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ABSTRACT
Since 2005, p rocessor designers have increased core counts to ex-
ploit Moore’s Law scaling, rather than focusing on single-core per-
formance. The failure ofDennard scaling, to which the shift to mul-
ticore parts is p artially a response, may soon limit multicore scaling
just as single-core scaling has been curtailed. T his paper models
multicore scaling limits b y combining device scaling, single-core
scaling, and multicore scaling to measure the speedup p otential for
a set of parallel workloads for the n ext five technology generations.
For device scaling, we use both the ITRS p rojections and a set
of more conservative device scaling p arameters. To model single-
core scaling, we combine measurements from over 150 p rocessors
to derive Pareto-optimal frontiers for area/performance and p ow-
er/performance. Finally, to model multicore scaling, we b uild a de-
tailed p erformance model of upper-bound p erformance and lower-
bound core p ower. The multicore designs we study include single-
threaded CPU-like and massively threaded GPU-like multicore chip
organizations with symmetric, asymmetric, dynamic, and composed
topologies. The study shows that regardless of chip organization
and t opology, multicore scaling is power limited to a degree not
widely appreciated by the computing community. Even at 22 nm



(just one year from now), 21% of a fixed-size chip must b e powered
off, and at 8 nm, this number grows to more than 50%. Through
2024, only 7.9× average speedup is possible across commonly used
p20a2ra4ll,eo ln wlyo7 rk.9l×oaa dvse, laegaevis npge ad unepa irslp yo 2s4si-bfoleld a gap fc roomm mao target eodf
doubled performance per generation.

Categories and Subject Descriptors: C.0 [Computer Systems Or-
ganization] General —M odeling of computer architecture; C.0
[Computer Systems Organization] General — System architectures

General Terms: Design, Measurement, Performance

Keywords: Dark Silicon, Modeling, Power, Technology Scaling,
Multicore

1. INTRODUCTION
Moore’s Law [24] (the doubling of transistors on chip every 18

months) has been a fundamental driver of computing. For the past
three decades, through device, circuit, microarchitecture, architec-
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ture, and compiler advances, Moore’s L aw, coupled with Dennard
scaling [11], has resulted in commensurate exponential performance
increases. The r ecent shift to multicore designs has aimed to in-



crease the number of cores along with transistor count increases,
and continue the proportional scaling of p erformance. As a re-
sult, architecture r esearchers have started focusing on 100-core and
1000-core chips and related research topics and called for changes
to the undergraduate curriculum to solve the parallel programming
challenge for multicore designs at these scales.

With the failure of Dennard scaling–and thus slowed supply volt-
age scaling–core count scaling may b e in j eopardy, which would
leave the community with no clear scaling path to exploit contin-
ued transistor count increases. Since future designs will be p ower
limited, h igher core counts must provide performance gains despite
the worsening energy and speed scaling of transistors, and given
the available p arallelism in applications. By studying these charac-
teristics together, it is possible to predict for how many additional
technology generations multicore scaling will provide a clear b en-
efit. Since the energy efficiency of devices is not scaling along with
integration capacity, and since few applications (even from emerg-
ing domains such as r ecognition, mining, and synthesis [5]) have
parallelism levels that can efficiently use a 100-core or 1000-core
chip, it is critical to understand how good multicore performance
will be in the long term. In 2024, will processors have 32 times the
performance of p rocessors f rom 2008, exploiting five generations
of core doubling?

Such a study must consider devices, core microarchitectures,
chip organizations, and b enchmark characteristics, applying area
and p ower limits at each technology node. This paper consid-
ers all those factors together, projecting u pper-bound performance
achievable through multicore scaling, and measuring the effects of
non-ideal device scaling, including the p ercentage of “dark silicon”
(transistor under-utilization) on future multicore chips. Additional
projections include best core organization, best chip-level topology,



and optimal number of cores.
We consider technology scaling projections, single-core design

scaling, multicore design choices, actual application b ehavior, and
microarchitectural features together. Previous studies have also
analyzed these features in various combinations, but not all to-
gether [8, 9, 10, 15, 16, 21, 23, 28, 29]. T his study builds and
combines three models to project performance and fraction of “dark
silicon” on fixed-size and fixed-power chips as listed b elow:

• Device scaling model (DevM): area, frequency, and p ower
requirements agt mfuotdureel t(eDcehnvMol)o:gya rneoad,ef rse through 2 a0n2d4p.

• Core scaling model (CorM): power/performance and area/
Cpeorrfeors mcaanlincge sm inogdlee lc( oCreo rPMar)et:op pforwonetire/prse rdfoerrimveadn cfreo man da a larergae/
set of diverse microprocessor designs.

• Multicore scaling model (CmpM): area, power and perfor-

Figure 1: Overviewo ft hem odelsa ndt hem ethodology



mance of any application for “any” chip topology for CPU-
like and GPU-like multicore p erformance.

• D evM ×CorM: Pareto frontiers at future technology nodes;
any M pe× rfoC romraMnc:eP aimreptorof vreomnetienrtss faot rf uftuutruert ee ccohnreosl owgyilln ocodemse;

only at the cost of area or power as defined by t hese curves.

• CmpM×DevM×CorMand an exhaustive state-space search:
CmmaxpimMu×mD emvMulti×cCoroer Mspe aendduapns fxohra fuusttuivree stteacteh-nsoplaocgeys neaorcdhe:s
while enforcing area, power, and benchmark constraints.

The results from this study provide detailed best-case multicore
performance speedups for future technologies considering r eal ap-
plications from the PARSEC benchmark suite [5]. Our results eval-
uating the PARSEC benchmarks and our upper-bound analysis con-
firm the following intuitive arguments:

i) Contrary to conventional wisdom on p erformance improve-
ments from using multicores, over five technology generations, only
7.9× average speedup is possible using ITRS scaling.

9ii×) aWvehrialeg etrs apneseidstuopr disi pmoesnssiibolensu csionngtiI nTuRe Sscs aclainlingg, p ower limita-
tions curtail the u sable chip fraction. At 22 nm (i.e. in 2012), 21%
of the chip will b e dark and at 8 nm, over 50% of the chip will not
be utilized using ITRS scaling.

iii) Neither CPU-like nor GPU-like multicore designs are suffi-
cient t o achieve the expected p erformance speedup levels. Radical
microarchitectural innovations are necessary to alter the p ower/per-
formance Pareto frontier to deliver speed-ups commensurate with
Moore’s Law.

