CAaSH
descriptions. For example, recursive functions are not valid CAaSH descriptions:
under T¢y, recursive application of a function f would lead to a recursive
instance of the component f. Flattening the netlist would lead to infinitely many
instantiations of the component f. Because such a netlist cannot be realized,
the corresponding recursive function is currently deemed an invalid CAaSH
description. Recursively defined (non-function) values are however allowed as
they can be synthesized to feedback loops.

CMaSH uses an instance of the T family of synthesis schemes because it
exploits the implicit parallelism of the functional descriptions, as shown earlier in
Fig. [l An important aspect of 7 is that the arguments and results of functions
become the input and output ports of components. These ports are annotated with
a bit-width so that it is known how many wires are needed to make connections
between ports. Because CAaSH is a polymorphic, higher-order language, the
arguments and results can however contain polymorphic or function-typed values.
It is generally impossible or impractical to represent such values by a fixed number
of bits.

In order to run T¢y, all values that cannot be represented by a fixed bit-width,
will have to be eliminated from the functional description. The focus of this paper
is a TRS that transforms the functional description in a meaning-preserving
manner so that all non-representable values are eliminated. The presented TRS
achieves its goal using both inlining and specialisation transformations [3].

The remainder of this paper is structured as follows: related work is described in
the next section. CAaSH is desugared to a smaller Core language, and it is the
Core language on which the TRS operates; Sect. [3| describes this Core language.
Section defines the (data)types which are considered non-representable, and the
general process required for their meaning-preserving elimination. The rewrite
rules of the TRS are described in Sect. Properties of the TRS, including its
non-termination, and the subsequent measures taken in the CAaSH compiler are
discussed in Sect. [}l Conclusions are presented in Sect. [f]

2 Related Work

Functional Hardware Description Languages. SAFL [7] is a first-order
hardware description language. As opposed to 7o, which is used by CAaSH,

SAFL uses a synthesis scheme that does not create a new component instance
for every application of a function f. Instead, a component f is instantiated only
once, and additional control and scheduling logic is inferred to safely approximate
concurrent access.

BlueSpec SystemVerilog [§] is a hardware description language with a syntax
similar to IEEE SystemVerilog standard. It has features also found in func-
tional languages, such as higher-order functions and parametric polymorphism.
The compilation from description to netlist is performed in two stages, which
corresponds to the static and dynamic semantics of the language:

— A description is partially evaluated according to the static semantics, this
includes the elimination/propagation of higher-order functions.

— The resulting description after partial evaluation is actually a set of rewrite
rules. The second synthesis transformation instantiates all these rules in
parallel, and adds scheduling logic in case there are conflicting preconditions
19].

So where the CAaSH compiler uses a TRS to eliminate non-representable values
(such as those with a function type), the BlueSpec compiler uses a partial
evaluator. There is however no account of the exact details of then partial
evaluation mechanism in the Bluespec compiler, nor is there an exhaustive list of
restrictions / requirements on the input programs.

Lava [10,/11] is a domain specific language embedded in Haskell. A hardware
description in Lava is actually a Haskell program that uses combinators made
available by the Lava library. These combinators wrap constructors of a graph
datatype that represents a netlist. Synthesis of Lava descriptions is not performed
in the traditional sense of transforming a description to a netlist. By running
the Lava description, a Haskell program, the complete graph representing the
netlist is simply calculated/constructed. Consequently, Lava gets the synthesis of
higher-order, and recursive functions, for free: as long as the function calculating
the graph terminates, a netlist can be created. Being an embedded language,
Lava has disadvantages compared to a compiled language such as C\aSH:

— Because a program calculating the netlist graph cannot observe the (applica-
tion of) individual functions, there can be no intuitive function-to-component
mapping. As a result, only flattened netlists can be created.

