
Correct-by-Construction Pretty-Printing

Nils Anders Danielsson

University of Gothenburg & Chalmers University of Technology
nad@cse.gu.se

Abstract

A new approach to correct-by-construction pretty-printing is pre-
sented. The b asic methodology is the one of classical (not neces-
sarily correct) pretty-printing: u sers convert values to pretty-printer
documents, and a general r endering algorithm turns documents into
strings. The main novelty is that dependent types are used to ensure
that, for each value, the constructed document is correct with re-
spect to the value and a given grammar. Other parts of the develop-
ment use well-established technology: the pretty-printer document
interface is basically that of W adler (2003), but with more precise
types, and a single additional primitive combinator; and Wadler’s
rendering algorithm is used.

It is proved that if a given value is p retty-printed, and the
resulting string parsed (with respect to the same, unambiguous
grammar), then the original value is obtained. No guarantees are
made about “prettiness”.

Categories and Subject D escriptors D. 1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; F.3.1 [Logics
andM eanings of Programs]: Specifying and Verifying and Reason-
ing about Programs—Mechanical verification; F.4.2 [Mathemati-
cal L ogic and F ormal L anguages]: Grammars and Other Rewriting
Systems

Keywords dependent types; p retty-printing

1. Introduction
Pretty-printing is concerned with formatting text in a “pretty” way,

given a bounded line width. For instance, given a line width of at

least 23 the expression 1 + 2 ∗ (3 + 4) + 5 ∗ 6 may be formatted

alesa fsotll 2o3wt hse:

1 + 2 * (3 + 4) + 5 * 6

However, if the line width is smaller (but at least 13), then the

following layout may be used instead:

1 +
2 * (3 + 4) +
5 * 6

Other options are possible.

There are several programs/combinator libraries that can be

used to construct pretty-printers, for instance those due to Oppen

Permission to m ake digital or hard copies of all or p art of this work for personal o r
classroom use is granted without fee provided that c opies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. A bstracting with credit is permitted. To copy otherwise, o r
republish, to post on servers or to redistribute to lists, requires p rior specific p ermission
and/or a fee. Request permissions from permissions@acm.org.

DTP ’13, September 24, 2013, Boston, MA, USA.
Copyright is h eld by the owner/author(s). Publication r ights licensed to ACM.
ACM 978-1-4503-2384-0/13/09. . .$15.00.
http://dx.doi.org/10. 1145/2502409.2502410

1

(1980), Hughes (1995), Wadler (2003), and Swierstra and Chitil

(2009). Libraries based on Hughes’ approach tend to b e set up more
or less in the following way: There is a type Doc of p retty-printer
documents, and a renderer render : Doc → String; the renderer
odfotcenum mtaeknetss ,a adnddita ior neanl daerrgeurmr eenndtse, rfo: r i Dnostcanc→ e th Set liinnge; wt hidethr e. n Tdheerreer
are also a number of combinators for constructing documents. A
library u ser who wants to p retty-print values of type A can write a
function of type A → Doc, using the combinators, and compose
tfhunisc tfuionnctio ofnt ywpeithA Are→ nderD tooc ,geu ts ian fgutn hcteioc no mofb itynapeto r As → an Sc torimngp.o

sO ffutnenct ao np rwetitthy- prernindteerr ios gcoetna stf ruucntcetdio nto ogfett hypeer Aw it h→ →a parser. In
this case one is typically interested in at least one round-tripping
property: the r esult of p retty-printing some value x , and then pars-
ing the resulting string, should be x . Rendel and Ostermann (2010)
argue that separate definitions of parsers and pretty-printers lead
to redundancy and perhaps inconsistencies, and present combina-
tors that allow the simultaneous definition of parsers and printers.
Matsuda and W ang (2013) attack the problem in a somewhat differ-
ent way. They show how, starting from an extended pretty-printer,
one can use program inversion techniques to automatically derive a
parser that satisfies the round-tripping property (assuming that the
underlying grammar is unambiguous). A typical p retty-printer does
not contain enough information to construct a parser, so they intro-
duce a biased choice operator: p <+ q means “pretty-print accord-
idnugc etoa p , b ausetd d bc eh roeiacdeyo ptoe parse pal< so+ acq c moredainngs “tpor qe”tt.y -Tphriins tm aackcoers dit-
possible to encode many grammars in their extended pretty-printing
language.

In this p aper Ipropose a different approach to correct-by-
construction pretty-printing. Ido not (always) want to conflate
grammars and pretty-printers, because there are situations in which
Ido not want to make grammars harder to construct or understand.
Furthermore, as pointed out by Boulton (1996), one may want to
support several different pretty-printers corresponding to a given
grammar.

Instead of u sing h ybrid p retty-printers/grammars Ifollow the
approach due to Hughes, but with a twist. The library user is not
only asked to convert values to documents, but is also asked to
define a grammar. Types are used to ensure that, for each value,
the generated document matches the grammar and the value.

Section 2 presents a grammar data type: Grammar A stands for
grammars with semantic actions, where the results have type A . In
the p aper Ido not focus on parsing, but give a formal semantics for
grammars: x ∈ g · s means that the string s and corresponding
grerasumltm m xa arsre: xgen∈ erag te· d sb ym tehaen grammar g . rTinheg tys p ane dfa mcoirlyre sp∈on·d in isg
defined as a data type, and values of type x ∈ g · s can ∈b e s·een
dase parse atsre easd .

Pretty-printers for the grammar g : Grammar A are defined as
functions from values to corresponding pretty-printer documents:

(x : A) → Doc g x

Here the simple type A → Doc used b y Hughes has been refined
Htoe rae d tehepes nimdepnlet t tyyppee. ADo→ c, dD eofinceu ds eind bSye cHtiuognh e3s, hisa sbb aeseend roenfi ntehed
document type used by Wadler (2003), but is indexed b y a grammar

and a value. Note that, u nlike a p arse tree of type x ∈ g · s,
aa ddoc aumv aelunet .oNf otytepet hDato,cu g l xi ies naop t rinsedext reede obfy tay psteri nxg:∈ ∈a ggi·v es n,
document can (potentially) be turned into a string in many different
ways.

When a u ser has defined a grammar g : Grammar A and a
corresponding p retty-printer p retty : (x : A) → Doc g x the re-
mcoarirnesinpgo j nodbin igs t parkeetnty -cparrein otefr rbp yr eat rtyen :de(xrer::

render : Doc g x → String

The renderer turns documents into strings, and may, depending
on its inputs, h ave some leeway in deciding how to handle line
breaks and indentation. Note that, unlike the type of pretty, the type
of render does not ensure that render is correct by construction.
Renderers are instead required to satisfy the f ollowing property,
which can be proved once per renderer:

(d : Doc g x) → x ∈ g · render d

If we instantiate d with p retty x , then we get

(x : A) → x ∈ g · render (pretty x),

which for unambiguous grammars g implies the round-tripping
property: the result of parsing render (pretty x) is x . The p aper
does not contain any new rendering algorithm; the focus is on
grammatical correctness. However, two r enderers are presented in
Section 5, one of them based on Wadler’s p retty-printing algorithm
(2003).

In short, the paper makes the following contributions:

• A framework for correct-by-construction pretty-printing, based
on indexed pretty-printer documents, is p resented. N ote that
correctness only concerns grammatical correctness: no guaran-
tee is made that the output will be pretty.

• Several small examples, indicating that the framework is u sable
in practice, are presented (see Section 4). Larger examples are
available in the accompanying code.

• As far as Iam aware this is the first example of a formal,
mechanised correctness proof for a pretty-printer (as opposed
to an “ugly-printer” that ignores line widths, word wrapping,
indentation, etc.).

Related work is discussed in Section 6.
The pretty-printing framework and examples described in the

paper (along with omitted proofs, and with minor differences) have
been made available to download. The code is implemented in
the dependently typed p rogramming language Agda (Norell 2007;
Agda Team 2013). In the paper Ideviate somewhat from Agda
notation in order to avoid clutter and aid readability; for instance,
Agda’s somewhat idiosyncratic notation for coinductive types and
corecursive definitions is not used.