2. OVERVIEW



Figure 1 shows how this p aper combines models and empirical
measurements to project multicore p erformance and chip utiliza-
tion. There are three components used in our approach:
Device scaling model (DevM): We b uild a device-scaling model
that provides the area, p ower, and frequency scaling factors at tech-
nology nodes from 45 nm to 8 nm. We consider ITRS Roadmap
projections [19] and conservative scaling parameters from Borkar’s
recent study [7].
Core scaling model (CorM): The core-level model provides the
maximum p erformance that a single-core can sustain for any given
area. Further, it provides the minimum power (or energy) that must
be consumed to sustain this level of performance. To quantify, we
measure the core performance in terms of SPECmark. We consider
empirical data from a large set of processors and use curve fitting
to obtain the Pareto-optimal frontiers for single-core area/perfor-
mance and power/performance tradeoffs.
Multicore scaling model (CmpM): W e model two mainstream
classes ofmulticore organizations, multi-core CPUs and many-thread
GPUs, which represent two extreme points in the threads-per-core
spectrum. The CPU multicore organization represents Intel Nehalem-
like, heavy-weight multicore designs with fast caches and high single-
thread performance. The GPU multicore organization represents
NVIDIA Tesla-like lightweight cores with heavy multithreading
support and p oor single-thread performance. For each multicore
organization, we consider four topologies: symmetric, asymmet-
ric, dynamic, and composed (also called “fused” in the literature).
Symmetric M ulticore: The symmetric, or h omogeneous, multicore
topology consists of multiple copies of the same core operating at
the same voltage and frequency setting. In a symmetric multicore,
the r esources, including the p ower and the area budget, are shared
equally across all cores.



Asymmetric M ulticore: The asymmetric multicore topology con-
sists of one large monolithic core and many identical small cores.
The design leverages the high-performing large core for the serial
portion of code and leverages the numerous small cores as well as
the large core to exploit the parallel portion of code.
Dynamic M ulticore: The dynamic multicore topology is a varia-
tion of the asymmetric multicore topology. During parallel code
portions, the large core is shut down and, conversely, during the
serial portion, the small cores are turned off and the code r uns only
on the large core [8, 27].
Composed M ulticore: The composed multicore topology consists
of a collection of small cores that can logically fuse together to
compose a high-performance large core for the execution of the
serial portion of code [18, 20]. In either serial or parallel cases, the
large core or the small cores are used exclusively.

Table 1 outlines the design space we explore and explains the
roles of the cores during serial and parallel portions of applica-

Table 1: CPU and GPU topologies (ST Core: Single-Thread Core and MT: Many-Thread Core)

SymmetricAsymmetricDynamicComposed
MuCltPicUoresPSearraialllel1NS S TTC C oorrees11L L aarrggee  SSTT C Coorree+ N  SmallS T CoresN1L  SamrgaellS S TTC C ooreres1NL S amrgaellS S TTC C ooreres

MuGltiPcUoresSPaerraialllel1N ((M M1MT TuTlhC t Cireoporlaeredes) Threads)11L  ((L11aaT  rTrgghheerrSeS e aaTTdd)C )C oorree+ N (MS mualtlilpM leTT hC roeraedss)1N((L M1S amT rughaletlirlpeS M laTedT)T C hC ororeeraedss)1NL ((1S MamrT ughaleltrliS epM aTldeTC )T oC hrroeeraedss)

Table 2: Scaling factors for ITRS and Conservative projections.

Tech FSrecqaulienngcy SVcaldidng CaSpaccalitiangnce SPcoawlinegr
Node Factor Factor Factor Factor

Year (nm) (/45nm) (/45nm) (/45nm) (/45nm)

2010 45∗ 1.00 1.00 1.00 1.00
2012 32∗ 1.09 0.93 0.7 0.66



RST 22001185 1226†† 32..3218 00..8754 00..3213 00..5384
I2021 11† 4.17 0.68 0.13 0.25

2024 8† 3.85 0.62 0.08 0.12
3 1% frequency increase and 35% power r eduction per node

Caveovtrenis62%2222200000001111f 148680r2equen21341c826521yi ncre111111a......30211s3e500904a nd2 3010%000......808988p 406384owerr ed010000u......0374c520225t64ionp ern 100000o......273d520919e220
∗: Extended Planar Bulk Transistors, †:Multi-Gate Transistors

tions. Single-thread (ST) cores are u ni-processor style cores with
large caches and many-thread (MT) cores are GPU-style cores with
smaller caches; both are described in more detail in Section 5.

This paper describes an analytic model that provides system-
level p erformance using as input the core’s performance (obtained
from CorM) and the multicore’s organization (CPU-like or GPU-
like). Unlike previous studies, the model considers application
behavior, its memory access pattern, the amount of thread-level
parallelism in the workload, and microarchitectural features such
as cache size, memory bandwidth, etc. W e choose the PARSEC
benchmarks because they represent a set of highly parallel applica-
tions that are widely studied in the research community.

Heterogeneous configurations such as AMD F usion and Intel
Sandybrige combine CPU and GPU designs on a single chip. The
asymmetric and dynamic GPU topologies resemble those two de-
signs, and the composed topology m odels configurations similar to



AMD Bulldozer. For GPU-like multicores, this study assumes t hat
the single ST core does not p articipate in parallel work. Finally,
our methodology implicitly models heterogeneous cores of differ-
ent types (mix of i ssue widths, frequencies, etc.) integrated on one
chip. Since we perform a per-benchmark optimal search for each
organization and topology, we implicitly cover the upper-bound of
this heterogeneous case.

3. DEVICE MODEL
We consider two different technology scaling schemes to build a

device scaling model. The first scheme u ses projections from the
ITRS 2010 technology roadmap [19]. The second scheme, which
we call conservative scaling, is based on predictions presented b y
Borkar and represents a less optimistic view [7]. The p arameters
used for calculating the p ower and p erformance scaling factors are
summarized in Table 2. For ITRS scaling, frequency is assumed to
scale linearly with respect to FO4 inverter delay. The power scaling
factor is computed using the p redicted frequency, voltage, and gate
capacitance scaling factors in accordance with the P = αCVd2df
equation. The ITRS roadmap predicts that multi-gate MOSFETs,
such as FinTETs, will supersede planar bulk at 22 nm [19]. Table 2
also highlights the key difference between the two p rojections. De-
tails on how we handle the partitioning between leakage p ower and
dynamic power is explained in Section 4 .2.

4. CORE MODEL

This paper uses Pareto frontiers to provide single-core power/per-
formance and area/performance tradeoffs at each technology node
while abstracting away specific details of the cores. The Pareto-
optimal core model provides two functions, A (q) and P(q), repre-



senting the area/performance and power/performance tradeoffPareto
frontiers, where q is the single-threaded performance of a core
measured in SPECmarks. These functions are derived from the
data collected for a large set of p rocessors. The power/perfor-
mance Pareto frontier r epresents the optimal design p oints in terms
of power and p erformance [17]. Similarly, the area/performance
Pareto frontier represents the optimal design points in the area/per-
formance design space. Below, we first describe why separate area
and p ower functions are required. Then, we describe the basic
model and empirical data u sed to derive the actual Pareto frontier
curves at 45 nm. Finally, we project these power and area Pareto
frontiers to future technology nodes using the device scaling model.