— The rich set of choice-constructs in Haskell (also present in CAaSH), such as
pattern-matching, cannot be reflected down to the netlists. Haskell’s choice
construct can be used to guide the construction of the netlist graph, but they
cannot be observed. Consequently, a developer using Lava only has access to
choice-functions offered by the Lava library.

Verity is a higher-order functional hardware description language with sup-
port for recursion (using a fix-point combinator) and mutable reference-cells.
Verity uses a semantics-directed synthesis scheme called Geometry of Synthesis
(GoS) [12]. GoS assumes a linear type system, that restricts the use of iden-
tifiers to exactly once. That means that arguments with a function type need

to be instantiated only once, an aspect GoS exploits during synthesis. Given a
higher-order function f, which has a function-type argument g, the component
corresponding to f is given extra input and output ports. The extra output ports
correspond to the input ports for g, and the extra input ports correspond to the
output ports of g. When f is applied to a function h, an instance of both the f
and h component are created, and the components are correctly connected to
each other. CAaSH does not have a linear type-system, meaning an identifier
with a function type can be applied multiple times. Because of this, the CAaSH
compiler cannot use the synthesis approach for function-typed arguments as
promoted by GoS.

Higher-Order removal methods. Reynolds-style defunctionalisation [13] is
a well-known method for generating an equivalent first-order program from a
higher-order program. Reynolds’ method creates datatypes for arguments with
a function-type. Instead of applying a higher-order function to a value with a
function-type, it is applied to a constructor for the newly introduced datatype.
Application of the functional argument is replaced by the application of a mini-
interpreter. Given the following higher-order program:

uncurry f (a,b)=f a b
main ¢ = (uncurry (+) z) + (uncurry (=))

Reynolds’ method creates the following behaviourally equivalent first-order pro-
gram:

data Function = Plus | Sub

apply Plus a b= (+) a b

apply Sub ab=(=)abd

uncurry f (a,b) = apply f a b

main x = (uncurry Plus z) + (uncurry Min x)

Reynolds’ method works on all programs, removes all functional arguments, and
preserves sharing (a subject that will be discussed later). Although commonly
defined and studied in the setting of the simply typed lambda calculus, there are
also variants [14}/15] of Reynolds’ methods that are correct within a polymorphic
type system. The disadvantage of Reynolds’ method is the introduction of the
mini-interpreter (which takes on the form of the apply function in the example).
Due to the parallel nature of T¢)y, this interpreter and all of its corresponding
functionality will be instantiated at the use sites of the interpreter. For the
above example it means that the interpreter will be instantiated twice; and so
will the included functionality: the adder and the subtracter. This method, in
combination with 7¢), thus creates a lot of redundant hardware; it is this aspect
that has precluded the use of Reynolds’ method in the CAaSH compiler.

Many of the rewrite rules used by the TRS described in this paper can also
be found in optimizing compilers for functional languages, such as GHC [16].
The rewrite rules presented by Peyton Jones and Santos [16] do however not
guarantee a first-order normal form, which the TRS presented in this paper does
(given certain restrictions on the input program).

Mitchell and Runciman [3] present a defunctionalisation method based on a
TRS, which, like the TRS presented in this paper, also uses specialisation and
inlining. The presented TRS can thus be seen as an extension to the work of
Mitchell and Runciman:

— It provides transformations that additionally perform monomorphisation,
which includes the specialisation of: higher-rank polymorphic arguments and
existential datatypes.

— It can deal with recursive let-expressions.

— It works on a typed language, and uses this type information to determine
when transformations should be applied.

3 Core Language

The syntactically rich CAaSH language is desugared to a smaller Core language,
called Coregw (Fig. , by the CAaSH compiler. It is a Church-style polymorphic
lambda-calculus extended with primitives, algebraic datatypes in combination
with case-decomposition, and recursive let-bindings. Case-decompositions are
either exhaustive in the constructors of the matched datatype, or include the
default pattern. Recursive let-bindings are needed to define values/expressions
that are self-referencing and are used to describe feedback loops. Fig. [5] gives
the language definition of Coregw, and uses, just like the rest of this paper, the
notation described in Fig. [f]

CMaSH supports existential datatypes, and this aspect of the language is
reflected in Coregw. A data constructor K, for an existential datatype T @, is
first abstracted over the universally quantified type-variables @, followed by the
existentially quantified type-variables 3. The type variables 8 brought into scope
by a pattern in a case-decomposition correspond to the existentially-quantified
type-variables of the datatype.