2. Grammars

This section presents the type of grammars that is used. Ihave
chosen to use monadic, potentially infinite grammars in order to
emphasise t hat the approach can handle very general grammars.
However, the approach is not r estricted to such grammars. It is for
instance possible to use regular expressions (extended with seman-
tic actions) instead. Regular expressions are not general enough to
handle all of the examples in Section 4, but the basic ideas carry
over unchanged.
Iuse two definitions of grammars. A simple one presented

here, and an equally expressive variant with more constructors,
defined in the accompanying code. The extra constructors are used
for some proof automation described in Section 4.3, but are not

2

fstorllioctwlyinn gew cesasya:2ry.1Thes imple typeo fg rammarsi sd efinedi nt he
data Grammar : Set → Set1 where -- Coinductive.

treat uGrrna m: m Aa r→: Getra m→maS re tA
troetkuenrn :: GAr→a mmG arra Cmhmara
|: Grammar A → Grammar A → Grammar A
>| >= :: GGrraammmmaarr A A →→ G(Ar m→m aGrr aAm→ mar G GB r)a m→m

GGrraammmmaarr A B

The constructor return x accepts only the empty string, and returns
x; token accepts and returns arbitrary single tokens (characters);
|is symmetric choice; and >> = is monadic sequencing.

Ti shse ytmypme oetfr grammars asnhdould>> =b e ri esadm conoainddicuc steivqeuleyn. cTinhigs. means
that one can construct infinite grammars, for instance a grammar for
the empty language:

fail : Grammar A
fail = f ail | f ail

If the grammar type were r ead inductively, then the grammar for-
malism would be quite r estrictive: it would b e impossible to con-
struct a grammar that accepted strings of arbitrary length (assum-
ing t hat the number of characters is finite). However, the coinduc-
tive grammars above are very expressive: they can represent ev-
ery recursively enumerable language (using grammars of the form
g0 | (g1 | (g2 | . . .))). This means that it is not always possible to
imp|l(e mgen|(t ag parser f))o.r tThheissem grammars. iInt ispran cotti caelw wonayes may swibanlet ttoo
restrict attention to a smaller class of grammars, for which parsing

is always possible or perhaps even efficient.
The semantics of a grammar is defined b y the following data

type, which should be read inductively; x ∈ g · s means that the
tsytprineg, ws hanicdh c sohroruelsdpob nedir neagd dr einsudlutc cx ti averel yg;e xne∈r at ged b·ys t mhee grammar g :

data ∈· : A → Grammar A → String → Set1 where
retur∈n-·s em: :A Ax → →∈ Grertaumrnm xa r· A[→]
treoktuenrn--sseemm :: tx ∈∈ t roekteunrn ·x [· t]
t> >o =k-esne-sme :: t x ∈∈ g1 ·n s1 t→] y ∈ g2 x · s2 →

y ∈∈ g1 >·> =s g2 →· s1 ∈++ g s2
left-sem : xy ∈∈ g1 ·> =s →g ·x ∈ g1 s| g2 · s
right-sem :: x x ∈∈ g2 ·· ss →→ x x ∈∈ g1 || g2 ·· ss

(Strings are taken to be lists of characters: String = List Char.)
R(Setardinegrss warehot aakreen nu ntofab meill iiastr swo ifthc thhairsa ckitenrds :oSf rdeinfignit= ion L may hwaarn.)t
to see it as an inductively defined inference system, as in Figure 1.

An alternative reading of x ∈ g · s is “one of the results of
parAsinng a tlhteer nstartinivge esr euasdiningg gtho ef grammar g sii ss s x“ ”,o nbuet onfo tthe ethr aest uitl may
not b e possible to implement a (total) parser for g. As mentioned in
Section 1, values of type x ∈ g · s can b e seen as parse trees. In
sSoecmteio c na1 se,sv iat may oafls tyo pbee xapp ∈rog pr· iats e ctaon nsb eee ths eee vnal ausep sa xr saes tarbesetsr.a Icnt
syntax trees.

As an example we can show that the language defined b yf ail is
empty, or, in other words, that for any x and s it is impossible that
x ∈ f ail · s is inhabited (Empty is the empty type):

fail-empty : x ∈ f ail · s → Empty
ffaaiill--eemmppttyy (: lefx t-∈ sem fa lp·) s= → fai El-emmptpyty p
fail-empty (right-sem p p)) == ff aaiill--eemmppttyy p

1Thee xtrac onstructorsa lsoh avea second use: Agda’s productivity
checker requires c orecursive definitions to b e syntactically guarded, and
the extra constructors can make it easier to write guarded definitions. In the

paper Iignore guardedness, and present some corecursive definitions that
are not syntactically guarded (but still p roductive).

2 Set is a type of small types, and Set1 is a type of types that includes Set.
Here and later Iomit most implicit argument declarations; for instance, the
full t ype of return is {A : Set} → A → Grammar A . (If a function has
tfyulplet y{xp e: Af r}e t→ur Ti s, t{hAen: :itSs efti}rst→ →argA ume→ nt x G irsa immmpalicritA , .a (nIfd adf oeuns cntoiot nnh eeasd
ttoy p bee {gxiv e:nA e }xp→ licitT ly, athse lnoi ntsg afirs sAt gadrgau cmanen itn xfei sr i itm.)

x∈ returnx · [] (return-sem)

t ∈t oken· [t] (token-sem)

xy ∈∈ g1g 1·>s > 1= g 2y·∈ s 1g 2++ xs · 2s 2 (>> = -sem)

x ∈x ∈g 1g |1g 2··s s (left-sem) x ∈x ∈g 1g |2g 2··s s (right-sem)

Figure 1. Alternative presentation of the definition of the seman-
tics of grammars (∈ ·) .

The proof proceeds b y induction on the structure of the p arse tree:
Assume that we have a parse tree q : x ∈ f ail · s. Our goal is
Atos sshumowe tthhaatt wthee heamveptay ptyarpese i tsr eienh qab: it exd.∈ ∈Tf haei grammar r fg aoil lcai ns

be unfolded to f ail | f ail, so we get q : x ∈ f ail | f ail · s. By
cbaese u nafnoalldyesdis woef giel t| ftahial,t q oe iwtheerg heats q t h :e xfo∈ rmf leilft |-f saeilm p , w.B ithy
p : x ∈ f ail · s, or right-sem p , also with p : x ∈ f ail · s. In
bpot :h xca∈ sesf tihle ·in sd,uo crtir vige hhty-pseomthe ps,isa ls(foailw -ietmhpp ty :p x) g ∈ive fsa iuls ·ans .in In-
habitant of the empty type.

Given the b asic grammar c ombinators above we can define a
number of derived ones—taken more or less directly from the
world of parser combinators—including the following ones for
mapping and sequencing:

<$> : (A → B) → Grammar A → Grammar B
f <$> g (=A g > > = B) λ→ →x → Gr aremtmuranr (Af x→)

<$: A → Grammar B → Grammar A

x <$ g =A (→λ G →ra m x)m a<r$ >B g

~ : Grammar (A → B) → Grammar A → Grammar B

g1 ~ g2 r=a g1 >r >(=A λ →f → B))f → →<$G> g 2
<~ : Grammar A → Grammar B → Grammar A
g1 <~ g 2 r=a g 1 >r> A = →λ →x G G→ra mx m<a$r g2

~> : Grammar A → Grammar B → Grammar B

g1 ~> g 2 r=a g 1 >r> A = →λ →ra g2

Here f <$> g is “map”: i f g generates s and x , t hen f <$> g
generates s and f x . The application x <$ g generates exactly the
same strings as g , but always returns x . If g 1 generates s 1 and f ,
and g2 generates s2 and x , then g 1 ~ g2 generates s1 ++ s2 and
f x . The combinators <~ and ~> are variants of+ +~s that
discard the second and first argument’s result, r espectively. All
these operators should b e parsed left-associatively. For instance,
f <$> g1 ~ g2 should b e parsed as (f <$> g 1) ~ g2.

We can also define the Kleene star and plus operators, which are
taken to bind tighter than the mapping and sequencing operators
above; these operators are in turn taken to b ind tighter than |:

mutual

? : Grammar A → Grammar (List A)
g ?? :=G rreamtumrna r[]A

=| r(uentucurnrr [y] ::) <$> g +

+ : Grammar A → Grammar (List+ A)
g ++ :=G r(am ::m) a r<A$ > g →~G g a ?m

Here List A stands for lists of finite length containing As, and
List+ A stands for non-empty lists: L ist+ A = A ×L ist A . Iover-
load cons, :: , so that its second argumenAt a=nd A Ait×s rLe siuslttA Ac.a nI obvoetrh-
be either regular or non-empty lists. The application uncurry ::
above has type L ist+ A → L ist A .