4.1 Decoupling A rea and Power Constraints

Previous studies on multicore p erformance modeling [8, 9, 10,
16, 21, 23, 29] use Pollack’s rule [6] to denote the tradeoff be-
tween transistor count and performance. Furthermore, these stud-
ies consider the power consumption of a core to be directly propor-
tional to its transistor count. This assumption makes power an area-
dependent constraint. However, power is a function of not only
area, but also supply voltage and frequency. Since these no longer
scale at historical rates, P ollack’s rule is insufficient for modeling
core power. T hus, it is necessary to decouple area and power into
two independent constraints.

4.2 Pareto Frontier Derivation
Figure 2(a) shows the power/performance single-core design space.

We p opulated the depicted design space b y collecting data for 152
real processors (from P54C Pentium to N ehalem-based i7) fabri-
cated at various technology nodes from 600 nm through 4 5 nm.
As shown, the boundary of the design space that comprises the



power/performance optimal p oints constructs the Pareto frontier.
Each p rocessor’s performance is collected from the SPEC website
[26] and the p rocessor’s power is the TDP reported in its datasheet.
Thermal design power, TDP, is the chip power budget, the amount
of p ower the chip can dissipate without exceeding transistors j unc-
tion temperature. InFigure 2(a), the x-axis is the SPEC CPU2006 [26]

Figure 2: Deriving the area/performance and power/performance Pareto frontiers

score (SPECmark) ofthe processor, and the y-axis is the core power
budget. All SPEC scores are converted to SPEC CPU2006 scores.
Empirical data for the core model: To build a technology-scalable
model, we consider a family of processors at one technology node
(45 nm) and construct the frontier for that technology node. We
used 20 representative Intel and AMD processors at 4 5 nm (Atom
Z520, Atom 230, Atom D510, C2Duo T9500, C2Extreme QX9650,
C2Q-Q8400, Opteron 2393SE, Opteron 2381HE, C2Duo E7600,
C2Duo E8600, C2Quad Q9650, C2Quad QX9770, C2Duo T9900,



Pentium SU2700, Xeon E 5405, X eon E5205, Xeon X3440, Xeon
E7450, i7-965 ExEd). The power/performance design space and
the cubic Pareto frontier at 4 5 nm, P(q), are depicted in Figure 2(b).

To derive the quadratic area/performance Pareto frontier (Fig-
ure 2(c)), die p hotos of four microarchitectures, including Intel
Atom, Intel Core, AMD Shanghai, and Intel Nehalem, are used
to estimate the core areas (excluding level 2 and level 3 caches).
The Intel Atom Z 520 with a 2.2 W total TDP r epresents the lowest
power design (lower-left frontier point), and the Nehalem-based
Intel Core i 7-965 Extreme Edition with a 130 W total TDP rep-
resents the highest p erforming (upper-right frontier point). Other
low-power architectures, such as those from ARM and Tilera, were
not included because their SPECmark were not available for a mean-
ingful p erformance comparison.

Since the focus of this work is to study the impact of power con-
straints on logic scaling rather than cache scaling, we derive the
Pareto frontiers using only the portion of chip p ower budget (TDP)
allocated to each core. To compute the power budget of a single
core, the power budget allocated to the level 2 and level 3 caches
is estimated and deducted from the chip TDP. In the case of a mul-
ticore CPU, the remainder of the chip power budget is divided b y
the number of cores, resulting in the p ower b udget allocated to a
single core (1.89 W for the Atom core in Z520 and 3 1.25 W for
each Nehalem core in i7-965 Extreme Edition). W e allocate 20%
of the chip power b udget to leakage p ower. As shown in [25], the
transistor threshold voltage can be selected so that the maximum
leakage power is always an acceptable ratio of the chip p ower b ud-
get while still meeting the power and performance constraints. W e
also observe that with 10% or 30% leakage p ower, we do not see
significant changes in optimal configurations.
Deriving the core m odel: To derive the Pareto frontiers at 45 nm,



we fit a cubic polynomial, P (q), to the points along the edge of the
power/performance design space. We fit a quadratic p olynomial
(Pollack’s rule), A (q), to the points along the edge of the area/per-
formance design space. W e used the least square r egression method
for curve fitting such that the frontiers enclose all design points.
Figures 2(b) and 2(c) show the 45 nm p rocessor p oints and identify
the power/performance and area/performance Pareto frontiers. The
power/performance cubic polynomial P (q) function (Figure 2(b))
and the area/performance q uadratic polynomial A (q) (Figure 2(c))
are the outputs of the core model. The p oints along the Pareto fron-
tier are used as the search space for determining the best core con-
figuration by the multicore-scaling model. W e discretized the fron-
tier into 100 p oints to consider 100 different core designs.
Voltage and f requency scaling: When deriving the Pareto fron-
tiers, each p rocessor data point was assumed to operate at its opti-
mal voltage (Vddmin) and frequency setting (Freqmax). Figure 2(d)
shows the result of voltage/frequency scaling on the design p oints
along the power/performance frontier. As depicted, at a fixed Vdd
setting, scaling down the frequency f rom Freqmax, results in a p ow-
er/performance p oint inside of the optimal Pareto curve, or a sub-
optimal design p oint. Scaling voltage up, on the other hand, and
operating at a new Vddmin and Freqmax setting, results in a different
power-performance point along the frontier. Since we investigate
all the points along the Pareto frontier to find the optimal multi-
core configuration, voltage and frequency scaling does not require
special consideration in our study. I f an application dissipates less
than the p ower budget, we assume that the voltage and frequency
scaling will be utilized to achieve the highest possible p erformance
with the minimum power increase. T his is possible since voltage
and frequency scaling only changes the operating condition in a
Pareto-optimal fashion. Hence, we do not need to measure per-



benchmark power explicitly as reported in a recent study [12].
Table 3: CmpMU equations: corollaries of Amdahl’s Law for
power-constrained multicores.
Symmetric

Sp eeNdSyump(Sqym)(= f,m qi)n= (DIS(AE1(U−Aq(Rqf)))EA+,NPTS1y(DmqP(q)f))SU(q)
Asymmetric

Sp eeNdAuspymA(syqmL,(qfS,q)L =,q mS)in= (DISE(1U−(ARqfAL)E()qA+S−)AN(AqsLym)(q,LT1,qDSP)PS(f−UqSP(q)(SqL)+)S)U(qL)
Dynamic

S peNeDduynp(qDLy,nq(Sf,)q= L,m qSi)n(= DIES(AU1R(−AEqf(L)qA)S−+)A(NqDLy)n1(,qLPT,q(qfSDS)PS)U)(qS)
Composed

S peedNuCpoCmopmospod(seqdL(,fq,Sq)L,= qS m)in= ((1DSU(1+I(−Eτqf)AL)AR)(E+qASN)C,omTpDPo1sPe(qd−S(Pq)Lfq,LqS))SU(qS)
4.3 Device Scaling ×Core Scaling

To study core scaling in future technology nodes, we scaled the
45 nm Pareto frontiers to 8 nm by scaling the power and perfor-
mance of each p rocessor data point using the projected DevM scal-
ing factors and then re-fitting the Pareto optimal curves at each
technology node. Performance, measured in SPECmark, is as-
sumed to scale linearly with frequency. This is an optimistic as-
sumption, which ignores the effects of memory latency and band-
width on the p erformance. Thus actual performance through scal-



ing is likely to be lower. Figures 2(e) and 2(f) show the scaled
Pareto frontiers for the ITRS and conservative scaling schemes.
Based on the optimistic ITRS roadmap predictions, scaling a mi-
croarchitecture (core) from 4 5 nm to 8 nm will result in a 3.9× per-
cforromarachnciete cimturpero( vceomree)nf rt oanmd 4 a5nn m88t %o r8e dnumcw tioinll irens power consump-
tion. Conservative scaling, however, suggests that performance will
increase only b y 34%, and power will decrease by 74%.