3.1 Synthesis of Coregw using T¢x

The synthesis scheme Ty exploits all the implicit parallelism available in the
Corepgw language. It does this by instantiating all expressions in a let-binding,
and all alternatives of a case-decomposition, side-by-side (Fig. . Toa creates
anchor points for let-binders so that variable references can be synthesized to
connections to these anchor points.

Completely elaborating 7oy falls outside of the scope of this paper. To
at least convey an intuition for the synthesis performed by 7oy, an example
program, and the corresponding netlist are shown in Fig. [§and [0 respectively. The

Local variables: z, vy, z Data C(lnstructor Types:
Global Variables: f,g K :VYaVvVpT—-Ta
Type Variables: «, 8

Types: Expressions:
T,0 = e,u =
« Variable reference x ‘ f Variable reference
| T — 0 Function Type ‘ K | ® Data Constructor / Primitive
| T Datatype ‘ Aae | eT Type abstraction / application
| T O Type application ‘ AT o€ | eu Term abstraction / application
| Ya.o Polymorphic type ‘ let 770 = € in © Recursive let-binding
‘ case e of p—> u Case-decomposition
Patterns:
p = Default case

‘ K BZT7F Match data constructor

Fig. 5. The Coregw calculus

Toc =To1..0n ew =eu Up

T—S>0=T1— ... > Tn —0 AL 0.6 =AT1:01.... \lp :O0p.€

Va.o =Voi...Va,.o T:o=€¢ ={z1:01=e€1, ..., Tn:0n =¢€n}
P—u ={p1 > U1, «oc, Pn —> Un}

KBzo = Kf1..0n (1 :01) oo (Tm 2 Om)

Fig. 6. Notation

simultaneous presence of all alternatives in a case-decomposition, and all binders
in a let-binding, has consequences for the sharing behaviour of expressions.

Sharing is normally defined as the re-use of the result of a computation by
other expressions. In a digital circuit, sharing means connecting the output port
of one component to the input ports of multiple other components. This aspect
can be observed in Fig. [0] where the result of the multiplication is shared by the
addition and the subtraction. Results that can be shared, instead of recomputed,
will reduce the total size of the circuit. The rewrite rules of the TRS should
thus take the effects of sharing under T¢) into account, as any loss in sharing
increases the size of the circuit.

le]
et z7o=¢inu] = &Z:L]]]] ::ii [case e of p—=u] = E{Z:}]]] :

[u]

Fig. 7. Synthesis of let and case

Az : Bool.\y : Int o let
z:Int=yxy

in case z of
True — z+1
False — z+1

Fig. 8. Example program using let and case

Fig. 9. Netlist of the example program in Fig. [§] created by Toa

4 Eliminating Non-representable Types

Tcox can only synthesize functional descriptions if arguments and results of
expressions can be given a fixed bit-encoding. There are straightforward encodings
for certain primitive datatypes, and certain algebraic datatypes. Datatypes with
a fixed bit-encoding are called representable. Deriving a fixed bit-encoding for
the following types is either not desired, or not possible:

Function types

— (Higher-rank) polymorphic types

— Recursively defined datatypes.

— Datatypes that are composed of types that are not representable.

This section shows the TRS that eliminates non-representable values from the
function hierarchy. It eliminates such values completely given that the input
adheres to the following restriction:

— That both the arguments and the result of the main function, and the
arguments and result of the used primitives, are representable.

The TRS uses a combination of inlining and specialisation, where specialisation
takes on two forms:

— Specialisation of a function on one of its arguments.
— Elimination of a case-decomposition based on a known constructor.