3
It is also possible to define combinators with dependent types.

The function True maps booleans to types:

True : B ool → Set
TTrruuee t: ru Beo =l →Uni St
TTrruuee ftarulsee == E U nmpitty

True true is the unit type (with a single inhabitant tt), and True
false is the empty t ype. True is u sed in the types of if-true and sat:

if-true : (b : B ool) → Grammar (True b)
iiff--ttrruuee t: ru (eb :=B roeotlu)rn→ →tt
iiff--ttrruuee ftarulsee == f r eaitlu

sat : (p : Char → B ool) →
G(pra :mC mhaarr r(6→ Ch Baoro l(λ) t→ →→ True (p t)))

sat p G=r atmomkeanr >(>6= λh at r→(λ

t(λo k xe n→> >(= t, x)λ) <→ $> if-true (p t)

The grammar if-true b stands for the empty string if b is true, and
otherwise the empty language. The sat combinator takes a boolean-
valued p redicate p as argument, and accepts single tokens t for
which p t is true. The r esult of sat p is a p air consisting of a token
t plus a proof of True (p t), witnessing the truth of p t. (If B has
type A → Set, then 6 A B consists of pairs (x, y) where x : A and
y p: B A x →.)

We can use sat to define a combinator for a given token:

tok : Char → Grammar Char
ttookk kt: = ta <r$→ →satG (rλa tm0 →ar Ct == t0)

Here the witness of equality is thrown away. (See Section 4.4 for
an example where the witness is retained.) Using tok we can define
a combinator for whitespace, for simplicity t aken to mean “space
or newline”:

whitespace : Grammar Char
whitespace = tok ’ ’ | tok ’ \n’

We can also define s tring s , a grammar for the string s:

string : String → Grammar String
ssttrriinngg g[: :] g= →retG urrna [m m]m
string (t :: s) == r(et: :ur)n <[$]> tok t ~ s tring s

3. Pretty-Printers

fTohlelo wtypinego w fpa rye:t3ty-printerd ocumentsi sd efined(inductively)i nt he
data Doc : Grammar A → A → Set1 where

ta3 D c: :D G ocra g 1 mxa r→A →D ocA A(g→2 →x) y →
Doc (g1 >> →= D g2o) y

text : Doc (strin>g> = =s) gs
line : Doc (tt <$ whitespace +) tt
group :: DDoocc g xt →$ Dhiotces g a xc
ngerostu :: ND c→g xD o →c g D xo c→g xD oc g x
emb :: N{x1 →: A D1 o} → g x {→ x2 :D o Ac2 }g x→

{(∀x {s} →} x 1 ∈{ g1 · s }→→ x 2 ∈ g 2 · s) →
(D∀o c{ g 1 x1 →x ∈D og c g 2 x2

As mentioned in the introduction a p retty-printer for a grammar
g : Grammar A is a function that transforms all values x : A to
documents matching g and x :

Pretty-printer : Grammar A → Set1

PPrreettttyy--pprriinntteerr g G=r a ∀m xm a→r AD → oc g e xt

3Then otation∀ { x}→ T m eanst he same as {x : A } → T, except
thTath e Ang doata iiso nas∀ ke{ dx }to→ →try Ttom inefaners t thhee ds aommaeina st y{ pxe :A A. A} →simTi la,re xnocetap-t
tion, ∀ x → T, can be u sed for explicit arguments, and n-ary variants like
∀tio {nx, y z x} →→ TT, acaren a blesou asvedailf oabrlee .x

The first five document constructors are taken from W adler
(2003). If rendering is implemented in the same way as in Wadler’s
work, then these combinators have the following meanings:

• 3: Sequencing. The second document’s text is placed di-
rectly after the first document’s text.

• text: A concrete string. Note that the string s is not an explicit
argument to this combinator: in many cases the string can b e
inferred from the context. (It can b e given explicitly using the
notation text {s = . . .}.)

Wadler adopts the convention that s does not contain newline
characters. Icould enforce this invariant u sing the type system,
but Ihave r efrained from doing so, because the invariant is
not needed to prove that the r enderers in Section 5 produce
grammatically correct strings.

• line: A newline character p lus some indentation consisting of
zero or more space characters. The amount of indentation is
specified by nest combinators (the default is zero).

The grammar used for this combinator is tt <$ whitespace +,
wThheerg er tmt misa rtu hes dsof loer i tnhhisac biotmanbt noaft trhi es tutn i<t $tyw phei.t Is daoc n +ot,
use the grammar whitespace +, because then the result (s in
Dusoec h(weh gitreasmpamcaer + w)h sit)e swpaoucled+ h,ab veec atou eb et hae nfixt ehde rneosnul-tem (spi tny
Dstroicng(,w chointetsaipnaicneg +a)p sre)dew foinueldd a hmavoeunt to oobf ewh aitf eixspeadcen .

Note that the grammar tt <$ whitespace + is more liberal than
“Nnoetwelt ihnaet thpelugs ainmdemnatart titon< ”$. wThhiete r speaascoen+ +iis pm aortrley itbhearta lot uhtaenr
group combinators can change the meaning of line combina-
tors, but also that Iwant to support multiple rendering algo-
rithms (see Section 5).

• group: The document group d is rendered either as d, or as d
with all line combinators replaced by single spaces, depending
on what is “best” (see Section 5.2).

• nest: The document nest id behaves as d , except that if a line

combinator in d is rendered as a line b reak, then the following
line is indented isteps more.

The final combinator, not present in Wadler’s library, is emb.
This combinator’s first argument is a p roof that transforms parse
trees: “for all strings s , if s and x 1 are generated b y g1, then s and
x2 are generated b y g2”. The combinator can be used to “embed”
one grammar-result pair (g1,x1) into another, (g2, x2), and is in-
cluded so that grammar constructions that are not supported by the
other combinators can be handled. For instance, here are two com-
binators that can be used when a grammar contains a choice:

left : Doc g1 x → Doc (g1 | g2) x
left d = emb xle→f t-seD mo dc

right : Doc g 2 x → Doc (g1 | g2) x
right d = emb xrig →ht-sD eomc (dg

The renderers in Section 5 ignore emb constructors (except for in
their correctness proofs). To avoid long chains of emb constructors
one can use the following smart constructor instead of emb:

embed : {x1 : A 1 } → {x2 : A 2 } →
{(∀x {s } →} x 1 ∈{ g 1 · s }→→ x 2 ∈ g2 · s) →

(D∀o c{ g 1 x1 →x ∈D og c g2 x2
embedf (emb g d) =→ em Dbo c(gf ◦ g) d
eemmbbeeddf f (de == eemmbb(f fd

We can also define document combinators corresponding to the
mapping and sequencing combinators introduced in Section 2. I
overload the names, and omit proofs—I write embed instead of
embed p roof. N ote that some arguments are omitted (made im-
plicit), because they can often be inferred from the context. For
instance, <$> only takes one (explicit) argument:

4

<$> : Doc g x → Doc (f <$> g) (f x)
<$> d =D ecmg bxe d →d

<$: Doc g y → Doc (x <$ g) x
<$ d :=D oemc gbey d d→

~ : Doc g 1f → Doc g2 x → Doc (g1 ~g2) (f x)
d1 ~ d 2 = d 1 f3 →(→<$D> dc2g)

<~ : Doc g 1 x → Doc g2 y → Doc (g1 <~ g2) x
d1 <~ d2 = d1 x3 →(→<$D do2c)

~> : Doc g 1 x → Doc g2 y → Doc (g1 ~> g2) y
d1 ~> d2 = d1 x3 →d2

Iomit most of the embedding proofs, because Ido not think that
the proof terms are very interesting. However, it may be instructive
to see a couple of concrete proofs. Here is a more complete defini-
tion of <$>:

<$> : Doc g x → Doc (f <$> g) (f x)
<$> d =D ecmg bxe d →(λ p →oc (c afs<t $ri>gh gt-)id(efntx i)ty

(s>t> r= ig-hset-mid p trietyturn-sem)) d

The type of >> = -sem p return-sem is not f x ∈ f <$> g · s, but
Trahtehet ry p fe ex o f∈> = f -<se$>m g ·e su n++ -s e[m m], sson ocats ft xan∈ d rf i g<h$t->id gent· itys , aburet

ruastehde trof fcxo rr∈ ectf t <he$ >strg ing· i nsd e++ x:

cast : s1 ≡ s2 → x ∈ g · s1 → x ∈ g · s2

right-identity : s + +≡ [] ≡→ →s

Here x ≡ y is a type of p roofs of equalities between x and y .

rTeh xe ≡p ryo oi fs a ab toypvee d oofep sr noootf sino vfoe lvqeu ap laittiteesrnb emtwatecehnin xga onnd t yh.e parse
tree p . However, pattern matching is sometimes necessary. Let us
consider the definition of the combinator nil, a combinator that
produces the empty string if Wadler’s r endering algorithm is used.
This definition includes a p roof that does use pattern matching:

nil : Doc (return x) x
nil = embed p roof text

lw= here em
proof : [] ∈ s tring [] · s → x ∈ return x · s
pprrooooff r :et [u]rn∈ -ses mtr =g r]et· urs n-→ semx

Note that text’s string argument—the empty string—is inferred
automatically. The p roof can be read as follows: W e should prove
x ∈ return x · s, given [] ∈ string [] · s. Note that string []
rxed∈ ucer est utron rx et u·rns , ,[g g]i.v eBny]ex ∈haus tsrtiivneg c[a]s e· asn. aNlyosteis whaet ssterein gth[at]
[] ∈ string [] · s is true iff s is [], so it suffices to prove
x[]∈∈ r esttruirnng x []· ·[]s, w ishit cruh efol ilfofws s ibsy [re]t,us ron- sietms u.

