
Chapter 1

Constructing Correct
Circuits: Verification of
Functional Aspects of
Hardware Specifications with
Dependent Types
Edwin Brady1 ,James McKinna1, Kevin Hammond1

Abstract: This p aper focuses on the important, but tricky, problem of determin-
ing provably correct program properties automatically from program source. We
describe a novel approach to constructing correct low-level p rograms. By using
modern, full-spectrum dependent types, we are able to give an explicit and check-
able link between the low-level program and its high-level meaning. Our approach
closely links programming and theorem proving in that a type correct program is a
constructive proof that the program meets its specification. It goes b eyond typical
model-checking approaches, that are commonly used to check formal properties
of low-level programs, b y building proofs over abstractions of properties. In this
way, we avoid the state-space explosion problem that bedevils model-checking
solutions. W e are also able to consider properties over p otentially infinite do-
mains and determine p roperties for potentially infinite p rograms. W e illustrate
our approach b y implementing a carry-ripple adder for binary numbers.

1School ofC omputerS cience,U niversityo fS tA ndrews,S tA ndrews, Scotland;
Phone: +44 1334-463253; Email: eb , j ame s ,kh@ dc s . st -and .ac .uk

1

1.1 INTRODUCTION

Type theories b ased on d ependent types [19, 8] have received significant interest
in the functional programming community, p romising enhanced mechanisms for
expressing correctness properties for functional programs. Where conventional
types express a p rogram’s meaning, dependent types allow types to b e predicated
on values, so expressing a more precise meaning. This allows the p rogrammer
both to write programs and to verify specifications within the same framework.
Simply because a program typechecks, we obtain a f ree theorem [27] that the
program conforms to its specification. In this p aper, we will show how dependent
types allow the relationship to b e maintained explicitly between high-level data
structures and their concrete representations.

To illustrate our approach we develop a simple program modelling a realis-
tic circuit: a b inary carry-ripple adder, in which the type of a b inary number
embeds the decoding function to natural numbers so that the type of b inary addi-
tion expresses that it must correspond t o addition on natural numbers. This pro-
gram is implemented using IVOR [5], an interactive theorem prover for a strongly-
normalising dependent-type theory2, which we call TT, embedded as a Haskell
library. The main contributions of this paper are:

• W e show how dependent types allow low-level constructions (such as b its, bi-
nary hnouwmbh eowrs adnepde andddeenrt tcyiprceusia tsl)l otow bl oew given types wruhcitciohn express athse biirt high
level meaning. Low level programs built from these constructions then reflect
their high level meaning in their type, giving a program which is correct by
construction [1], without the need for costly model-checking or similar appa-
ratus.

• W e give a realistic example of programming with dependent t ypes. The ad-
vantage o af using dependent types gforarm our example program (tyorp eisn.deT ehde any

program where we require strong guarantees) is that dependent types link the
proof and the program in a machine checkable manner. Proving correctness
by hand is an error p rone process; any error in a machine checkable proof will
be caught by the typechecker.

Although there has b een significant theoretical interest in dependent types, the
number of p ractical examples has b een highly limited to date ([17] is a notable
exception). By developing such an example in this p aper, we hope to demonstrate
a wider r ange of applicability for dependent types than has hitherto b een consid-
ered, and so to help convince any still-wavering functional programmers of the
potential merits of a dependently-typed approach.

Our approach is simlar to program extraction [23, 18], or proving a specifica-
tion in a theorem p rover such as COQ [9] or Isabelle [22]. However, our emphasis
is different in that we treat the program as the prior notion rather than the proof.
By giving a precise type the program is the p roof of the specification. We are thus
able to write clear, concise programs without type annotations (other than the

2i.e. one where evaluation of all programs terminates without error.

2
top level type of each function), and with occasional explicit p roof terms where
required.

We find this approach greatly assists the construction of correct functional
programs. It allows us to concentrate on the program itself and add details of
proofs where necessary for well-typedness. helping to achieve the hitherto elusive
general promise of ease-of-reasoning that was identified by John Hughes in his
seminal 1984 p aper “Why Functional Programming Matters” [15].

1.1.1 Programming with Dependent Types

In a dependently-typed language such as TT, we can p arameterise types over
values as well as other types. We say that TT is af ull-spectrum dependently typed
language, meaning that any value may appear as part of a type, and types may be
computed from any value. For example, we can define a “lists with length” (or
vector) type; to do this we first declare a type of natural numbers to represent such
lengths:

data N : ? where 0 : N | s : N→ N

This declaration is written using GADT [24] style syntax. It declares three
constants, N, 0 and s along with their types, where ? indicates the type of types.
Then we may make the following declaration of vectors; note that ε only targets
vectors of length zero, and x ::xs only targets vectors of length greater than zero:

data Vect : ?→ N → ? where
εe : ?V→ ecNt NA → →0

| (::) : A → (Vect A k) → (Vect A (s k))

The type of Vect : ? → N → ? indicates that it is p redicated on a type (the
elemThenet type) fanV de a tna: tu? ra→ l nNu m →ber? (t inhedi length). tW ihtei sn pthreed type dinc olunda e sty explicit
length information like this, it follows that a function over that type will express
the invariant p roperties of the length. For example, the type of the program vPlus,
which adds corresponding numbers in each vector, expresses the invariant that the
input vectors are the same length as the output. The program consists of a type
declaration (introduced b y l et) followed b y a pattern matching definition:

let vPlus : (Vect Nn) → (Vect Nn) → (Vect Nn)
vPluvs εs εe →n) ε→

vPlus (x::xs) (y::ys) →→ (x + y):: (vPlusxsys)

Unlike in a simply typed language, we do not need to give error handling cases
when the lengths of the vectors do not match; the typechecker verifies that these
cases are impossible.