The rewrite rules in this paper are presented using the format depicted in
Fig. In all of these rewrite rules, the expression above the horizontal bar is the
expression that has to be matched before performing the rewrite rule, and the
expression below the horizontal bar is the result after applying the rewrite rule.

NAME OF THE REWRITE RULE

Matched Expression (Additional Preconditions)

Resulting Expresson (Additional Definitions)
(Updated Environment)

Fig. 10. Format for Rewrite Rules

Some rewrite rules have additional preconditions, and the rewrite is only applied
when these preconditions hold. Other rewrite rules have additional definitions
which they use in the resulting expressions. All rewrite rules always have access
to the global environment, I, which holds all top-level binders. There are some
rewrite rules that create new top-level binders, and therefore update the global
environment.

The rewrite rules have access to the following functions:

FVe Calculates the free variables; works for types and terms.

e |z = ul A capture-free substitution of a variable reference z, by
the expression or type u, in the expression e.

raf The expression belonging to a global binder f in the

environment [
NONREP 7 Determines if 7 is a non-representable type.

Before the TRS starts, all variables are made unique, and all variable references
are updated accordingly. Any new variables introduced by the rewrite rules will
be unique by construction. Having hygienic expressions prevents accidental free-
variable capture, and makes it easier to define meaning-preserving rewrite rules.

4.1 Rewrite rules

The first three rewrite rules, 7-REDUCTION, LETTYAPP, and CASETYAPP,
propagate type information downwards into an expression. By either removing
type-variables, propagating type-information to a location for specialisation, or
propagating type information to a primitive or constructor, these rewrite rules
aid in the elimination of polymorphism.

7-REDUCTION (Aa.e) 7
e [a:= 7]
LETTYAPP (letz=o=ec¢inu) 7
let 770 =¢in (uT)

CASETYAPP (case e of p—u) T

case e of p — (u 7)

The next three rewrite rules, LAMAPP, LETAPP, and CASEAPP, propagate
values, including non-representable ones, downwards into the expression. LAMAPP
is preferred over S-reduction to preserve sharing. CASEAPP creates a let-binding,
instead of propagating the applied expression towards all alternatives, to preserve
sharing. The next rewrite rule, LIFTNONREP, removes let-binders introduced by
LAMAPP and CASEAPP in case they bind non-representable values.

LAMAPP (Az:o.e)u

let {r =u}ine

LETAPP (let 77 =€ in u) eg

let 770 =¢in (u eg)

CASEAPP (case e of p— 1) ug

let {x = wuo} in (case e of p — (u x))

LiFTNONREP removes a let-binder, z; : 0; = e; (with a non-representable
type o;), and substitutes references to z; in the rest of the let-binding with an
(application of a) variable reference to a new, global, binder: f. The new global
binder, f, binds the original expression e; which is abstracted over the free local
(type) variables of e;; all references to x; are substituted with an (application of
a) variable reference to f. The LIFTNONREP rewrite rule uses the U, operator
to indicate that the global environment is only updated with the new binder,
f, if an a-equivalent expression is not already present. In case an a-equivalent
expression is present in the environment, the transformed expression will refer to
that existing global binder instead.

LiIFTNONREP
let {b1;...;0;—1;x; : 05 = €;;b41;...; b, } in u Preconditions: NONREP (o;)
(let {b1;...;0i—1;bi11;..;b} in u) [x:= f @ Z]
Definitions: (a,y) = FV(e;); z=7 — {z:}
New Environment: I' U, {(f, Aa.\Z.e;[x; :== f @ Z])}

The previous rewrite rules either propagated non-representable values down-
wards into the expression, or lifted those values out of the expression. The next

two sets of rewrite rules remove non-representable values by specialisation. The
TyYPESPEC and NONREPSPEC provide function argument specialisation. CASE-
LET, CASECASE, INLINENONREP, and CASECON, together achieve specialisation
by eliminating case-decompositions of known constructors (of non-representable
datatypes).