∈Mr oeretu prnrex tty -·p r[i]n,tiw nhgi cchom fobllinoawtosbr sy yw rieltl ubren i-nsetrmod.uced below.

4. Examples

Let us now consider some examples. N ote t hat m y focus is not on
the design of a p retty-printer (where to use group, nest and line,
how to achieve pretty output, etc.), but rather on the specifics of
using the strongly typed combinators introduced in this paper.

4.1 Boolean Literals

The following is a grammar for boolean literals:

bool : Grammar B ool
bool = true <$ string "true "

=| ftarulsee <<$$ ssttrriinngg ""ftraluse"e"

There are only two valid strings, "true " (corresponding to the
value true), and "false" (corresponding to the value false).

In order to illustrate the types at p lay Iwill give a detailed,
step-by-step description of how a p retty-printer for the grammar
bool can be constructed interactively in Agda. Istart by pattern

matching on the boolean (note that Pretty-printer bool unfolds to
(b : B ool) → Doc bool b):

boolP : P retty-printer bool
boolP true = ?
boolP ftarulsee == ??

The question marks are g oals (or holes) that have not yet b een
replaced b y concrete terms. Iwill focus on the first goal. Agda
states that the type of this goal is Doc bool true, i.e., the question
mark should b e replaced b y something of this type. The value true
is generated by the grammar’s left branch, so let us refine the r ight-
hand side using left:

boolP true = left ?

The new goal type is Doc (true <$ string "true") true, so I
choose to use the combinator <$:

boolP true = left (<$?)

The grammar combinator <$ discards its second argument’s
result, and Ihave not specified what this result should be, so we
get the goal type Doc (string "true ") s for some unconstrained
meta-variable s. If the question mark i s replaced by text, then s is
unified with "true", leaving us with a complete right-hand side:

boolP true = left (<$ text)

Note that there is no need to specify the string used by text: it is
inferred by the type checker, and an attempt to specify a concrete
string distinct from "true " would lead to a type error.

The other clause can b e completed in a similar way:

boolP : P retty-printer bool
boolP true = left (<$ text)
boolP ftarulsee == rliefgtht (<$ text)

The grammar bool is not very flexible: there is only one valid parse
tree for true, and similarly for false. The grammar in the next
example gives more freedom to pretty-printer implementors.

4.2 Expressions

The following example is based on one discussed b y Matsuda and
Wang (2013). Expressions are defined inductively as follows:

data Expr : Set where
one : E xpr
sub : E xpr → E xpr → E xpr

An expression is either a one or a subtraction.
We can define the following grammar for expressions:

mutual

expr : Grammar E xpr
expr = term

=| tseurbm <$> expr <~ whitespace ? <~ string " -"
<<~~ wwhhiitteessppaaccee ? ? <~~ ~tesr mtri

term : Grammar E xpr
term = one <$ string "1"

=| ostnreing< "$ (s t"r i~ng> "w1h"itespace ? ~> expr
~<~> wwhhiitteessppaaccee ? ? ~<~> setxrpinrg ") "

Here expr stands for terms and subtractions of the form “expression
− term”, whereas term stands for literal ones and p arenthesised
−expt reermss”io,nw s.h

The grammar contains four textual occurrences of whitespace ? ,

and implementors of p retty-printers must choose how to handle
these. Matsuda and W ang do not use any whitespace right after an
opening p arenthesis, or right b efore a closing one; they always use

5
a single space character after a minus sign; and they use the line
combinator to handle the last occurrence of whitespace ? .

In the present setting the line combinator’s type is not quite
right: its grammar is tt <$ whitespace +, not whitespace ? . To
ardigdhrte:s sit sthg isr pamromblaermi sI i tnttr< od$u wceh ttwesop nacewe +r e,us naobtl ew hciotmesbpianacteo? r.s:

line? : Doc (tt <$ whitespace ?) t t
line? = embed line

<~tt : Doc g 1 x → Doc (tt <$ g2) tt →

Doc (g1 x<→~ g2 D) o xc
d1 <~tt d2 = embed (d1 <~ d2)

Ialso introduce some combinators that, when Wadler’s r endering
algorithm is used, produce a single space character (space) or an
empty string (nil?):

space : Doc (whitespace ?) " "
space = embed (text {s = " " })

nil? : Doc (g ?) []
nil? = left nil

These combinators can be used to define a p retty-printer t hat
matches Matsuda and Wang’s:

oneD : Doc term one
oneD = left (<$ t ext)

mutual

exprP : Pretty-printer expr
exprP one = left oneD

exprP (sub e1 e2) ==

group (right (<)$=> exprP e1

<~tt nest 2 line?
<~ text
<~ space
~ nest 2 (termP e2)))

termP : Pretty-printer term
termP one = oneD

termP e ==
right (text ~> =nil? ~> exprP e <~ nil? <~ text)

Note the use of group and nest. Note also that embed is not used
directly in the definition of the p retty-printer, only in reusable
combinators.

If exprP is used to pretty-print

sub (sub one one) (sub one one),

using the implementation of Wadler’s rendering algorithm de-
scribed in Section 5, then the following outputs can b e obtained
(depending on the line width):

1 -1 - (1- 1) 1-- 1 (1- 1) 1- - - (111)

Matsuda and Wang list exactly the same example outputs.
For comparison Ialso include Matsuda and Wang’s pretty-

printer (I have adapted the notation to that used in the present
paper, and h ave made use of some enhancements—described later
in Matsuda and W ang’s paper—to reduce code duplication):4
4Theo verlappingc lausesi nt hed efinitiono ft ermP0 are in principlep rob-
lematic, as Matsuda and W ang state that the pretty-printing semantics of
overlapping clauses is non-deterministic. However, the implementation that

accompanies their p aper uses a first-match semantics. One may believe
that one can avoid overlapping patterns by r eplacing the final c lause of
termP0 by termP0 (sub e1 e2) = par (exprP (sub e1 e2)), but in Matsuda
and Wang’s language the arg)um= entp ator exprP in the right-hand side has to b e
a variable (to ensure that the pretty-printer can b e turned into a parser).

nil = t ext " " <+ space
space == t(etxextt" "" "< +<+s p taecxet "\n") 3 nil
space0 = s pace <+ t<e+xt t "e "x
line0 = slinpaec <<++ t t eexxtt "" ""

many-pars d = d <+ par (many-pars d)
par yd- == dte< xt+ +" (p "a r3(mnailn y3- p da r3s dni)l 3 text ") "

exprP x = many-pars (exprP0 x)

exprP0 one = text " 1"
exprP0 (sub e1 e2) = group (exprP e1 3

neexpstr 2 (line0 3
text "-" 3
space0 3
termP e2))

termP x = many-pars (termP0 x)

termP0 one = text "1"
termP0 e = par (exprP e)

Note that this definition contains both a specification of a grammar,
and a specification of a pretty-printer. Recall that p <+ q means
“anpdreat tys -ppreicnitfi accactioornd oinfg atop p , tb yu-tp rbine e rer.aR dye ctoa p arse pal< so+ +ac qcom rdeainngs
to q”. This means, for instance, that nil renders as the empty
string, but the corresponding grammar accepts arbitrary sequences
of whitespace. (The grammar corresponding to the line combinator
also accepts arbitrary sequences of whitespace.)

4.3 Expressions, Take Two

The grammar u sed for expressions above contains four textual
occurrences of whitespace ? . To avoid this k ind of clutter one
can use grammar combinators that “swallow” trailing whitespace
(Hutton and Meijer 1998). The grammar s ymbol s stands for the
string s p lus trailing whitespace:

symbol : String → Grammar String
ssyymmbbooll ls: S =t isntgrin→ g →s <G~ra mwhmiatersS ptarcien g?

The following expression grammar uses symbol instead of string
and whitespace ? :

mutual

expr : Grammar Expr
expr = term

=| tseurbm <$> expr <~ symbol "-" ~ term

term : Grammar Expr
term = one <$ symbol "1"

=| osynmeb< ol$ "s (y "m b~o>l expr <~ s ymbol ") "

This grammar is not quite equivalent to the one in Section 4.2, as
that one does not accept final trailing whitespace (as in "1 ").