A key advantage of being able to index types over values is that it allows us
to link representation with meaning. In the above example, the only part of the
list’s meaning we consider is its length — in the r est of this paper we will consider
more detailed examples.

3

1.1.2 Theorem Proving

The dependent type system of TT also allows us to express p roperties directly.
For example, the following heterogeneous definition of equality, due to McBride

[20], is built in to TT:

data (=) : (A : ?) → (B : ?) → A → B → ? where
refl : (a) : (AA) →: ? ()a→ →=(Ba)

Note that since the range of a function type may depend on previous argu-
ments, it is possible to bind names in the domain, as with refl’s domain a : A
here. This declaration states that two values in two different types may be equal,
but the only way to construct a proof, b y reflexivity, is if the two values really are
equal. For convenience, we use an infix notation for the = type constructor and
leave the p arameters A and B implicit. Since equality is a datatype j ust like N and
Vect, we can write programs b y pattern matching on instances of equality, such
as the following program which can b e viewed as a proof that s respects equality:

let resps : (n = m) → (sn = sm)
resps (srpef sl n :) n→= re mfl))(→s →n)(

The type of this function implicitly abstracts over all n and m. It is imple-
mented by pattern matching on the first argument, of type n = m. The only way to
construct such a value is from refl n : n= n, therefore to complete the definition
it is sufficient to construct a p roof of sn = sn.

We can use the equality type to perform equational reasoning on programs —

a term of type P x can be transformed to P y if we have a proof of x = y , using the
following function:

let repl : (x : A) → (y : A) → (x = y) → (P : A → ?) → P x → P y
replxy (refl (xx) Pp →→ p

Using this function (and an interactive theorem prover such as IVOR to assist
in applying it correctly), we can build explicit and machine checkable p roofs of
any desired property, e.g. commutativity and associativity of addition.

In this paper, we will implement a carry-ripple adder for binary numbers, us-
ing i nductive families to maintain a strong link between binary numbers and the
natural numbers they represent. W e will use these theorem proving techniques to
construct proofs that addition of binary numbers corresponds to addition of unary
natural numbers.

1.2 BINARY NUMBER REPRESENTATION

In this section we develop some primitive constructions which we will use to b uild
a correct by construction b inary adder. Correct by construction means that the fact
that the program typechecks is a guarantee that it conforms to the specification
given in the type. W e use the word “correct” in a very strong sense; the totality

4

of the t ype theory guarantees that a program will y ield a r esult conforming to the
specification in all cases.

1.2.1 Natural number arithmetic

We predicate binary numbers on their decoding as a N, which means that b inary
addition must correspond to natural number addition. Addition is defined induc-
tively, as an infix function +, as follows:

let (+) : N → N → N

0 ++ y →N y

(s k) ++ y →→ s (k+y)

Multiplication can be defined similarly. It is straightforward to show several
properties of these definitions in TT itself using I VOR’s r ewriting t actic (imple-
mented via the repl function in section 1.1.2), e.g. the following are functions
giving proofs of commutativity and associativity respectively:

commp lus : (x : N) → (y : N) → (x +y = y +x)
assocp lus : :((xx : :NN))→→ ((yy : :NN))→→ ((z : Ny) =→ y(+(xx x+)y) + z = x + (y + z))

By proving these properties, and showing that binary addition is equivalent to
natural number addition b y indexing binary numbers b y the corresponding N, we
get these p roperties for free on binary numbers.

We briefly illustrate theorem proving in dependent t ype theory b y showing a
proof term for commp lus above. Let us assume the following two lemmas (both
simple to prove):

plus0 : (n : N) → (n = n+ 0)
pluss : ((nn, m :)N→) → (n (=s (nm+ ++0 n)) = m + (sn))

The definition of p lus gives r ise to r eduction r ules which can be exploited by
the typechecker; it is defined by pattern matching on the first argument, so an
expression a + b can always be reduced if a is constructor headed. The above
lemmas give rewrite rules for the situation where b is in constructor form b y a
is not. Then commp lus can b e written as a recursive pattern matching function,
making use of the repl function for equational r easoning:

commp lus 0 m → plus0 m
commp lus s(s0 k) m →→ repl (0s (mm +k)) (m+ (sk)) (pluss mk)

((λs(am : N+. s)(k) (+m m+) =sk ka)))
(resps (commp luskm))

In the recursive case, repl is used to rewrite the type — it changes the type
from s (k + m) = m + (s k) to s (k + m) = s (m + k). Then we can apply the
function recursively (we think of this as applying the induction h ypothesis) to the
proof that equality respects successor given in section 1.1.2.