The TYPESPEC rewrite rule matches on a type application of a variable
reference to a global binder, f. The application is replaced by a reference to the
new global binder f’. The new binder f’ is defined in terms of the body of f
specialized on the type 7. NONREPSPEC behaves similarly to TYPESPEC for the
application on non-representable arguments. The difference is that the expression
of the new binder, f’, is abstracted over the free variables of the specialised
argument; the transformed expression also takes these free variables into account.

Both TYPESPEC and NONREPSPEC use the U, operator to indicate that
the global environment is only updated with a new binder if an a-equivalent
specialization is not already present. In case an a-equivalent specialisation is
present in the environment, the transformed expression will refer to that existing
global binder instead.

TYPESPEC (fe)r Preconditions: FV(7) = 0

f'e
New Environment: I' U, {(f/, \Z.(I'Qf) T 7)}

NONREPSPEC (f €) (u:0) Preconditions: NONREP(c) A FV(o) = ()
fley Definitions: 7 = FV(u)
New Environment: I' U, {(f/', \ZAG.(I'Qf) T u)}

The CASELET is required in specialising expressions that have a non-represen-
table datatype. Taking the let-binders out of the case-decomposition does not
affect the sharing behaviour so can be applied blindly. There is no free variable
capture in the alternatives because all variables are made unique before running
the TRS.

The CASECASE rewrite rule is only applied if the subject of a case-decomposi-
tion has a non-representable datatype. CASECASE is not applied blindly because
the alternatives in a case-decomposition are evaluated in parallel in the eventual
circuit. So the CASECASE rewrite rule generates a larger number of alternatives
than present in the matched expression. A larger number of alternatives results
in a larger circuit. Even though CASECASE makes the circuit larger, the intention
of CASECASE is to eventually expose the constructor of the non-representable
datatype to CASECON. CASECON eliminates the case-decomposition, and subse-
quently amortizes the increase in circuit size induced by CASECASE.

INLINENONREP is only applied if the subject of a case expression is of a
non-representable datatype, as inlining breaks down the component hierarchy. All

bound variables in the inlined expression are regenerated, and variable references
updated accordingly. This preserves the assumptions made by the other rewrite
rules that all variables are unique.

The CASECON rule comes in two variants:

— A case-decomposition with a constructor application as the subject, and a
matching constructor pattern.

— A case-decomposition with a constructor application as the subject, with no
matching constructor pattern.

CASECON only creates a let-binding if the constructor in the subject exactly
matches the constructor of an alternative. When the default pattern is matched,
the case-decomposition is simply replaced by the expression belonging to the
default alternative. Case-decompositions in Coregyw are exhaustive, either by
enumerating all the constructors, or by including the default pattern. This means
that when a constructor applications is the subject of a case-decomposition,
CAsSECON will always remove that case-decomposition.

CASELET case (let 7o =¢ine;) of p—u

let T =¢€ in (case e; of p— 1)

CASECASE Preconditions: NONREP (o)
case (case e of {p1 = u1; ... ; pp 2 un}:0)of p=u
case e of{p; — case u; of p—u; ... ; p, — case u, of p— u}
INLINENONREP Preconditions: NONREP (o)

case (fe):cof p—u

case ((I'Qf)e) of p—=u

CASECON case K; 7y 3 eof {.;K; BT 0 — u;;...}

(let Tzo=ein u;) [:= 75|

case K; v T3 € of {pjz; = w;- — uo}

Uo

5 Discussion

5.1 Completeness

The first set of rewrite rules (7-REDUCTION - LIFTNONREP) propagates or
removes non-representable values for those syntactical elements on which the spe-

cialisation rewrite rules do not match. The second set of rewrite rules (TYPESPEC
- CAsSeCON) remove the non-representable values through specialisation. All
rewrite rules together hence remove all non-representable values from the func-
tion hierarchy (given the restrictions in Section .