Let us now define a pretty-printer for the updated grammar expr.
Ifirst introduce some document combinators that can b e u sed to
handle the grammar symbol s:

symbol : Doc (symbol s) s
symbol = text <~ n il?

symbol-space : Doc (symbol s) s
symbol-space = text <~ space

Using these combinators Ican construct the following incomplete
pretty-printer:

oneD : Doc term one
oneD = left (<$ symbol)

6

mutual

exprP : P retty-printer expr
exprP one = left oneD

exprP (sub e1 e2) ==
group (right (<)$=> ?

<~ symbol-space
~ nest 2 (termP e2)))

termP : Pretty-printer term
termP one = oneD

termP e == ornigeht (symbol ~> exprP e <~ symbol)

What should the question mark b e replaced with? The previous
implementation of exprP contains the subexpression

<$> exprP e1 <~tt nest 2 line?.

We can use something similar here,

embed (exprP e1 <~tt nest 2 line?),

provided that we can prove the following statement:

∀ {s} → e1 ∈ expr <~ whitespace ? · s
→→ e1 ∈∈ expr ·· ss

It is not very h ard t o p rove this statement manually. However, I
think that this kind of proof is rather tedious. Fortunately we can
let the computer p rove the statement for us, by writing a program

that analyses the grammar expr and produces a p roof.
The grammar data type introduced in Section 2 is quite tricky to

analyse programmatically, p artly because b ind’s second argument
is a function, and p artly because grammars are potentially infinite
(it is for instance impossible to check if a grammar has the form
whitespace ?). T hese problems could presumably be circumvented
through the use of meta-programming techniques, using which one
gets access to the grammars’ source code. Then one could identify
unproblematic uses of b ind such as those in <$> and ~,
as well as regular recursion such as that i n ? and context-free
grammars. Another option is to rule out problematic constructions
entirely by switching to a different grammar type, for instance a
suitable representation of context-free grammars (with semantic
actions).
Ihave chosen to use a different approach, that does not limit

expressiveness, and that does not require that the host language
has support for meta-programming. As mentioned in Section 2 the
accompanying code contains a variant of the Grammar type with
more constructors. Some of the extra constructors (corresponding
to tok, < $>, <$, ~,< ~ and ~>) make it possible to
avoid certain uses of bind,5 and the r emaining extra constructors
(corresponding to fail and ?) make it possible to avoid certain u ses
of corecursion.

Using this extended grammar data type Ihave implemented a
simple, heuristic procedure that tries to p rove statements like the
one above:

trailing-whitespace : N → (g : Grammar A) →

NM a y→be ((gTra :iGl inrga-mwmhiatresA p)ace→ g)

The first argument is a natural number. The p rocedure is im-
plemented b y structural r ecursion on this number—recursion on

the structure of a potentially infinite grammar could lead to non-
termination. The predicate Trailing-whitespace is satisfied by a
grammar g if the grammar can swallow trailing whitespace:

5Perhapsi ti s notn ecessaryt oi nclude all of these combinators as p rimi-
tives, but as mentioned in Section 2 the extra constructors can make it easier
to write guarded definitions.

Trailing-whitespace : Grammar A → Set1
TTrraaiilliinngg--wwhhiitteessppaaccee g G=r

a∀i {inxg gs -}w h→ite x c∈e g < =~ whitespace ? · s → x ∈ g · s

Note that Trailing-whitespace expr is a slightly more general ver-
sion of the statement that should b e proved.

There are many ways to implement trailing-whitespace, and I
do not think the details are central to this paper, so no implementa-
tion is included here. The main point is that, assuming that expr is
implemented using the extra grammar constructors,

trailing-whitespace 6 expr

returns j ust p roof, where p roof has type Trailing-whitespace expr.
Thus there is no need to prove this statement manually.

The following reusable combinator can b e used to add nest i
line? to the end of a document for which trailing-whitespace suc-
ceeds:

final-line :
(n : N) →

{(ntra :iliN n)g →: True (is-just (trailing-whitespace n g)) } →
{Dtroaci g x →: rNu → (is jDusotc(g x

finaDl-ocling e x→d →i =N e→mbDe do (cdg <~tt nest iline?)

The omitted embedding proof makes use of the implicit argument
trailing. If trailing-whitespace n g evaluates t o j ust p roof, then
the type of trailing is Unit (because is-just (just p roof) is true).
Omitted arguments of type Unit are automatically inferred to b e tt,
so in this case trailing does not need to be given explicitly. We can
thus complete the definition of the p retty-printer in the following
way:

exprP (sub e1 e2) =
group (right (<)$=> f inal-line 6 (exprP e1) 2

<~ symbol-space
~ nest 2 (termP e2)))

If we compare the examples in Sections 4.2 and 4 .3, then
we see that the grammar in 4.3 is more compact, but it seems
fair to say t hat the p retty-printer is more complicated. The main
complication is that the p retty-printer deviates from the gram-
mar’s structure, thus necessitating an embedding p roof (going from
expr <~ whitespace ? to expr). In general one may find that it is
easier to implement a pretty-printer if the grammar is defined in
such a way that the pretty-printer can follow the grammar’s struc-
ture, p otentially at the cost of a less natural or more complicated
grammar. T his can b e contrasted with Matsuda and Wang’s ap-
proach, in which the pretty-printer must (by construction) follow
the grammar’s structure. The approach p resented in this paper is
thus more flexible.

4.4 Identifiers

Consider the following grammar for identifiers consisting of one or
more lower-case letters:

identifier : Grammar (List+ Char)
identifier = (fst <$> sat is-lower) +

This grammar is problematic: it is impossible to implement a
pretty-printer for identifier. The problem is that the result type,
List+ Char, contains j unk: there are non-empty strings that do not
consist solely of lower-case letters, and a pretty-printer identifierP :
Pretty-printer identifier must b e able to handle such strings. For
instance, identifierP [’ A ’] must r eturn a document of type Doc
identifier [’ A ’], and this type is empty.

Fortunately there is a simple workaround—make the type more
precise:

7

Identifier : Set
Identifier = L ist+ (6 Char (λ t → True (is-lower t)))

identifier : Grammar I dentifier
identifier = sat is-lower +

Identifier stands for non-empty lists of pairs, where each p air
consists of a token t and a proof of True (is-lower t). N ote that
sat is-lower returns this kind of pair.

It is easy to implement a p retty-printer corresponding to the
grammar sat p :

token : Doc token t
token { t = t} = embed (text {s = [t] })

if-true : (b : B ool) → P retty-printer (if-true b)
iiff--ttrruuee t: ru (eb B=o nli)l
if-true false () =--n nIimlpossible case.

sat : (p : Char → B ool) → P retty-printer (sat p)
ssaatt p ((t,p pp r:oC ofha) r=→ →tokB enoo 3l) (< →$> P irfe-ttrtyu-ep r(ipn tte)r rp (rsoaotf p)

It is also straightforward to implement “mapping” combinators
corresponding to the Kleene star and plus operators:

mutual

map? : P retty-printer g → Pretty-printer (g ?)
map? p :[P P] =in enril ?g
map? p (x :: xs) == neimlbed (map+ p (x :: x s))

map+ : P retty-printer g → P retty-printer (g +)
map+ p (Px :e: xtys-)p =in e<r$ g> p x P~r map? p x s

With the functions above in place it i s easy to implement a pretty-

printer for identifiers:

identifierP : P retty-printer identifier
identifierP = map+ (sat is-lower)

4.5 Other Examples

The accompanying code includes some larger examples:

• A pretty-printer for expressions, parametrised b y a collection of
operators, each with a given precedence and associativity.

• A pretty-printer for a kind of simplified XML documents, based
on a p retty-printer described by Wadler (2003). The simplified
XML grammar uses the b ind operator to define the syntax of
matching opening and closing tags. The p retty-printer makes
use of an additional primitive p retty-printing combinator, fill,
which is based on a combinator due to Peyton J ones (1996).
Wadler’s version of the combinator is described as “put[ting] a
space between two documents when this leads to reasonable
layout, and a newline otherwise” (2003). My version of the
combinator has the following type:

fill : D ocs g x s → Doc (g sep-by (whitespace +)) x s

Here D ocs g x s stands for a list containing one or more g -
indexed documents, and g sep-by sep stands for one or more
occurrences of g, separated b y s ep:

data Docs (g : Grammar A) : L ist+ A → Set1 where
one : Doc g x → DAo→c s g (ext :: [])
cons : Doc g x → D ocs g x s →→ D D ooccss g ((xx :::: [x]s))

sep-by : Grammar A → Grammar B →
GGrraammmmaarr (ALi→s t+ A)

g sep-by sep = (: :) <$> g ~ (sep ~> g) ?