In practice, since the t ypechecker can construct several arguments to repl au-
tomatically, since it knows the t ypes we are r ewriting between, we will write

5
applications of repl in the following way, eliding all but the r ewriting lemma to
be applied and the value to b e returned:

commp lus 0 m → plus0 m
ccoommmm p plluuss s(s0 k) m →→ rpelupls (0 pmluss mk) (resps (commp luskm))

1.2.2 Bit representation

The simplest building b lock of a b inary number is the b it; in a traditional simply
typed programming language we might represent this as a boolean. However,
since we are interested in p reserving meaning throughout the whole computation,
we express in the type that bits on t heir own r epresent either zero or one:

data Bit : N→ ? where O : Bit0 | I : Bit 1

For readability we will use t raditional notation for numbers and arithmetic
operators, except in pattern matching definitions; e.g. we write I : Bit 1r ather
than I : Bit (s 0).

We will also need to add pairs of b its, which will result in a two bit number.
It i s convenient to r epresent bit pairs i n their own type, with the corresponding
decoding:

data BitPair : N → ? where
bitpBairit : Birit : :b N→→ B? it c → BitPair (2 ×b+ c)

1.2.3 A f ull adder

Various algorithms can b e used to adding n-bit b inary numbers in h ardware.
Whichever we choose, the required p rimitive operation is a full adder. A full
adder is a circuit which adds three b inary digits, producing two digits (a sum, and
the carry value). Three inputs, l, r and cin are combined into two outputs, s and

cout :

s = (lxor r) xor cin

cout = (land r) or (rand cin) or (cin and l)

It is well known that this is a correct model of a full adder. It is straightfor-
ward to check by hand b y constructing a truth table for the t hree inputs l, r and
cin. Using dependent types, we can let the machine check that we have a correct
implementation with respect to the desired b ehaviour. In this section we give two
implementations of the full adder: firstly, a simple definition by pattern match-
ing; and secondly, a definition implementing the above calculation through logic
gates.

Simple d efinition

We model this circuit with the following function, addBit, with the type guaran-
teeing that the resulting bit r epresentation decodes to the sum of the inputs. Our

6
definition is simply a lookup table enumerating all of the p ossibilities; typecheck-
ing of this is fully automatic since the types of the left and right hand side of

each equation are identical and any r eduction of + required at the type level is on
constructor h eaded arguments.

let addBit : Bit c → Bitx → Bity → BitPair (c +x +y)
addBaidtd dOB Oit tO: B→it cbi →tpaB irit Ox O→
aaddddBBiitt OO OO OI →→ bbiittppaaiirr OO IO
addBit O I O →→ bbiittppaaiirr OO II
aaddddBBiitt OO II OI →→ bbiittppaaiirr IO OOI
addBit I O O →→ bbiittppaaiirr IOO OI
aaddddBBiitt II OO OI →→ bbiittppaaiirr IO OOI
addBit I I O →→ bbiittppaaiirr II OO
aaddddBBiitt II II OI →→ bbiittppaaiirr II IO

Lower level o perations

Any definition of addBit which satisfies the above type is guaranteed by con-
struction to be a correct implementation. We can therefore model a full adder
by modelling the required hardware operations (and, or and x or), then combining
them to produce a full adder, i.e.:

andGate : Bitx → Bity → Bit (andxy)
nodrGGaattee : BBiittxx →→ BBiittyy →→ BBiitt ((oanrxdyx)y

xoorrGGaattee : BBiittxx →→ BBiittyy →→ BBiitt ((xororxxy)y)

Since bits are indexed over their interpretation as natural numbers, we need
to provide the meaning of each of these operations on natural numbers as well as
the operation itself. We treat zero as false, and non-zero as true. For example, to
model an and gate, we first define the corresponding function over N:

let and : N → N→ N
and (asnxd) (: sy N) →→N N1
aanndd s0x y →→ 01
and x 0 →→ 00

Then an and gate modelling the behaviour of Bits can b e implemented:

andGate I I → I
andGate O y →→ OI
aannddGGaattee x Oy →→ OO

The or and xor operations are implemented similarly. With these definitions,
we can implement addBit as a combination of logic gates, given the earlier defi-
nitions of the sum and carry outputs:

7

let addBit : Bit c → Bitx → Bity → BitPair (c +x+y)
addBaidtd dl rcin

→ letcout = orGate (orGate (andGate lr) (andGate rcin)) (andGate cin l)
s = xorGate (xorGate lr) cin

inbitpair cout s

We can b e sure t his is a correct implementation, because the typechecker veri-
fies that the meaning of the pair of output bits is correct with respect to the mean-
ing of the inputs. A small amount of theorem proving is required to help the type
checker; case analysis on each input c, x and y verifies that the types of the left
and right hand sides are always equal. We read the type as a specification that,
given b its with numeric meanings c, x and y , the output pair has numeric meaning
c +x +y.