The restrictions on primitives are needed because those cannot be specialized
on their argument, nor can their definitions be inlined. The restriction that the
result type of main cannot be a non-representable datatype, ensures that any
expression calculating a non-representable datatype is either:

— the subject of a case-decomposition, which will be removed by the TRS,
— or, unreachable, and can be removed by dead-code elimination.

The CAaSH compiler applies the transformations in a specific order: a traversal
with TYPESPEC, followed by a traversal with NONREPSPEC, are applied after all
the other transformations have been applied exhaustively. Neither the correctness
of the individual transformations, nor the guarantee of a first-order normal
form, are dependent on this specific ordering of transformations. The argument-
specialisation rewrite rules are applied last, so that the fewest number of new
functions is introduced, and the original function hierarchy is preserved as much
as possible. Because TYPESPEC and NONREPSPEC do not create expressions
on which the other rewrite rules match, all rewrite rules have been applied
exhaustively after the traversals with TYPESPEC and NONREPSPEC.

5.2 Termination

All rewrite rules are exhaustively applied during a (repeated) bottom-up traversal
of an expression. INLINENONREP has to be applied using a bottom-up traversal,
as a top-down traversal could lead to non-termination when inlining a recur-
sive function. Using a bottom-up traversal for TYPESPEC and NONREPSPEC
introduces the fewest number of lambda-abstraction in the specialized expressions.

There are several (combinations of) rewrite rules that induce non-termination
of the unconstrained TRS. The CAaSH compiler has heuristics in place that
constrain the application of certain rewrite rules to ensure termination. When
one of the termination measures is triggered, non-representable values remain
present in the description. 7oy will not be able to transform the description to a
netlist when that happens.

It should be noted that these termination measures are only trigged on
functions that contain (mutually) recursive function calls, or have a (mutually)
recursive datatype as a result; functions which cannot be synthesized by 7oy
anyway. It can hence be said that the unconstrained TRS terminates for all
usefull programs.

InlineNonRep restriction The precondition of INLINENONREP already limits
the locations where inlining is applied, exhaustive application of this rewrite rule
can however still induce non-termination when dealing with recursive functions.
Additionally, although the TRS does not contain S-reduction as one of the rewrite

rules, LAMAPP, LIFTNONREP, INLINENONREP, and CASECON together behave
like S-reduction. This means that the typed version of (Az — z z) (A\z — = z):

data T = C (T — Int)
(M —casezof Ch—hz)(C (A —casezof Ch— huz))

induces non-termination. To prevent either situation from happening, a function
f can only be inlined once at all use sites within a function g, for every pair of f
and g.

NonRepSpec restriction Specialization performed by NONREPSPEC can in-
duce non-termination when a recursive function f has an argument that accumu-
lates non-representable values. To ensure termination, a NONREPSPEC is only
applied to a function m number of times, where m can be set by the user of the
CMaSH compiler.

6 Conclusions

The CAaSH compiler uses a synthesis scheme, Ty, that produces a description
that has specific normal from. One aspect of this normal form is that arguments
and results of expressions have types for which a fixed bit-encoding exists. For
T, non-representable values are those values for which no fixed bit-encoding can
be determined. The TRS presented in this paper removes all non-representable
values from a function hierarchy while preserving the behaviour, given only
minor restrictions on this function hierarchy. These restrictions are: that neither
the main function nor the primitives of CAaSH, can have arguments or results
of a non-representable type. These restrictions do however not limit the use
polymorphism or higher-order functionality in the rest of the description. We,
the authors of this paper, deem these restrictions reasonable for the application
domain of CAaSH: creating digital circuits.

Although the CAaSH compiler cannot synthesize recursive function, this
limitation is (slightly) amortized by a set of primitives that capture certain
recursive patterns. Such functions / primitives include the map and foldl functions
for fixed-length vectors. Using custom rules for these primitives, the CAaSH
compiler can correctly synthesize the residual higher-order functionality that
is left after normalization. A restriction that still holds for the use of these
primitives is that they should not have a non-representable result.