It may be worth noting that these two examples do not use
embed at all: manual p roofs are relegated to (more or less) reusable

library combinators. However, some library combinators not men-
tioned above were introduced as part ofthe implementation ofthese
examples. Ido not claim that the current library’s set of combina-
tors is sufficient to avoid e very use of embed.

5. Renderers

As mentioned in the introduction a renderer consists of two p arts:
a function

render : Doc g x → String

that maps documents to strings, and a correctness p roof:

parsable : (d : Doc g x) → x ∈ g · render d

The parsable property can be used to p rove a round-tripping prop-
erty for unambiguous grammars.
Idefine unambiguity in the following way:

Unambiguous : Grammar A → Set1
UUnnaammbbiigguuoouuss g G=r

n∀a m{ sb i xg y }o s→g x = ∈ g · s → y ∈ g · s → x ≡ y

A grammar g is unambiguous if,whenever the string s and the result
x are generated by g , and also s and y are generated b y g , then x is
equal to y . This is a weak form of unambiguity: Ido not require the
two p arse trees to be equal.
Ialso define a type of parsers t hat are guaranteed to be correct:

Parser : ∀ {A } → Grammar A → Set1
PPaarrsseerr { :A ∀ ∀={ AA }} g →= ∀ ra asm m→a D Aec → →(6 S Ae (λ x → x ∈ g · s))

Dec X (“decided X”) has two constructors,

yes : X → Dec X

and

no : (X → Empty) → Dec X .

A parser must thus either r eturn a p air consisting of a result and a
corresponding p arse tree, or return a proof showing t hat t here is no
such pair.

Given the definitions above the following round-tripping prop-
erty can be formulated:

Unambiguous g →
U(pnaarsmeb i:g uPoaursseg r g →) →
((pparertstye :: P Parertsteyr- pgr)in→ ter g) →

(∀p r xe t→y :6P (rext y∈- g n·t rre gnd)er→ (pretty x))
((λx p →g p arse e(rre (npdreertt (ypx r)e)tty x)) ≡ yes (x, p))

This property is easy to p rove using p arsable. (The precondition
Unambiguous g can b e weakened: the grammar only needs to be
unambiguous for the string render (pretty x).)

Another property can also be proved. Assume that render
ignores top-level emb constructors, i.e., assume that the string
render (embf d) is equal to render d. Then, for every grammati-
cally correct string, there is a document that renders to that string:

x ∈ g · s → 6 (Doc g x) (λ d → render d ≡ s)

(Both renderers below ignore top-level emb constructors.) This
is not a very deep property—my proof returns the document
embed text, with a suitable embedding proof. However, the prop-
erty gives a kind of weak guarantee that the document interface is
not too limited.

Let us now consider two different r enderers.

5.1 An Ugly-Renderer

The following “ugly-renderer” renders each occurrence of line as a
single space character, and is included in order to illustrate that the

8
document interface does not require the use of Wadler’s rendering
algorithm:

render : Doc g x → String
rreennddeerr (:d1 D o3c d g2)x S =t rinengder d1 ++ render d2
render (text {s = s}) == s
rreennddeerr l(itneex == "s "
render (group d) == r"en" der d
render (nest d) == rreennddeerr dd
render (emb d) == rreennddeerr dd

Note t hat group, nest and emb constructors are ignored. (The use
of ++ above can lead to quadratic b ehaviour, and can, as usual,
be re+p+ laca ebdo b vye sc oamnel ethaidntg o owq ituhadourta ttihcibs ebehahvavioiuour,r.a)n

The correctness p roof is very easy. The emb case may be of
interest:

parsable : (d : Doc g x) → x ∈ g · render d
. . .

parsable (embf d) = f (parsable d)

5.2 Wadler’s Renderer

Let us now turn to Wadler’s r endering algorithm (2003). My imple-
mentation is close to Wadler’s. However, a direct reimplementation
would not be accepted by Agda’s termination checker. The code
below is structurally recursive.

The renderer works in three steps:

1. First a document is converted into a different document type,
without group but instead containing a constructor union,

which i s a k ind of b inary choice combinator for documents.

2. In the second step the converted document is transformed into a
flat “layout”. W hen a union constructor is encountered the two
argument documents (along with a continuation) are converted
into layouts, and the “best” one is chosen.

3. Finally the layout is turned into a string.

This renderer is intended to be executed (at least partly) lazily.

Layouts A layout is a list of layout elements, text s or line i:

data L ayout-element : Set where
text : String → L ayout-element
ltienxet :: SNt →→ L Laayyoouutt--eelleemmeenntt

Layout : Set
Layout = L ist L ayout-element

The meaning of text and line is specified by show-element; text s is
mapped to the string s, and line iis mapped to a newline character
followed by ispace characters.

show-element : Layout-element → String
sshhooww--eelleemmeenntt (:te Lxat yso)u =-e e sm
sshhooww--eelleemmeenntt ((ltienxet is) == ’s \n’ :: replicate i’ ’

The r enderer’s third step, conversion of layouts to strings, is per-
formed by show:

show : L ayout → String
sshhooww :=L acoyoncutat →◦ map ins hgow-element

Document Conversion The new document type is defined induc-
tively as follows (the N subscript stands for “nesting”):

data D ocN : N → Grammar A → A → Set1 where
3 : D o:cNN Ni g1 xG r→am mD aorcNA Ai→ →(g2 Ax) y → Se

DocN i(g1 >> →= D g2o) y
text : (s : String) >→= DgocN i (string s) s

line : (i : N) →

(leit :s =) s→how-element (line i) in
Dletos cN =i (ss htrionwg- esl)e s

union : D ocN ig x → DocN ig x → D ocN ig x
nest : (j : Ni)g x→ →D oD cNo (j i+g ix) g →x → Do cD ocN ig x
emb :: ({xj1 :: N A)1 }→ →→D o{cx2 (: jA + 2 }i → g x

{(∀x {s } →} x 1 ∈{ g 1 · s }→→ x 2 ∈ g 2 · s) →

D(∀o {cNs} }i g 1 x1 →∈ g Doc·N s si g 2 x2

There are four changes, compared to D oc:

• The type has an extra natural number index that stands for the
current nesting level. This level is modified b y nest.

• The text constructor’s string argument has been made explicit.
(This is a p urely cosmetic change.)

• The type of line is more precise: the grammar is

string (show-element (line i)),

where i is the nesting level index. Unlike the previous line
combinator this one always stands for a newline character plus
indentation.

• The constructor group has been replaced by union. W adler
sees documents as representing sets of strings, and union d1 d2
represents the u nion of the strings represented b y d 1 and those
represented b y d2.

Wadler also states that union d 1 d2 should satisfy two invari-
ants: the first is that the sets of strings r epresented by d1 and
d2 should be equal, if every occurrence of line is replaced b y a

single space character; and the second is that, for every string s
represented b y d 1, the first line of s should be at least as long
as the first line of any string r epresented b y d2. Ido not enforce
these invariants using the type system, as they are not needed
to prove grammatical correctness. (Furthermore, as discussed
at the end of this section, the invariants are not strong enough
to p rove that the renderer returns the “best” string, for a certain
definition of “best”.)

Just as in Section 3 Idefine a smart variant of emb, called
embed. Ialso define the following documents; imprecise-space
stands for a single space c haracter, and imprecise-line ifor a new-
line character followed by indentation:

imprecise-space : D ocN i(tt <$ whitespace +) tt
imprecise-space = embeid((ttte <xt$ "w h"it)

imprecise-line : (i : N) → D ocN i(tt <$ whitespace +) t t
iimmpprreecciissee--lliinnee ei: = (i e:m Nb)ed→ →(linD e oi)c

The n ame p refix imprecise r efers to the fact that the grammar
indices are less precise than they could be.

There are two functions that convert from Doc to D ocN. The
function flatten replaces line with imprecise-space, and removes
group and nest constructors, thus constructing documents that ren-
der as a single line (assuming that text’s string argument n ever con-
tains newline characters):

flatten : Doc g x → D ocN ig x
ffllaatttteenn (:d1 D o3c d g2)x =→ f Dlaottecn d1 3 flatten d 2
flatten text == tfleaxttte
flatten line == itmexptrecise-space
flatten (group d) == if lmatpterenc ids
ffllaatttteenn ((ngreostu dd)) == ff llaatttteenn dd
flatten (embf dd)) == eflmatbteendd f (flatten d)

The function expand implements the renderer’s first step. Recall
that group d should be rendered either as d, or as d with all line
combinators replaced b y single spaces. The expand function “ex-

9

pands” groups into unions, r eplacing group d with the u nion of
flatten d and expand d:

expand : Doc g x → D ocN ig x
eexxppaanndd (:d1 D o3c d g2)x =→ ex Dpoacnd d 1 3 expand d2
expand text == teexpxta
expand line == itmexptrecise-line
expand (group d) == iumnpiorne i(sfela-tltienne d) (expand d)
eexxppaanndd ((ngreostupj d d)) == nuenisto nj ((eflxaptatennd dd))
eexxppaanndd ((neemsbtjf d d)) == enemsbtedj (ef x(peaxpnadnd d) d)

As mentioned in Section 4.5 the accompanying code contains an
additional primitive combinator, fill. This combinator is a Doc con-
structor, but there is no corresponding D ocN constructor: flatten
and expand can be modified to translate fill into uses of the con-
structors given above.