5. MULTICORE MODEL
We first present a simple upper-bound (CmpMU) model for mul-

ticore scaling that builds upon Amdahl’s Law to estimate the speedup
of area- and power-constrained multicores. T o account for microar-
chitectural features and application b ehavior, we then develop a de-
tailed chip-level model (CmpMR) for CPU-like and GPU-like mul-
ticore organizations with different topologies. Both models use the
A(q) and P(q) frontiers from the core-scaling model.

5.1 Amdahl’s Law Upper-bounds: CmpMU

Hill and Marty extended Amdahl’s Law [1] to study a r ange of
multicore topologies by considering the fraction of parallel code in
a workload [16]. Their models describe symmetric, asymmetric,
dynamic, and composed multicore topologies, considering area as
the constraint and using Pollack’s rule–the performance of a core
is proportional to the square root of its area–to estimate the perfor-
mance of multicores. W e extend their work and incorporate power
as a primary design constraint, independent of area. T hen, we de-
termine the optimal number of cores and speedup for topology. The
CmpMU model does not differentiate between CPU-like and GPU-
like architectures, since it abstracts away the chip organization.

PerA mdahl’sL aw[ 1],s ystems peedupi s (1−f1)+Sf wheref r epre-



sents the portion that can be optimized, or enhanced, and S repre-
sents the speedup achievable on the enhanced portion. In the case
of parallel processing with perfect parallelization, f can be thought
of as the parallel portion of code and S as the number of proces-
sor cores. Table 3 lists the derived corollaries for each multicore
topology, where TDP is the chip power budget and DIEAREA is the
area budget. The q parameter denotes the p erformance of a single
core. Speedup is measured against a baseline core with perfor-
mance qBaseline. The upper-bound speedup of a single core over the
baseline is computed as S U(q) = q/qBaseline.
Symmetric Multicore: The parallel fraction (f) is distributed across
the NSym(q) cores each of which has S U(q) speedup over the b ase-
line. The serial code-fraction, 1− f , runs only on one core.
lAinsey.mT mheets reirci aMl cuoldtiec-ofrraec: Aionll ,c1 o−r esf ,(ir nucnlsud oinnlgy t ohne olanregec ocroer.e), con-
tribute to execution of the parallel code. T erms qL and qS denote
performance of the large core and a single small core, r espectively.
The number of small cores is bounded b y the power consumption
or area of the large core.
Dynamic Multicore: Unlike the asymmetric case, if p ower is the
dominant constraint, the number of small cores is not bounded by
the p ower consumption of the large core. However, if area is the
dominant constraint, the number of small cores is bounded b y the
area of the large core.
Composed Multicore: The area overhead supporting the com-
posed topology i s τ. T hus, the area of small cores increases b y
a factor of (1 + τ). No power overhead is assumed for the compos-
ability support in the small cores. We assume that τ increases from
10% up to 400% depending on the total area of the composed core.
We assume p erformance of the composed core cannot exceed per-
formance of a scaled single-core Nehalem at 45 nm. The composed
core consumes the p ower of a same-size uniprocessor core.



5.2 Realistic P erformance Model: CmpMR

The above corollaries provide a strict upper-bound on parallel
performance, but do not have the level of detail required to explore
microarchitectural features (cache organization, memory bandwidth,
number of threads per core, etc.) and workload behavior (mem-
ory access pattern and level of multithread parallelism in the ap-
plication). Guz et al. proposed a model to consider first-order im-
pacts of these additional microarchitectural features [13]. W e ex-
tend their approach to b uild the multicore model that incorporates
application b ehavior, microarchitectural features, and physical con-
straints. Using this model, we consider single-threaded cores with
large caches to cover the CPU multicore design space and mas-
sively threaded cores with minimal caches to cover the GPU mul-
ticore design space. For each of these multicore organizations, we
consider the four possible topologies.

The CmpMR model formulates the performance of a multicore
in terms of chip organization (CPU-like or GPU-like), frequency,
CPI, cache hierarchy, and memory bandwidth. The model also in-
cludes application b ehaviors such as the degree of t hread-level par-
allelism, the frequency of load and store instructions, and the cache
miss rate. To first order, the model considers stalls due to mem-
ory dependences and resource constraints (bandwidth or functional
units). The input p arameters to the model, and how, if at all, they
are impacted by the multicore design choices are listed in Table 4 .

Microarchitectural Features

Multithreaded performance (Perf) ofan Multithreaded performance
(Perf) of an either CPU-like or GPU-like multicore running a fully
parallel (f = 1) and multithreaded application is calculated in terms
of instructions per second in Equation (1) b y multiplying the num-



ber of cores (N) by the core u tilization (η) and scaling b y the r atio
of the p rocessor frequency to CPIexe:

Perf = min NCfPrIeeqxeη,rmB×Wm mLa1x×b ! (1)

Table 4 : CmpMR parameters with default values from 45 nm Nehalem

Parameter Description Default Impacted By

CTNfrPeqIexe NCCNyouucrmmelbbe fsreerrep q o eouffre tci  nhnocrsreyterasu( dMcstiHop nezr)( zc eorroe-latencyc achea ccesses) 3241100 CCMCooourrreeeltic S PP oeteyrrrlffeoeoT rrommpaaonnlccoeeg,yA pplication
CL1 L1cache size per core (KB) 64 Core Style

tCL1L2 LL21 ac accchesess it zimeep  (ecryc chleips)( MB) 32 -CoreS tyle,M ulticoreT opology
tL2 L2 access time (cycles) 20 -
tmem Memory access t ime (cycles) 426 Core Performance
BWmax Maximum memory bandwidth (GB/s) 200 Technology Node
b Bytes per memory access (B) 64 -
f Fraction of code that can be parallel varies Application
rm Fraction of instructions that are memory accesses varies Application
αL1 ,βL1 L1cache miss rate function constants varies Application
αL2, βL2 L2 cache miss r ate function constants varies Application

The CPIexe parameter does not include stalls due to cache accesses,
which are considered separately in the core utilization (η). The core
utilization is the fraction of t ime that a t hread running on the core
can keep it b usy. It is modeled as a function of the average time
spent waiting for each memory access (t), fraction of instructions
that access the memory (rm), and the CPIexe:

η= m in1,1+ t TCPrImexe (2)
The average time spent waiting for memory accesses is a function
of the time to access the caches (tL1 and tL2), time to visit memory
(tmem), and the p redicted cache miss r ate (mL1 and m L2):

t = (1− mL1)tL1 + mL1(1 − mL2)tL2 + mL1mL2tmem (3)



mL1= TCβLL11!1−αL1 andm L2= NCTβL2L2!1−αL2 (4)

The P erf part of the CmpMR model is b ased on Guz et al.’s
model [13], and is summarized by Equations (1)-(4).