1.2.4 Number representation

There are two possibilities for a binary representation b uilt on Bits — either left
or right-biased. A number is a list of bits; the choice determines whether a new bit
value b is added at the most significant end (changing a value n to 2width ×b + n),
or at the least significant end (changing a value n to 2 ×n+ b). As TT types, tnh)e,
corho aitct ehse are:

1. L eft-biased; adding most significant bit:

data Number : N → N → ? where
none : :N Num→ bN er 0→ →0

| bit : Bit b → Number width val →

N →um Nubmer (1+width) l(→ 2width ×b+val)

2. R ight-biased; adding least significant b it:

data NumberR : N→ N→ ? where
NnoumneRbe : :NN um→ be NrR→ →0 ?0

| bitR : NumberR width val → Bit b →

bNe eurmRbw eirdRt h(1v a+l →widB thi)t b(2→ →× val + b)

Which we choose has important consequences. Not only does it affect how
the b inary adder is written (and which algorithms are simplest to implement), but
also how we show the correspondence with addition on N.

Number is indexed over its width (i.e. the number of bits) as well as its de-
coding. As well as helping to compute the decoding, this allows u s to specify the
effect an operation has on a number’s width — e.g. addition of two n-bit num-
bers gives an n-bit number with carry, multiplication of two n-bit numbers gives
a 2 ×n-bit number.

8

1.2.5 Number equivalence

The r epresentation we choose, Number or NumberR has a significant effect on
how we show equivalance between b inary and unary functions. Each models a
list of bits, but we may find some functions easier to construct in one setting than
another. In fact, we can show that the two representations are equivalent and hence
interchangeable using the fact that we have indexed the b inary representation over
its decoding as a N. It suffices to implement the following functions:

let leftToRight : Number w val → NumberR w val
let lreigfthTtoTRoLigehftt : NNuummbbeerrRw vwavla→ l →N uNmubmebrRer w vvaall

We do not need to show that the composition ofthese two functions is the iden-
tity function. The property in which we are interested is that t ranslating between
representations p reserves the decoding. Since the type expresses that decoding
is preserved, we know that composition of leftToRight and rightToLeft gives a

binary number with the same meaning as the original.
To illustrate this, we will show how to implement leftToRight. The simplest

method in general is to provide functions to construct a NumberR with the same
indices as the constructors for Number:

nonerL : NumberR 0 0
bitrL : Bit bv → NumberR wval → NumberR (1+ w) (2w ×bv + val)

Implementing nonerL is straightforward, u sing the constructor noneR. For
bitrL, we must show how to add a most significant bit to a right-biased number,
where the bitR constructor adds the least significant bit. W e might expect the fol-
lowing definition to work, simply pushing the bit to b e added, b, through recursive
calls:

let bitrL : Bit bv → NumberR w val → NumberR (1+ w) (2w ×bv + val)
bitrLb ibt Lno: neB Rit →→ NbuitRm bnoernReRw bv
bitrL b (bitR nbl) →→ bbiittRR n(bonitreLR bb n) bl

However, as it stands, this does not typecheck. W e need to do a little extra
manipulation of the types, since the type of the bitR constructor does not reflect
the fact that the new bit is added as the high b it. The expected return type of the
recursive case is:

NumberR (2 + w) (21+w ×bvl + (2 ×nv +bv))

nv is the decoding of n, and bvl the decoding of bl. However, the type we get
from the construction with bitR is:

NumberR (2 + w) (2 ×(2w ×bvl + nv) + bv)

It is easy to see, by simple algebraic manipulation, that the two expressions
are equivalent. In order to convince the typechecker, however, we need an extra
lemma which converts the return t ype we have into the r eturn type we need for
the value we wish to construct:

bitrLl emma : (21+w ×bvl + (2 ×nv + bv)) = (2 ×(2w ×bvl + nv) + bv)

9

This lemma can be applied using repl; the correct definition of bitrL is:

let bitrL : Bit bv → NumberR w val → NumberR (1+ w) (2w ×bv + val)

bitrLb ibt Lno: neB Rit →→ NbuitRm bnoernReRw bv
bitrL b (bitR nbl) →→ repl bnoitnrLeRl ebmma (bitR (bitrL b n) bl)

Implementing bitrLl emma is also through equational reasoning with repl.
IVOR has a library of useful theorems about addition and multiplication to assist
with this; such a function could in many cases be constructed via the Omega
decision procedure [25]. Having implemented nonerL and bitrL, the definition
of leftToRight is a straightforward application of these functions.

let leftToRight : Numberwval → NumberR wval
leftTloeRftiTgohRt none →m bneornwervLal
leftToRight (bit bn) →→ nbiotnrLerLbn

The implementation of rightToLeft proceeds similarly, pushing the bit to be
added through recursive calls and rewriting types through equational reasoning
where required. Rewriting types in this way is a common pattern when imple-
menting functions indexed b y arithmetic operations, and it is therefore vital to
have the support of a theorem proving environment in which the types can direct
the implementation.

Having implemented these definitions, we are free to choose either represen-
tation for any function, and in practice we are likely to choose the representation
which yields the more straightforward proofs.

For our adder, we choose the left-biased representation. Although it looks
slightly more complex, in that the value depends on the number’s width as well
as the bit value, its main practical advantage is that it leads to a slightly simpler
definition of full binary addition, with correspondingly simpler algebraic manip-
ulations in order to p rove correspondence with N addition.