Choosing the “Best” L ayout The renderer’s second step is im-
plemented b y best. This function takes three (explicit) arguments
and produces a layout. The first argument is a document, and the
third the current column position. The second argument is a contin-
uation: a function from a column position to a layout. The result of
best is the document’s layout, followed b y the layout computed by
the continuation:

best : D ocN ig x → (N → Layout) → (N → Layout)

best (d1 3 d2)i →= b (Nest→ →d 1 L◦a byeoustt)d2→
best (text " ") == bide
best (text s) == iλd κ c → text s :: κ (length s + c)
best (line i) == λλ κκ →→ ltienxet tis :::: κκ i(
best (union d1 d2) == λλ κκ c →→ blineettei r :c: κ(b eist d 1 κ c)

((bbeesstt dd2 κ c)
best (nest d) = best d
best (emb d) == bbeesstt d d

Wadler includes nil as a document constructor; the first text case is
based on his nil case.

Note that in the second text case the continuation is called with
a column position computed from the string’s length, and in the line
case the continuation is called with the indentation as the column
position. In the union case the best layout is computed for e ach
document, and then better is used to choose the best one:

better : N → L ayout → L ayout → Layout
bbeetttteerr c: :x N y →= i Lfa fiytso u(tw i→dth L−a yco) u xt t h→en L x aeyloseu y

The function better uses the line width, width, which is a parameter
of this r enderer. If the first line of the first layout fits in the remain-
ing p art of the current line, then this layout is chosen, and otherwise
the other one. The functionf its is used t o decide if the first line of a
layout has at most a certain number of characters:

fits : Z → L ayout → B ool
ffiittss (: n eZg w→) =B ofallse
fits w [] == tfarulsee
fits w (text s :: x) == ft irtsu e(w − length s) x
fits w ((ltienxet tis :::: x x)) == ft irtuse(

The first clause treats the case where the number of c haracters is

negative.

The Renderer Given all the p ieces above i t i s easy to assemble a
complete rendering function:

renderN : D ocN ig x → String
renderN d = shoiwg (x be →st →d S(tλr → []) 0)

render : Doc g x → String
rreennddeerr d: D=o creg ndx e→r N (Setxpriangnd { i= 0} d)

The initial continuationj ust returns an empty layout, and the initial
indentation and column position are both 0.

Grammatical Correctness My correctness proof is straightfor-
ward. The following lemma about best can be proved using r ecur-
sion on the structure of the document:

best-lemma :
(s : String) → (c : N) → (d : D ocN ig x) →

(((ss0 : : String) →→ c(c: 0 : N) →→(
x ∈ g · s)0 →

y ∈ gg0 · s →+ + s0 ++ show (κ c0)) →

y ∈ ∈g0 · s ++ +sho sw (+be ssth odw κ c)

The lemma uses continuation-passing style, to match the structure
of best. The most interesting case is perhaps the one for 3,in
which the inductive hypothesis is used twice:

best-lemma s c (d1 3 d2) h =
best-lemma s c d 1 (λ s1 c1 p1 →

cast (best-lemma (s ++ s1) c1 d2 (λ s2 c2 p2 →
scta s(bt e(sht -(les1m m+ +a (s s2) + c2 s(>> = -sem p 1 p2)))))

Here Ihave omitted cast’s equality argument.
The lemma has the following corollary:

(d : D ocN ig x) → x ∈ g · renderN d

The correctness p roperty,

(d : Doc g x) → x ∈ g · render d,

follows immediately from the corollary, because expand preserves
the grammar and result indices.

Other P roperties Wadler lists a number of algebraic laws that
his combinators should satisfy. Let us define document equivalence
(for DocN) in the following way:

≈ : DocN i1 g1 x1 → DocN i2 g2 x2 → Set
d1≈ ≈ d2 =

∀≈ w didth= → renderN width d 1 ≡ renderN width d2

(Here the renderer’s width parameter has been given e xplicitly.)
One can perhaps imagine other definitions of document equiva-
lence, but if two documents are related b y any “reasonable” notion
of equivalence, t hen they should arguably also b e related b y this
one.

With this definition of document equivalence some of Wadler’s

reiqguhitv aovleenrcu esni ocann:6b ep roved.F ori nstance,3 d istributesf romt he
union d1 d2 3 d 3 ≈ union (d1 3 d3) (d2 3 d3)

However, the following equivalence, also given by Wadler, cannot
be proved:

d1 3 union d 2 d3 ≈ union (d1 3 d2) (d1 3 d3)

If we let d 1 and d3 be imprecise-line 0, and d2 be imprecise-space,
then

renderN 0 (d1 3 union d2 d3)

is "\n\n", whereas

renderN 0 (union (d1 3 d2) (d1 3 d3))

is "\n " .
Let us see what is going on here. In the second case best chooses

between d1 3 d2 and d1 3 d3, and because the first line of d1 3 d2
fits in the allotted width, this document is the one that is r endered.

6Agda cannoti nfera llt hei mplicita rguments in this expression. One can
give the arguments explicitly using the notation 3 {g1 = g1 } {g2 = g2 }.

10
In the first case best instead chooses between d2 and d 3 . At this
stage it is clear that d 2 does not fit in the allotted width, so d 3 is
rendered instead.

Note that t hese expressions both satisfy Wadler’s invariants: one
for text, mentioned in Section 3, and two for union, mentioned
in this section. Thus t here seems to be a problem in Wadler’s
paper (the counterexample above can be p orted to Wadler’s own
implementation).

Wadler specifies that, given a document representing a (finite)
set of strings, his renderer should return the “best” string. “Best”
is defined—following Hughes (1995)—by the lexicographic exten-
sion of the following b inary relation on lines: if b oth lines fit in
the available width, then the longer one (if any) is better; if nei-
ther line fits, then the shorter one (if any) is better; and if exactly
one line fits, then that line is better. This criterion, together with
the second union invariant, is used to motivate the implementa-
tion of the union case of best. However, the invariant is not strong
enough: union (d1 3 d2) (d1 3 d3) r epresents the strings "\n "
and "\n\n" , and "\n\n" is better than "\n " , but the imple-
mentation gives us "\n " . This means that the notion of “best”
implemented by best is not the one specified by Wadler. Fortu-
nately it is not possible to construct union (d1 3 d2) (d1 3 d3) us-
ing Wadler’s p ublic document interface (which does not include
union). Thus it may be possible to prove that Wadler’s renderer
returns the b est string by modifying his invariants in some way.

6. Related Work

There are at least four approaches to correct-by-construction pretty-
printing:

• Grammars with embedded p retty-printing d irectives. Oppen
(1980) mentions t hat one can add p retty-printing directives to
grammars. Rubin (1983) and Boulton (1996) both describe how
context-free grammars can be extended with embedded pretty-
printing directives, from which parsers and p retty-printers can
be generated. The E rgo Support System’s Syntax Facility seems
to have similar features (Lee et al. 1988).

None of the papers referred to here contain proofs of a r ound-
tripping p roperty. However, it seems p lausible to me that
this approach to correct-by-construction p retty-printing could
(when done right) be proved to b e correct.

• Combinators for invertible p rogramming. Alimarine et al.
(2005) present combinators for invertible programming, and
when introducing the definition of a parser they claim that they
“will get the inverse, a pretty-printer, for free”. However, they
later write that “To show correctness, global reasoning is re-
quired”, so this does not appear to be an example of correct-by-
construction pretty-printing.

As mentioned in Section 1R endel and Ostermann (2010) de-
scribe combinators that allow the simultaneous definition of
parsers and printers. The combinators are based on “partial
isomorphisms”. No round-tripping property is proved. The ap-
proach is arguably somewhat fragile: if a choice “p or q” is re-
placed b y “q or p”, then a working pretty-printer can be turned
into a non-terminating pretty-printer.7 Rendel and Ostermann
do not explain in detail how to handle line widths, word wrap-
ping, etc., but suggest that it may b e possible to support more
advanced p retty-printing features.