One of the contributions of this work is incorporating real ap-
plication behavior and realistic microarchitectural features into the
multithreaded speedup formulation at each technology node. The
parameters listed in T able 4 define the microarchitectural design
choices for a multicore topology, while taking into account the
application characteristics and behavior. T o compute the overall
speedup of different multicore topologies using the CmpMR model,
we calculate the baseline multithreaded p erformance for all bench-
marks by providing the Perf equation with the inputs correspond-
ing to a Quad-core Nehalem at 45 nm.
Multi-level caches: To model a second level of cache, we add a
miss r ate prediction function similar to that for the single layer of
cache. This extension is completely modeled by a small modifi-
cation to the average memory access time, as shown in Equation
(3).
Obtaining frequency and CPIexe from Pareto frontiers: T o in-
corporate the Pareto-optimal curves into the CmpMR model, we
convert the SPECmark scores into an estimated CPIexe and core
frequency. We assume the core frequency scales linearly with p er-
formance, from 1.5 GHz for an Atom core to 3.2 GHz for a Ne-
halem core. Each application’s CPIexe is dependent on its instruc-
tion mix and use of hardware optimizations (e.g., functional u nits
and out-of-order processing). Since the measured CPIexe for each
benchmark at each technology node is not available, we use the
CmpMR model t o generate per b enchmark CPIexe estimates for



each design point along the Pareto frontiers. With all other model
inputs kept constant, we iteratively search for the CPIexe at each
processor design point. W e start by assuming that the Nehalem
core has a CPIexe of ‘. Then, the smallest core, an Atom proces-
sor, should have a CPIexe such that the ratio of its CmpMR per-
formance to the Nehalem core’s CmpMR performance is the same
as the r atio of their SPECmark scores. Since the performance in-
crease between any two points should be the same using either the
SPECmark score or CmpMR model, we continue in this fashion to
estimate a per benchmark CPIexe for each processor design p oint.
We observe CPIexes greater than 10‘ for the Atom node and that
CPIexe decreases monotonically to ‘ for the Nehalem node. We
assume CPIexe does not change with technology node, while fre-
quency scales as discussed in Section 4.3. This flexible approach
allows us to use the SPECmark scores to select processor design
points from the Pareto optimal curves and generate reasonable per-
formance model inputs.

Application Behavior

To characterize an application, the required input p arameter models
are cache b ehavior, fraction of instructions that are loads or stores,
and fraction of parallel code. For the PARSEC applications, we
obtain this data from two previous studies [4, 5]. To obtain f , the
fraction of parallel code, for each benchmark, we fit an Amdahl’s
Law-based curve to the reported speedups across different numbers
of cores from both studies. This fit shows values of f between 0.75
and 0.9999 for individual b enchmarks.

Multicore Topologies

Table 1described the combinations of ST (single-thread) and MT



(many-thread) cores constructing each ofthe four CPU/GPU topolo-
gies. The number of cores that fit in the chip’s area and power
budget is chosen using the equations for N in Table 3. For each de-
sign point, we compute serial performance (PerfS ) using Equations
(1)-(4) with a single thread and the serial core parameters and par-
allel performance (PerfP) using Equations (1)-(4) with the number
of parallel cores and the parallel core parameters. We also com-
pute the performance of a single Nehalem core at 45 nm as our
baseline (PerfB). The serial portion of code is thus sped up by
SR,Serial = P erfS /PerfB and the parallel portion of the code is sped
up b y SR,Parallel = PerfP/PerfB. The overall speedup is computed
below; this formulation captures the impact of p arallelism on all
four topologies:

Sp eedupR = 1/?SR1,S−efrial + SR,Pfarallel? (5)

Table 5: E ffect of assumptions on CmpMR accuracy. Assumptions
lead to ↑ (slightly higher), ⇑ (higher) or ↓ (slightly lower) p redicted
lspeaededt oup↑ s( (solirg hhatlvye hnigo heeffre)c,⇑t ( (—hig))h.

Assumption CImPUpaS ctpe oend GIPmUpaS ctpeo ned
ahµcrMITnhteermrecaodornyS nCw eocatnpiotT ennimN tieoent:w:0 0 orkL atency:0 ⇑↑↑ ⇑↑⇑
↑↑

tiona TCahrcehaedH  SitynR cahte & F Cuonmctiomnunication:0 ↑ o↑r↓ ↑ o⇑r↓
pplicA WThorrekaldoaD da tTayS phe:aH rinogm:o0 geneous ↑↓ ↑
↑↑



(a) Speedup (b) P erformance
Figure 3: CmpMR validation

Physical Constraints

A key component of the detailed model is the set of input param-
eters that model the microarchitecture of the cores. As discussed,
we model two styles of cores: single-thread (ST) and many-thread
(MT). For single-thread cores, we assume each core has a 64 KB
L1 cache, and chips with only ST cores have an L 2 cache that is
30% of the chip area. Many-thread cores have small L1 caches (32
KB for every 8 cores), support multiple hardware contexts (1024
threads per 8 cores), a thread register file, and no L 2 cache. F rom
Atom and T esla die p hoto inspections, we estimate that 8 small MT
cores, their shared L1 cache, and their thread register file can fit in
the same area as one Atom p rocessor. W e assume a similar corre-
spondence with power, discussed in Section 7.6. W e further assume
that off-chip bandwidth (BWmax) increases linearly as process tech-
nology scales down while the memory access t ime is constant.



Model A ssumptions

The model’s accuracy is limited b y our assumptions which are op-
timistic. T hus, the model only over-predicts p erformance, making
our speedup p rojections optimistic. This model allows us to esti-
mate the first-order impact of caching, p arallelism, and threading
under several key assumptions. It optimistically assumes t hat the
workload is homogeneous, work i s infinitely parallel during par-
allel sections of code, and no thread synchronization, operating
system serialization, or swapping overheads occur. We also as-
sume memory accesses n ever stall due to a previous access. Each
of these assumptions could cause the model to overpredict perfor-
mance, making the model and h ence p rojected speedups optimistic.
Cache behaviors may lead to over- or under-prediction. The model
assumes that each thread effectively only sees its own slice of the
cache and the cache hit rate function may over or underestimate.
Table 5 qualitatively describes the impact of these assumptions.