1.2.6 Carry

The final p art of the representation pairs a number with a carry bit. In order to deal
with overflow, our addition function over n-bit numbers will give an n-bit number
and a carry b it. This also means that n-bit add with carry can be implemented
recursively in terms of n −1-bit add with carry, with easy access to the carry bit
rreescuurltsiinvge lfyro inm ttehrem rsec oufrsn i−ve1 c-ablilt.

data NumCarry : N → N→ ? where
numcarry : rByit c N→→ →Nu Nm→ be?r width val →

NumCarrywidth (v2awlid →th ×c+val)

1.3 A CARRY RIPPLE A DDER

We can now define an arbitrary width binary addition with carry function, addNumber.
We can choose between several implementations of this, e.g. carry-ripple, or carry

10
lookahead. However, because the type of the function precisely expresses its
meaning (namely, that it implements addition on b inary numbers corresponding
to natural number addition), we can be sure that any type-correct implementation
is equivalent to any other. The type of addNumber is as follows:

let addNumber : Numberwidthx → Number widthy → Bitc →

NNuummCbaerrrwyi dwtihdtxh→ →(x +y m+b ce)r

1.3.1 First attempt

We will define a carry r ipple adder. This is a simple algorithm — to add two n-
bit numbers, first add the least significant (n − 1-bit) numbers, then add the most
significant sb,it fsi rwstiat hd dtht eh carry resulting afrnotm(n nt−he1 1re-bciutr)s niuvme abdedrist,iot hne. nWa ed dw othueldm liokset
to define addNumber as follows:

addNumber none none carry → numcarry c none
addNumber (bit bxnx) (bit byny) carry

→ let numcarry carry0 rec = addNumbernxny carry
lleett nbiutmpacira carry1 s = addBitbx by carry0

innumcarry carry1 (bit s rec)

Although this looks like a correct implementation of add with carry, unfortunately
it does not typecheck as written. The problem is similar to that encountered in our
definition of leftToRight in Section 1.2.5, but more complex. Let us examine the
types of the left- and right-1hand sides of the recursive case. We h ave:

bx : Bitbxv
by : Bit byv
nx : Numberwnxv
ny : Number w nyv
carry : Bit c

bit bxnx : Number (1+ w) (2w ×bxv + nxv)
bit byny : Number (1+ w) (2w ××byv ++ nyv)

Here, bxv, byv, nxv and nyv are the decodings of the bits and numbers, and w is
the width of the numbers in the recursive call. The type of the left hand side is:

addNumber (bit bxnx) (bit byny) carry
: NumCarry (1+w) ((2w ×bxv + nxv) + (2w ×byv + nyv) + c)

Typechecking the r ight hand side proceeds as follows. We first check the type of
the recursive call:

addNumber nxny carry : Nu mCarry w (nxv + nyv + c)

From the recursive call, we obtain the sum of the lower bits and a carry flag by
pattern matching the r esult against numcarrycarry0 rec. Assuming that carry0 has
type Bit c0 and rec has type Number wnrec, we get:

numcarry carry0 rec : NumCarry w (2w ×c0 + nrec)

11
The decodings c0 and rec are introduced by the pattern matching against numcarry,
and we can infer that (2w ×c0 + nrec) = (nxv+nyv+ c). Given t his, we can check
the type of adding the top × bcits:

addBitbxbycarry0 : BitPair (bxv + byv + c0)
bitpair carry1 s : BitPair (2 ×ns + c1)

Again, ns and c1 are introduced by pattern matching and we can infer that (2 ×
ns + c1) = (bxv +a byv n+t rco0d).u Finally, tahttee r rnes mulat cofh itnhge f anundctw ieon c aisn ci hnefcekre thd as f2o×l-
lows:

numcarry carry1 (bits rec) : NumCarry (1+ w) (21+w ×c1+ (2w ×ns + nrec))

For typechecking to succeed, we need to know t hat (2w ×c1 + (2w ×ns + nrec))
and ((2w ×bxv + nxv) + (2w ×byv + nyv) + c) are conv×ertcible, in o×rdnesr + ton unify
the type o×f tbhxev l+eftn hxav)nd+ s(i2de ×wibtyhv vth+e type +ofc)tha er r ight hvearntdib lsei,dei n. Unfortunately,
we cannot expect this to h appen automatically — it requires the t ypechecker t o do
some automatic equational reasoning given the equalities inferred b y the pattern
matching let b indings.

1.3.2 A correct carry ripple adder

Although our definition appears correct, the t ype of the second clause does not
quite work automatically. We need to provide an explanation, in the form of a
checkable proofusing equational reasoning with repl as described in Section 1.1.2,
that the values in the left- and r ight-hand sides of the pattern clause can b e con-
verted to each other. W e write a h elper function which makes the dependencies
explicit in its type. We will write addNumber as follows:

addNumber none none carry → numcarry c none
addNumber (bit bx nx) (bit by ny) carry

→ bitCase carry bx by n x ny (addNumber nx ny carry)

The purpose of bitCase is to convert the type we want to give for the r ight h and
side to the type required by the typechecker. In practice, this is where we do the
theorem proving required to show the correctness of b inary addition.

let bitCase : Bit c → Bit bxv → Bit byv →

NB um b→erB w nxv →→ N Buimtb byevr w nyv →

NN uummbCaerrrw y w (vnx →v N+ nyv +er rcw) → ny

NNuummCCaarrrryy (w1 +nx xwv)+ +((n2ywv ×+ bcx)v → →+ nxv) + (2w ×byv + nyv) + c)