• Pretty-printers with extra grammar information. This is the
approach taken by Matsuda and W ang (2013), described in

Sections 1 and 4.2. Matsuda and W ang outline the p roof of a

7This wasp ointedo utb yL ennartA ugustsson when Rendel and Oster-
mann’s work was presented at Haskell’ 10 in B altimore.

round-tripping property (but the p roof is not mechanised, and
no guarantee is given t hat the p retty-printers will terminate).
They also include a “nondeterministic printing semantics” that
is reminiscent of the grammar indices that Iuse for D oc: a
line is non-deterministically printed as one or more whitespace
characters, and the group and nest combinators are ignored.
Matsuda and Wang’s development is limited to context-free
languages. The development is arguably quite complicated: it
uses program inversion, fusion and partial evaluation.

• Grammars along with p retty-printers that construct indexed
pretty-printer d ocuments. This is the approach taken in the
present paper. A formal, mechanised p roof of r ound-tripping
is p rovided. Furthermore the approach supports any recursively
enumerable language.

The r ound-tripping property is perhaps not so interesting if
there is no parser. Danielsson (2010) describes parser combina-
tors that can handle any finitely ambiguous language for which
it is possible to implement a parser in the host language, and
proves correctness formally.

If we compare these approaches then we can see that a poten-
tial disadvantage of the one p resented in this paper is that the user
may have to write manual proofs. However, one can capture many
commonly occurring patterns in reusable libraries—for instance,
the user can write left d instead of embed p roof d . Given suitable
library combinators it seems as if manual proofs should mostly b e
needed when the pretty-printer deviates from the grammar’s struc-
ture (as in Section 4.3)—and such deviation is not even possible
when Matsuda and W ang’s approach is used. It is also possible
to automate some of the proofs. One example is provided in Sec-
tion 4.3; it is conceivable that many other p roofs can also b e auto-
mated, but Ihave not investigated this in detail.

Another potential disadvantage ofthe approach presented in this
paper is that the user has to write two things: a grammar and a

pretty-printer. In Section 1 Iargue for the separation of grammars
and pretty-printers. However, this i s my subjective view. R ose and
Welsh (1981) argue that p retty-printing information should b e p art
of the definition of a p rogramming language’s syntax.

Let me finally mention the work of Foster e t al. (2008) on quo-
tient lenses. A central p art of this development concerns “canon-
isers”. A canoniser from A to B/∼ (where A and B are sets,
iasnedr ”∼. iAs a cna neqonuiisvearlenf rcoem mreA latit oon Bo/n∼ ∼B)(wchoensriestsA o afn tdwBo f aurnects ieontss,
canando∼ nisi es :a nA e q→u v Ba laenndc echr oeolasteio :n o Bn n→B)A c , osnatsiisstfsyino gf tt hweo laf uwn

∀ b. canonise (choose b) ∼ b.

Foster et al. describe a canoniser where, b asically, canonise re-
places newline characters with spaces, and choose selectively re-
places spaces with newline characters to wrap long lines.

7. Conclusion

Ihave presented a new approach to c orrect-by-construction pretty-
printing. The approach is very close to the one of classical (not-
necessarily-correct) pretty-printing. The main difference is that
pretty-printer documents are more precisely typed, which ensures
that documents are correct with respect t o given values and gram-
mars. The development is based on very general grammars and
Wadler’s p retty-printing combinators, but the ideas should carry
over to other grammar and/or p retty-printing frameworks.

The r ound-tripping property that is p roved in Section 5 depends
on having an unambiguous grammar (or at least a grammar that
is unambiguous for strings in the image of the pretty-printer). I
have not discussed how one can p rove that a grammar is unam-
biguous—I see this as an orthogonal problem.

The correctness property that r enderers h ave t o satisfy only
concerns grammatical correctness, not “prettiness”: renderers have

11
some freedom in how to interpret their inputs, as witnessed by the
two very different renderers in Section 5. The ugly-renderer can
be used to generate compact output, and the other one t o generate
pretty output—in both cases the r esult is guaranteed to be grammat-
ically correct (although perhaps ambiguous). Other r enderers could
also b e useful. One may for instance want to use a “ribbon width”,
a limit on the number of non-indentation characters occurring on a
line (Hughes 1995).

Acknowledgements

Iwould like to thank Kazutaka Matsuda and M eng W ang for
inspiring me to do the work reported i n this paper. Iwould also like
to thank Conor McBride, Aaron Stump, Philip Wadler and some
anonymous r eviewers for useful feedback.

The research leading to these results has received funding from
the European Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) / ERC grant agree-
ment n◦ 247219.

References

The Agda T eam. The Agda Wiki. Available at h ttp ://wiki .portal .
chalmers . se/agda/, 2013.

Artem Alimarine, Sjaak Smetsers, Arjen van Weelden, Marko van Eekelen,
and Rinus Plasmeijer. There and b ack again: Arrows for invertible
programming. In H askell’05, P roceedings oft he ACM SIGPLAN 2005
Haskell Workshop, pages 86–97, 2005. doi: 10. 1145/1088348.1088357.

Richard J . Boulton. Syn: A single language for specifiying abstract syntax
trees, lexical analysis, parsing and pretty-printing. Technical Report

UCAM-CL-TR-390, University of Cambridge Computer Laboratory,
1996.

Nils Anders Danielsson. Total parser combinators. In ICFP’10, Proceed-
ings of the 15th ACM SIGPLAN international conference on Functional
programming, pages 285–296, 2010. doi: 10. 1145/1863543.1863585.

J. Nathan Foster, Alexandre Pilkiewicz, and Benjamin C. Pierce. Quotient
lenses. In ICFP’08, P roceedings of the 2008 SIGPLAN I nternational
Conference on Functional Programming, pages 383–395, 2008. doi: 10.
1145/141 1204.141 1257.

John Hughes. The design of a p retty-printing library. In Advanced Func-
tional P rogramming, F irst I nternational S pring School on Advanced
Functional Programming Techniques, volume 925 of L NCS, p ages 53–
96, 1995. doi:10.1007/3-540-59451-53 .

Graham Hutton and E rik Meijer. Monadic parsing in Haskell. Jour-
nal of Functional P rogramming, 8(4):437–444, 1998. doi: 10. 1017/
S0956796898003050.

Peter L ee, Frank Pfenning, Gene Rollins, and William Scherlis. The Ergo
Support System: An i ntegrated set of tools for prototyping integrated
environments. In Proceedings of the third ACM SIGSOFT/SIGPLAN
software engineering symposium o n Practical software development en-
vironments, pages 25–34, 1988. doi:10.1 145/64135.65006.

Kazutaka Matsuda and Meng W ang. FliPpr: A prettier invertible p rint-
ing system. In Programming L anguages and Systems, 22nd European
Symposium o n P rogramming, ESOP 2013, volume 7792 of LNCS, p ages
101–120, 2013. doi:10.1007/978-3-642-37036-66 .

Ulf Norell. Towards a p ractical p rogramming language based on d epen-
dent type theory. PhD thesis, Chalmers University of T echnology and
G ¨oteborg University, 2007.

Derek C. Oppen. Prettyprinting. ACM Transactions on P rogramming L an-
guages and Systems, 2(4):465–483, 1980. d oi: 10.1145/3571 14.3571 15.

Simon Peyton J ones. John Hughes’s and Simon P eyton Jones’s pretty
printer combinators. Haskell source code, 1996. A more recent ver-

sion of the library is, at the time of writing, available f rom h ttp :
//hackage .haskell .org/package/pretty.

Tillmann Rendel and Klaus Ostermann. Invertible syntax descriptions:
Unifying parsing and pretty printing. In H askell’10, Proceedings of the

2010 ACM SIGPLAN Haskell S ymposium, pages 1–12, 2010. doi: 10. 9(2):1 19–127, 1983. doi: 10.1 109/TSE.1983.236456.

1145/1863523.1863525. S. Doaitse Swierstra and Olaf Chitil. Linear, bounded, functional pretty-
G. A. Rose and J . W elsh. Formatted programming languages. Soft- printing. Journal of Functional P rogramming, 19(1): 1–16, 2009. doi: 10.

ware: Practice and E xperience, 11(7):651–669, 1981. doi:10.1002/spe. 1017/S0956796808006990.

4380110702. Philip Wadler. A prettier printer. In The Fun of Programming. Palgrave
Lisa F . Rubin. Syntax-directed pretty p rinting—a first step towards a Macmillan, 2003.

syntax-directed editor. I EEE Transactions on Software E ngineering, SE-

12

	Introduction
	Grammars
	Pretty-Printers
	Examples
	Boolean Literals
	Expressions
	Expressions, Take Two
	Identifiers
	Other Examples

	Renderers
	An Ugly-Renderer
	Wadler's Renderer

	Related Work
	Conclusion