Model Validation

To validate the CmpMR model, we compare the speedup projec-
tions from the model to measurement and simulation results for
both CPU and GPU organizations. For the CPU case, we compare
the model’s p redicted speedup to measured PARSEC speedup on a
quad-Pentium 4 multicore [4]. The model is configured to match
this system. We validate GPU speedup projections b y compar-
ing the model’s output to GPGPUSim [3] simulation results. Both
model and simulator compare speedups of a 224-core GPU over a
32-core GPU. We use GPGPUSim’s 12 CUDA b enchmarks since
GPU implementations of PARSEC are not available. Figure 3(a),
which includes both CPU and GPU data, shows that the model is
optimistic. CmpMR underpredicts speedups for two b enchmarks;



these speedups are greater than 7×(the increase innumber ofcores).
eTseo sstpreoendgulpys aadrveagnrceea oeurtrh GanP7U× c(lathimei,n wcree aaslesoin nneuedm btoe p rove tehs)e.

model’s raw p erformance p rojection is accurate or optimistic. As
depicted in F igure 3(b), the model’s GPU performance p rojection is
validated b y comparing its output to the results from a r eal system,
NVIDIA 8600 GTS, using the data from [3]. Except for a known
anomaly that also occurs inGPGPUsim, CmpMR consistently over-
predicts raw performance.

Using our model, we find 4× geometric-mean and 12× maxi-
muUms snpge eoduurp m foodre Pl ,A wReSEf inCd db e 4n×cg hemoamrkest oicn- mTeeasnla acnodm1 p2ar×edm atox a-
quad-core Nehalem. While our results are impressively close to
Intel’s empirical measurements using similar b enchmarks [22], the
match in the model’s maximum speedup p rediction (12× vs 11×
imn tthceh Ii nntet hl estum dyo)d eils’ sanm aanxiommuamly. pOeuerd umpod perel ddoicetsio nno(t a2c×co vusnt1 1fo×r
specialized compute units, which contribute to the speedup in [22].

6. DEVICE ×CORE ×CMP SCALING
We now describe how the three models are combined to p ro-

duce projections for optimal p erformance, number of cores, and
amount of dark silicon. To determine the b est core configuration
at each technology node, we consider only the p rocessor design
points along the area/performance and power/performance Pareto
frontiers as they represent the most efficient design points. The
following outlines the process for choosing the optimal core con-
figuration for the symmetric topology at a given technology node
(the p rocedure is similar for the other topologies):

• The area/performance Pareto frontier is investigated, and all
processor pdeersfiogrmn apnocinetsP aalreontog ftrhoen ftiroernti sieri n averes ctigonatseidde,ra endd.

• For each area/performance design point, the multicore is con-
Fstorurcetaecdh satraerati/npegr fworitmh an cseindgelsei cnorpoe.i tW, teh eamddu lotinceo ceoisrec per



iteration and compute the new speedup and the p ower con-
sumption u sing the power/performance Pareto frontier.

• Speedups are computed using the Amdahl’s Law corollaries
(SCpemepduMpUs mareodc eolm) ptou otebdtau insi agn hupep Aemr-dbaouhnl’ds Lora wouc ro rComllparMieRs
model for more realistic performance results u sing the PAR-
SEC benchmarks. The speedup is computed over a quad-
core Nehalem at 45 nm.

• After some number ofiterations, the area limit is hit, or power
wAaftlle riss hmite, noru mwbee srtoafrti sereeaitniogn ps,e thrfeoarmreaanlcime idteisgrhaidt,aot iropno. wAert
this point the optimal speedup and the optimal n umber of
cores is found. The fraction of dark silicon can then be c om-
puted b y subtracting the area occupied by these cores from
the total die area allocated to p rocessor cores.

• The above process is repeated for each technology node us-
iTnhge t aheb svcea lperdo Pceasrseti os frreponetaieterds. oT rh eea ccohr ete power gbyud ngoedte e(u exs--
cluding level 2 and level 3 caches) is held constant at 125
W (core power b udget of a 4-core Nehalem-based multicore
at 45 nm), and the core area b udget is h eld constant at 111
mm2 (area of 4 Nehalem cores at 45 nm, excluding level 2

fraction parallel = 1.0 0.999 0.99 0.97 0.95 0.90 0.80 0.50 0.00

Conservative Scaling
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(a) Optimal number of cores (b) Speedup (c) Percentage dark silicon
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Figure 4 : Amdahl’s law projections for the dynamic topology. Upperbound of all four topologies (x-axis: technology node).

and level 3 caches). The reportedp rojections of dark silicon
are for the area budget that is solely allocated to the cores,
not caches and other ‘uncore ’ components.

This exhaustive search is performed separately for Amdahl’s Law
CmpMU ,CPU-like CmpMR , and GPU-like CmpMR models. We
optimistically add cores until either the power or area b udget is
reached. We also require that doubling the number of cores in-
creases performance b y at least 10%.

7. SCALING AND FUTURE MULTICORES

We begin the study of future multicoredesigns with an optimistic
upper-bound analysis using the Amdahl’s Law multicore-scaling
model, CmpMU. Then, to achieve an understanding of speedups
for real workloads, we consider the PARSEC b enchmarks and ex-
amine b oth CPU-like and GPU-like multicore organizations under
the four topologies using our CmpMR model. W e also describe
sources of dark silicon and perform sensitivity studies for cache
organization and memory b andwidth.

7.1 Upper-bound Analysis using Amdahl’s Law

Figures 4(a)-(c) show the multicore scaling results comprising
the optimal number of cores, achievable speedup, and dark silicon
fraction under conservative scaling. Figures 4(d)-(f) show the same



results using ITRS scaling. The results are only presented for the
dynamic topology, which offers the b est speedup levels amongst
the four topologies. These results are summarized below.

Characteristic Conservative ITRS

Maximum Speedup 11.3× 59×
Typical # of Cores 1<1 5.31×2 <5 951×2
Dark Silicon Dominates —2024

The 59× speedup at 8 nm for highly parallel workloads using
ITRTShe epr 5e9d×ics tipoenesd, wph aicth8 e nxmceef odrs hthigeh elyxpp eacrtaedlle l32w ×o, kisl odaudes t uos tinheg
IoTptRimSip srtiecd dicetvioicnse ,s cwahliincgh epxrcojeeecdtsiot nhse. Wxpee cctoends3i d2e×r ,sc isaldi nuge toof tthhee
Intel Core2 Duo T9900 to clarify. At 4 5 nm, the T9900 has a
SPECmark of 23.58, frequency of 3.06 GHz, TDP of 35 W and
per-core p ower of 15.63 W and are of 22.30 m m2. W ith ITRS scal-
ing at 8nm, T9900 will have SPECmark of 90.78, frequency of
11.78 GHz, core power of 1.88 W , and core area of 0.71 mm2. With
the 125 W power b udget at 8nm, 67 such cores can be integrated.
There is consensus that such power efficiency is unlikely. Further,
our CmpMU model assumes that performance scales linearly with
frequency. These optimistic device and performance assumptions
result in speedups exceeding Moore’s Law.