The advantage of writing the definition in this way, passing the result of the re-
cursive call to addNumber in to bitCase, is that the dependencies between the
decodings of the numbers are maintained. To write bitCase, we follow a method
similar to that for writing bitlR in Section 1.2.5; i.e. separate the construction of
the data and the rewriting of the type through equational r easoning. Construct-
ing the data involves adding the most significant b its, and appending the r esulting
bit p air to the result of the r ecursive call. W e implement this with the following
helper:

12
let bitCase0 : BitPairbv → Number wval →

NBuitmPaCiarrbrvy →(w N+u 1m) (b2ewr w× vbavl +→ val)
bitCase0 (bitpair b c) num → replbitC×asbev0p+ (vnaul)mcarry b (bit cnum))

We use the bitCase0p lemma to rewrite the type so that the numcarry constructor
can be applied. bitCase0p has the following type, as is easy to show b y equational

reasoning:

bitCase0p : (2w ×(val + 2 ×cv) + bv) = (2w+1 ×cv + (2w ×val+ bv))

Finally, we observe that bitCase is easier to write if we rewrite the type so that
the argument and return type include the common subterms nxv + nyv +c, since
we can then treat this subterm as atomic. W e also lift the common subterm 2w, to
give:

let bitCase2 : Bit c → Bit bxv → Bit byv →

BNuitmc→b er B w nxv →→ N Buimtb byevr w nyv →

NN uummbCaerrrw y w (vn→ xv +N nyv +er rcw) n →y

NN uummCCaarrrryy (w w1 (+n xwv)+ +(2nwy v×+ +(bc)xv→ →+ byv) + (nxv + nyv +c))

The types are now in a form where the helper bitCase0 can b e applied directly:

bitCase2 carrybxbynxny (numcarry carry0 val)
→ (bitCase0 (addBitbxby carry0) val)

bitCase itself is written b y rewriting the type to b e in a form usable by bitCase2,
using a suitable lemma bitCaseRewrite:

bitCase carrybxbynxny val
→ replbitCaseRewrite(bitCase2 carry bx by nx ny)

The bitCaseRewrite lemma simply expresses the equality between the indices in
the types of bitCase and bitCase2 and allows conversion between the two:

bitCaseRewrite : ((2w ×bxv + nxv) + (2w ×byv + nyv) + c) =
(2×w b×x v(+bxvn x+v b)+yv)(2+ (×nxbvy v++ nyv v+) c+))c

This function has required us to b reak down the construction of the number into
its component p arts: adding the upper b its; making a recursive call; and gluing
the results together. Each step has required some fairly simple equational reason-
ing to convert the decoding of the numbers and bits into the required type; the
required lemmas can be implemented by a series of rewrites using repl. The full
development, as an IVOR script constructing a TT program, is available online3.

Since TT is a language of total functions, we can b e confident that the above
definition will always terminate. This is an important consideration, since p art
of guaranteeing the correctness of a function is the guarantee t hat it will yield a
result for all type-correct inputs, notj ust a subset.

Although extra work is needed at the type level to show that the decodings

of the binary numbers are consistent in the implementation of bitCase, the com-
putational content is the same as our first attempt at defining addNumber. The

3http://www.dcs.st-and.ac.uk/%7Eeb/CarryRipple

13
decoding and length data appear only at the type level, so need not be stored at
run-time [7]. As a result, any function such as repl which merely manipulates the
indices of a t ype can be replaced b y the identity function at r un-time, as shown
in [4]. W hat remains is the computational content, i.e. j ust the bit manipulation.

1.3.3 Properties of addNumber

Since b inary numbers are indexed over the natural numbers, and addNumber
is correspondingly indexed over natural number addition, we should expect it to
have corresponding properties. However, we do not have to p rove these properties
separately, but r ather make use of properties we h ave already proved for N. To do
this, we make use of the following lemma:

let numCarryUnique : (x : NumCarry wval) →

((yx : NNuummCCaarrrryy wwvvaall)) →→ (x = y)

This lemma states that any two representations which decode to the same N
are equal, and is implemented b y structural decomposition of x and y — it is clear,
looking at the indices of each constructor, that at each stage only one representa-
tion is p ossible.

Then the proof of commutativity of addNumber (setting the carry bit to zero
for simplicity) is written as follows, using a lemma to expose the natural number
addition in the t ype and rewriting it with commp lus:

let commAddNumberAux : (x : NumCarry w (lv + rv) + 0) →

((xy =: N y u)mCarryw(rv+lv)+0)→
commAddNumberAuxxy
→ repl (commp lus lv rv) (numCarryUniquexy)

This function rewrites the type of x of using commp lus to swap lv and rv,
then uses numCarryUnique t o show that the numbers x and y must be equal
because their decodings are equal. It is possible to apply numCarryUnique only
after rewriting the type of x with commp lus so that it is the same as the type of
y. W e finish the p roof of commutativity b y applying the above lemma:

let commAddNumber : (l : Number w lv) → (r : Number w rv) →

((lad :dN Nuummbbeerrwl r O) →= (a rdd :NN uummbbeerr rrwl Orv))
commAddNumberl r → commAddNumberAux (addNumber lrO)

((aaddddNNuummbbeerr lrrl OO))

We h ave shown that addNumber is commutative without h aving to look at
its definition at all — j ust using the p roperties of the function which gives its
meaning. Indeed, any implementation of addNumber with the same type can be
substituted into this p roof. The main difficulty is rewriting the types to a form to
which the natural number proofs can be applied.