Future Work The complete T¢y synthesis scheme, the normal-form of the
Coregw language which 7o) produces, and the simplification TRS of the CAaSH
compiler will be described in a future paper. To reduce the number of traversals
needed to reach the first-order normal from, the strategy of the presented TRS
and its implementation within the CAaSH compiler are also subject to further
investigation. Aside from improving the TRS, we are also extending the CAaSH
compiler to support the synthesis of recursive functions that can be unrolled at
compile-time.

References

10.

11.

12.

13.

14.

15.

16.

. Baaij, C.P.R., Kooijman, M., Kuper, J., Boeijink, W.A., Gerards, M.E.T.: CA\aSH:

Structural Descriptions of Synchronous Hardware using Haskell. In: Proceedings
of the 13th Conference on Digital System Design, USA, IEEE Computer Society
(September 2010) 714-721

Gerards, M.E.T., Baaij, C.P.R., Kuper, J., Kooijman, M.: Higher-Order Abstraction
in Hardware Descriptions with CAaSH. In: Proceedings of the 14th Conference on
Digital System Design, USA, IEEE Computer Society (August 2011) 495-502
Mitchell, N., Runciman, C.: Losing Functions without Gaining Data. In: Proceedings
of the second Symposium on Haskell, ACM (September 2009) 13-24

Frankau, S.: Hardware Synthesis from a Stream-Processing Functional Language.
PhD thesis, University of Cambridge (July 2004)

Peyton Jones, S., ed.: Haskell 98 Language and Libraries. Volume 13 of Journal of
Functional Programming. (2003)

The GHC Team: The GHC Compiler, version 7.6.1. http://haskell.org/ghc
(January 2013)

Mycroft, A., Sharp, R.: A Statically Allocated Parallel Functional Language. In:
Proceedings of the 27th International Colloquium on Automata, Languages and
Programming, Springer-Verlag (2000) 37-48

. Nikhil, R.S.: Bluespec: A General-Purpose Approach to High-Level Synthesis Based

on Parallel Atomic Transactions. In Philippe Coussy and Adam Morawiec, ed.:
High-Level Synthesis - From Algorithm to Digital Circuit. Springer Netherlands
(2008) 129146

Hoe, J.C., Arvind: Hardware Synthesis from Term Rewriting Systems. In: Proceed-
ings of the tenth International Conference on VLSI. (1999) 595-619

Bjesse, P., Claessen, K., Sheeran, M., Singh, S.: Lava: Hardware Design in Haskell.
In: Proceedings of the third International Conference on Functional Programming
(ICFP), ACM (1998) 174184

Gill, A.: Type-Safe Observable Sharing in Haskell. In: Proceedings of the second
Haskell Symposium, ACM (Sep 2009) 117-128

Ghica, D.R.: Geometry of Synthesis: A structured approach to VLSI design. In:
Proceedings of the 34th annual Symposium on Principles of Programming Languages
(POPL), ACM (2007) 363-375

Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Languages.
In: Proceedings of the 25'th ACM National Conference, ACM Press (1972) 717 —
740

Pottier, F., Gauthier, N.: Polymorphic Typed Defunctionalization. In: Proceedings
of the 31st Symposium on Principles of Programming Languages (POPL), ACM
(2004) 89-98

Bell, J.M., Bellegarde, F., Hook, J.: Type-Driven Defunctionalization. In: Proceed-
ings of the second International Conference on Functional Programming (ICFP).
(1997) 25-37

Peyton Jones, S., Santos, A.: Compilation by Transformation in the Glasgow Haskell
Compiler. In: Functional Programming Workshops in Computing, Springer-Verlag
(1994) 184-204

http://haskell.org/ghc

	Using Rewriting to Synthesize Functional Languages to Digital Circuits