7.2 Analysis using Real Workloads
We now consider PARSEC applications executing on CPU- and

GPU-like chips. The study considers all four symmetric, asym-
metric, dynamic, and composed multicore topologies (see Table 1)
using the CmpMR realistic model. As discussed before, the model
captures microarchitectural features as well as application behav-
ior. To conduct a fair comparison between different design points,



all speedup results are normalized to the p erformance of a quad-
core Nehalem multicore at 45 nm. In Figure 5, we present the
geometric mean of speedup, best-case speedup, geometric mean of
the optimal number of cores, and geometric mean of the percentage
dark silicon using optimistic ITRS scaling. The symmetric topol-
ogy achieves the lower b ound on speedups; with speedups that are
no more than 10% higher, the dynamic and composed topologies
achieve the upper-bound. The results are presented for b oth CPU-
like and GPU-like multicore organizations. Details for all appli-
cations and topologies are p resented in Figure 8. The results are
summarized below.

Conservative ITRS
Characteristic CPU GPU CPU GPU

Symmetric GM Speedup 3.4× 2.4× 7.7× 2.7×
Dynamic GM Speedup 33..45×× 22..44×× 77..79×× 22..77××
Maximum Speedup 130.5.9×× 120..4 1×× 476.9.6×× 12 1.7.2××
Typical # of Cores 1<0 .96×4 1<0 2.15×6 <6 .66×4 1<1 2.25×6
Dark Silicon Dominates 2016 2012 2021 2015

Figure 5: Speedup and number of cores across technology nodes using symmetric topology and ITRS scaling
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(a) Parallelism (f actual at marker) (b) P ower
Figure 6: Dark silicon bottleneck relaxation using CPU organiza-
tion and dynamic topology at 8 nm with ITRS Scaling

The optimal number of cores projected b y our study seems small
compared to chips such as the NVIDIA F ermi, which has 5 12 cores
at 45 nm. There are two reasons for this discrepancy. First, in our
study we are optimizing for a fixed p ower budget, whereas with
real GPUs the power has b een slightly increasing. Second, our
study optimizes core count and multicore configuration for general
purpose workloads similar to the PARSEC suite. We assume Fermi
is optimized for graphics rendering. When we applied our method-
ology to a graphics kernel (ray tracing) in an asymmetric topology,
we obtained h igher speedups and an optimal core count of 4864 at
8 nm, with 8% dark silicon.

7.3 Sources of Dark Silicon

To understand whether parallelism or power is the primary source



of dark silicon, we examine our model results with power and par-
allelism levels alone varying in separate experiments as shown in
Figure 6 for the 8 nm node (2018). First, we set power to be the
“only” constraint, and vary the level of p arallelism in the PARSEC
applications from 0.75 to 0.99, assuming programmer effort can
somehow realize this. As shown in Figure 6(a), which normalizes
speedup to a quad-core Nehalem at 4 5 nm, we see performance
improves only slowly as the p arallelism level increases, with most
benchmarks reaching a speedup of about only 15× at 99% paral-
lbeelniscmh.m aTrhkes m reaarckheirnsg s hao swpe tehdeu lpevo efl aobfo upatr aonllleylis1 m5× ×ina tth9 e9ir% c purarreanlt-
implementation. If p ower was the only constraint, typical ITRS-
scaling speedups would still be limited to 15×. With conservative
ssccaalliinngg, sthpeise db uespts-cw aoseu lsdps eetildlubp e eisl 6m.i3t×e.d

aWlien g th, ethni sseb ee wst-hcaats sh ea spppeeendsu ipf i psa6 ra.l3le×l.ism alone was the constraint
by allowing the p ower b udget to vary from 50 W to 500 W (our de-
fault b udget is 125 W ) in Figure 6(b). Eight of twelve b enchmarks
show no more than 10X speedup even with practically unlimited
power, i.e. p arallelism is the primary contributor to dark silicon.



Figure 7: Sensitivity studies of L2 size and memory bandwidth us-
ing symmetric topology at 4 5 nm

Only four benchmarks have sufficient p arallelism to even hypothet-
ically sustain Moore’s Law level speedup, but dark silicon due to
power limitations constrains what can b e r ealized.

7.4 Sensitivity Studies
Our analysis thus far examined “typical” configurations and showed

poor scalability for the multicore approach. A natural question is,
can simple configuration changes (percentage cache a rea, memory
bandwidth, etc.) provide significant benefits? Our model allows us
to do such studies, and shows that only small benefits are possi-
ble from such simple changes. W e elaborate on two representative
studies b elow.
L2 cache area: Figure 7(a) shows the optimal speedup at 45 nm
as the amount of a symmetric CPU’s chip area devoted to L2 cache
varies from 0% to 100%. In this study we ignore any increase in
L2 cache p ower or increase in L2 cache access latency. Across the
PARSEC benchmarks, the optimal percentage of chip devoted to
cache varies from 20% to 50% depending on benchmark memory
access characteristics. Compared to a 30% cache area, using opti-
mal cache area only improves performance by at most 20% across
all benchmarks.
Memory bandwidth: Figure 7(b) illustrates the sensitivity ofPAR-
SEC p erformance to the available memory bandwidth for symmet-
ric GPU multicores at 45 nm. As the memory bandwidth increases,
the speedup improves as the bandwidth can keep more threads fed
with data; however, the increases are limited by p ower and/or p ar-
allelism and in 10 out of 12 b enchmarks speedups do not increase



by more than 2× compared to the baseline, 200 GB/s.

Optimal Number ofC oresSpeedupPercentageD arkS ilicon
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Figure 8: Optimal number of cores, speedup over quad-Nehalem at 4 5 nm, and p ercentage dark silicon under ITRS scaling projections using
the CmpMR realistic model.

(a) Conservative Scaling (b) ITRS Scaling
Figure 9: Speedup across process technology nodes over all orga-
nizations and topologies with PARSEC benchmarks

7.5 Summary
Figure 9 summarizes all the speedup p rojections in a single scat-

ter plot. For every b enchmark at each technology node, we plot the
eight possible configurations, (CPU, GPU) ×(symmetric, asym-
emigethritcp , sdysinbalmei cco, cfiogmurpaotsioends),. CTPheU ,sG oliPdU )cu× rv( es yinmdmicaettreisc , p aesryfomr--
mance Moore’s Law or doubling performance with every technol-
ogy node. As depicted, due to the p ower and parallelism limita-
tions, a significant gap exists between what is achievable and what
is expected by Moore’s L aw. Results for I TRS scaling are slightly
better but not b y much. W ith conservative scaling a speedup gap



of at least 22× exists at the 8 nm technology node compared to
oMfo aotre l’eas s Lta 2w2.× A esxsisumtsian tg IhTeR 8S nsmcal tiencgh, tohleo gap oisd aet cleomastp 1re3×d taot
8M nomor.