14

1.3.4 Incremental development

Writing a program such as addNumber requires us to be aware of the required
type of each subterm, and the type of each operation we wish to apply. As we can
see b y examining the implemention of bitCase and its helper operations, such
manipulation is difficult to manage b y h and, even for relatively simple proper-
ties such as the correctness of addNumber. We therefore consider it essential
that a p ractical dependently typed language allows the p rogrammer to develop a
program interactively (as with EPIGRAM [21] or theorem proving systems such as
COQ [9]), rather than the traditional approach of submitting a monolithic program
to a compiler.

1.4 RELATED WORK

The most closely related approach of which we are aware is the reFLect [11] lan-
guage for verifying hardware circuit designs. Like reFLect, we are able to verify
programs in the language TT itself. Unlike reFLect, however, we do not imple-

ment a theorem prover in TT, but r ather use an interactive development system
(IVOR) to construct well typed TT p rograms. The soundness of the system as a
whole then relies solely on the soundness of the TT typechecker. This is a key
advantage of our approach, since we rely only on the correctness of a checker for
a standard and well understood t ype theory (similar to COQ [9] or EPIGRAM’s
ETT [8]) r ather than external software.

Herrmann’s approach [14] is also related to our own in that he constructs
high level combinators to generate very specific low level code. He u ses meta-
programming (in Template Haskell) to generate type and size correct circuit de-
signs, where size errors are caught b y the Haskell type checker. W e h ave p re-
viously studied correct hardware implementation in HW-Hume [12], which uses
high level functional notation to implement low level concepts, but requires ex-
ternal tools (e.g. a model checker) to p rove correctness p roperties. A closely
related approach, similarly separating high level description from the low level
code, is to use multi-stage programming [10]. A multi-stage language allows
specialisation of high level generic abstractions to specific instances, preserving
type information between stages. A similar approach has b een applied to gener-
ate high-performace parallel programs [13]. W e are extending our approach with
dependently typed multi-stage p rogramming [6] — since the types encode cor-
rectness properties, specialisation of a dependently typed program preserves these
correctness properties, and we hope to adapt this method to generate hardware de-
scriptions, e.g. via Lava [3], a Haskell-embedded domain specific language for
describing circuits.

1.5 CONCLUSION

We have described an approach to constructing correct software with dependent
types, and given a specific application area which can benefit from this approach,

15
namely modelling of hardware circuits. The example we have presented — a
binary adder — is r elatively straightforward, but illustrates the important concepts
behind our approach; namely that each data structure is explicitly linked with
its h igh level meaning (in the case of binary numbers, their decoding as a N).
Writing the program proceeds largely as normal, with the additional r equirement

that we insert rewriting lemmas to preserve well-typedness, and with the benefit
that any properties ofthe original, simpler definition are p roperties ofthe low level
definition for free, such as our commutativity p roof commAddNumber. The
need to insert r ewriting lemmas t o show that our definition respects the original
natural number implementation is the main cost of our approach. W e believe t his
to b e a small price to pay for guaranteed correctness. A part of our approach
which we therefore consider vital to its practicality is the use of type-directed
program development — when writing bitCase, for example, it is convenient to
be able to see the required type for the r ight hand side of a pattern clause and do
the equational reasoning interactively.

An alternative approach may b e to use Haskell with Generalised Algebraic
Data Types [24] (GADTs). GADTs allow limited properties of data t ypes to b e
expressed b y r eflecting values at the type level. However, the k ind of equational
reasoning we need to implement bitCase is likely to b e very difficult. Other
weaker dependent type systems, such as sized t ypes [16] or DML [28] allow types
to b e parametrised over numbers, but require an external constraint solver which
does not allow the user directed equational r easoning required for bitCase.

Circuits are usually designed with respect to three views; behaviour, structure
and geometry. In a circuit description language such as VHDL or Haskell embed-
ded domain specific language for circuit design such as Lava [3], it is possible to
describe these views. Here, we h ave described the behavioural view and shown
it to be correct through the type system. We hope to apply multi-stage program-
ming with dependent types [26, 6] to transform programs between these views and
generate hardware descriptions from high level programs such as addNumber.

The method could b e used to verify more complex operations on a CPU, for
example multiplication, or in conjunction with program generation techniques
and a hardware description language such as L ava or W ired [2] to develop correct
by construction F PGA configurations In future, we p lan to explore multi-stage
programming techniques [10, 13, 6], possibly in combination with L ava, W ired
or HW-Hume, to generate correct code.

ACKNOWLEDGEMENTS

We would like to thank Christoph Herrmann for his comments on an earlier draft,

and the anonymous reviewers for their helpful suggestions. This work is gener-
ously supported by EPSRC grant EP/C001346/1, and b y E U F ramework VIGrant

IST-2004-510255, funded under the FET-Open programme.