7.6 Limitations
Our modeling includes certain limitations, which we argue do

not significantly change the results. To simplify the discussion, we
did not consider SMT support for the p rocessors (cores) in the CPU
multicore organization. SMT support can improve the power effi-
ciency of the cores for parallel workloads to some extent. W e stud-
ied 2-way, 4-way, and 8-way SMT with no area or energy penalty,
and observed that speedup improves with 2-way SMT by 1.5× in
tahned bo ebsts ecarvseed dat nhda tdes cpreeeadseusp ai ms mpurocvhe assw w0.it6h×2 2i-nw tahey Sw MorTst bc ays1e d.5u×e iton
itnhcer beeassetdc a scaec ahned cd oenctreenatisoensa; tshm e r ange f 0o.r6 ×8-wi nat hy eSw MoTrs itsc 0a.s3e-2d u.5e×t o.

cOreuars eGdP Uca cmheetc hoondotelnotgioyn may o ravengr-ee sftoimr8 a-twe athye S GMPTU i p ower .b5 u×d.-
get, so we investigated the impact of 10%-50% improved energy
efficiency for GPUs and found that total chip speedup and percent-
age of dark silicon were not impacted.

We ignore the p ower impact of “uncore” components such as the
memory subsystem. There is consensus that the number of these
components will increase and hence they will further eat into the
power budget, reducing speedups.

We do not consider ARM or Tilera cores in this work because
they are designed for different application domains and their SPEC-
mark scores were not available for a meaningful comparison. For
highly parallel applications, these lightweight cores may achieve
higher speedups, but similar to the GPU case, they will likely be
limited by bandwidth and available parallelism.

We acknowledge that we make a number of assumptions in this
work to build a useful model. Questions may still linger on the



model’s accuracy and whether its assumptions contribute to the per-
formance p rojections that fall well b elow the ideal 32×. First, in all
ifonrsmtanacncese, pwroe seeclteioctnesdt parameter vlla blueleosw wtht ahte w idoeualld 3 3b2e× f.av Foirrsatb,il ne taol-l
wards performance. Second, our validation against real and simu-
lated systems (Section 5.2) shows the model always under-predicts
performance.

8. RELATED WORK
Hill and Marty applied Amdahl’s Law to a r ange of multicore

topologies, including symmetric, asymmetric, and dynamic multi-
core designs and conclude dynamic topologies are superior [16].
Their models used area√ as the primary constraint, using Pollack’s
rule (Performance ∝ √Area [6]), to estimate p erformance. Ex-
treunlseio( Pnse fhoarvme abneceen developed for modeling ‘uncore’ components,
such as the interconnection network and last-level c ache [23], com-
puting core configuration optimal for energy [9, 21], and leakage
power [29]. These studies all model power as a function of area
(neglecting frequency and voltage’s direct effect on power), mak-
ing power an area-dependent constraint.

Chakraborty considers device-scaling alone and estimates a si-
multaneous activity factor for technology nodes down to 32 nm [8].
Hempstead et al. introduce a variant of Amdahl’s Law t o estimate
the amount of specialization required to maintain 1.5×performance
gthreowamtho per year, eacssiaulimzaintigo ncormeqpulierteedlyt opamraailnletalizinab1l.e5 ×copdeer f[o1r5m].a Uncs-e
ing ITRS projections, Venkatesh et al. estimate technology-imposed
utilization limits and motivate energy-efficient and application- spe-
cific core designs [28]. Chung et al. study u nconventional cores
including custom logic, F PGAs, or GPUs in heterogeneous single-
chip design [10]. They r ely on Pollack’s r ule for the area/perfor-
mance and power/performance tradeoffs. U sing I TRS p rojections,



they report on the potential for unconventional cores, considering
parallel kernels. Hardavellas et al. predict the multicore speedup
and percentage of dark silicon for server workloads [14].

Azizi et al. derive the energy/performance Pareto frontiers for
single-core architectures using statistical architectural models c om-
bined with circuit-level energy-performance tradeoff functions [2].
Our core model derives these curves using measured data for real
processors. Esmaeilzadeh et al. perform a p ower/energy Pareto ef-
ficiency analysis at 4 5 nm using total chip power measurements i n
the context of a retrospective workload analysis [12]. In contrast to
the total chip power measurements, we use only the p ower budget
allocated to the cores to derive the Pareto frontiers and combine
those with our device and chip-level models to study the future of
multicore design and the implications of technology scaling.

Previous work largely abstracts away p rocessor organization and
application details. This study considers the implications ofprocess
technology scaling, decouples p ower/area constraints, and consid-
ers multicore organizations, microarchitectural features, and real
applications and their behavior.

9. CONCLUSIONS
For decades, Dennard scaling permitted more transistors, faster

transistors, and more energy efficient transistors with each new pro-
cess node, j ustifying the enormous costs required to develop each
new process node. Dennard scaling’s failure led the industry t o
race down the multicore p ath, which for some time p ermitted p er-
formance scaling for parallel and multitasked workloads, permit-
ting the economics of process scaling to hold. But as the benefits
of multicore scaling begin to ebb, a new driver of t ransistor utility
must be found, or the economics of process scaling will b reak and
Moore’s Law will end well b efore we hit final manufacturing lim-



its. An essential question is how much more p erformance can be
extracted from the multicore p ath in the near future.

This paper combined technology scaling models, performance
models, and empirical results from parallel workloads to answer
that question and estimate the remaining performance available from
multicore scaling. Using P ARSEC benchmarks and ITRS scaling
projections, this study predicts best-case average speedup of 7.9
times between now and 2024 at 8 nm. T hat result translates i nto
a 16% annual p erformance gain,f or highly parallel workloads and
assuming that each b enchmark has its ideal number and granular-
ity of cores. However, we believe that the ITRS projections are
much too optimistic, especially in the challenging sub-22 nanome-
ter environment. The conservative model we use in this p aper more
closely tracks recent history. Applying these conservative scaling
projections, half of that ideal gain vanishes; the path to 8nm in
2018 results in a b est-case average 3.7× speedup; approximately
12401%8 per uyletasri  nfora h biegshtl-ycp asaeraa lvleelr acgoede3 s. 7a×nd s oppeetidmuapl;p a eprp-rboexnicmhmataerlky
configurations. The returns will certainly be lower in practice.

Currently, the broader computing community is in consensus that
we are in “the multicore era.” Consensus is often dangerous, h ow-
ever. Given the low performance returns assuming conservative
(and to some degree I TRS) scaling, adding more cores will not p ro-
vide sufficient benefit to justify continued process scaling. If mul-
ticore scaling ceases to b e the primary driver of p erformance gains
at 16nm (in 2014) the “multicore era” will h ave lasted a mere nine
years, a short-lived attempt to defeat the inexorable consequences
of Dennard scaling’s failure.

Clearly, architectures that move well past the Pareto-optimal fron-
tier of energy/performance of today’s designs will be necessary.
Given the time-frame of this problem and its scale, radical or even
incremental ideas simply cannot be developed along typical aca-



demic research and industry product cycles. On the other hand, left
to the multicore p ath, we may hit a “transistor utility economics”
wall in as few as three to five years, at which p oint Moore’s Law
may end, creating massive disruptions in our industry. Hitting a
wall f rom one of these two directions appears inevitable. T here is
a silver lining for architects, however: At that p oint, the onus will
be on computer architects–and computer architects only–to deliver
performance and efficiency gains that can work across a wide range
of p roblems. It promises to be an exciting time.
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