16

REFERENCES

[1] P. A mey. Correctness b y Construction: Better can also be Cheaper. CrossTalk: the
Journal of Defense Software E ngineering, p ages 24–28, March 2002.

[2] E. Axelsson and K. Claessen M. Sheeran. W ired: W ire-aware circuit design. In
CHARME 2005, 2005.

[3] P. Bjesse, K. Claessen, M. Sheeran, and S. Singh. Lava: Hardware design in Haskell.
In P roc. I CFP ’98, 1998.

[4] Edwin Brady. P ractical I mplementation of a D ependently Typed Functional Pro-
gramming L anguage. PhD thesis, University of Durham, 2005.

[5] E dwin Brady. Ivor, a proof engine. In P roc. Implementation of Functional L anguages
(IFL 2006), volume 4 449 of L NCS. Springer, 2007. To appear.

[6] E dwin Brady and Kevin Hammond. A Verified Staged Interpreter is a Verified
Compiler. In P roc. ACM Conf. on Generative P rog. and Component Engineering
(GPCE ’06), P ortland, Oregon, 2006.

[7] E dwin Brady, Conor McBride, and J ames McKinna. Inductive families need not
store their indices. In Stefano Berardi, Mario Coppo, and Ferruccio Damiani, editors,
Typesf or P roofs and Programs 2003, volume 3085, p ages 115–129. Springer, 2004.

[8] J ames Chapman, Thorsten Altenkirch, and Conor McBride. Epigram reloaded: a
standalone typechecker for ETT. In TFP, 2005.

[9] Coq Development Team. The Coq p roof assistant — reference manual.
http : / / coq .inria . fr/, 2001.

[10] J . Eckhardt, R. Kaibachev, E. Pa sˇalı ´c, K. Swadi, and W . Taha. Implicitly Heteroge-
neous Multi-Stage Programming. In Proc. 2005 Conf. on Generative Programming
and Component E ngineering (GPCE 2005), Springer-Verlag LNCS 3676, 2005.

[11] J . Grundy, T. Melham, and J . O’Leary. A Reflective F unctional Language for Hard-
ware Design and Theorem Proving. J. Functional P rogramming, 16(2): 157–196,

2006.

[12] K. Hammond, G. Grov, G. J. Michaelson, and A. Ireland. Low-Level Programming
in Hume: an Exploration of the HW-Hume Level. Submitted to IFL ’06, 2006.

[13] Christoph A. Herrmann. Generating message-passing programs from abstract speci-
fications by partial evaluation. Parallel P rocessing Letters, 15(3):305–320, 2005.

[14] Christoph A . Herrmann. Type-sensitive size parametrization of circuit designs by
metaprogramming. T echnical Report MIP-0601, Universita ¨t Passau, February 2006.

[15] J ohn Hughes. Why functional programming matters. Technical Report 16, Program-
ming Methodology Group, Chalmers University of Technology, November 1984.

[16] J ohn Hughes, L ars Pareto, and Amr Sabry. Proving the correctness of reactive sys-
tems using sized types. In P roceedings of the 23rd ACM SIGPLAN-SIGACT sympo-
sium on P rinciples of programmin, pages 410–423, 1996.

[17] Xavier Leroy. Formal certification of a compiler back-end. In P rinciples of Program-
ming L anguages 2 006, pages 42–54. ACM Press, 2006.

[18] Pierre Letouzey. A new extraction for Coq. In Herman Geuvers and Freek Wiedijk,
editors, Typesf orp roofs andp rograms, LNCS. Springer, 2002.

17
[19] Zhaohui Luo. Computation and R easoning – A Type Theory for Computer Science.

International Series of M onographs on Computer Science. OUP, 1994.

[20] Conor McBride. D ependently Typed F unctional Programs and their proofs. PhD
thesis, University of Edinburgh, May 2000.

[21] Conor McBride. Epigram: Practical p rogramming with dependent types. Lecture
Notes, International Summer School on Advanced F unctional Programming, 2004.

[22] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. I sabelle/HOL - A p roof
assistantfor higher order logic, volume 2283 ofLNCS. Springer-Verlag, March 2002.

[23] Christine Paulin-Mohring. E xtraction de p rogrammes dans le Calcul des Construc-
tions. PhD thesis, Paris 7, 1989.

[24] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey Wash-
burn. Simple Unification-Based Type Inference for GADTs. In P roc. I CFP ’06:
2006 International Conf. on Functional Programmin g, 2006.

[25] William Pugh. The Omega Test: a fast and p ractical integer programming algorithm
for dependence analysis. Communication of the A CM, p ages 102–1 14, 1992.

[26] W . Taha. A Gentle Introduction to Multi-stage Programming, 2003. Available from
http://www.cs.rice.edu/ taha/publications/journal/dspg04a.pdf.

[27] P. Wadler. Theorems for free! In P roc. 4th I nt. Conf. on Funct. P rog. L anguages and
Computer A rch., FPCA ’89, London, UK, 11–13 Sept 1989, p ages 347–359. ACM
Press, New York, 1989.

[28] Hongwei Xi. D ependent Types in Practical Programming. PhD thesis, Department
of Mathematical Sciences, Carnegie Mellon University, December 1998.

18

