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Abstract

In mathematics, an enumeration of a set S is a bijective function
from (an initial segment of) the natural numbers to S. We define
“functional enumerations” as efficiently computable such bijec-
tions. This p aper describes a theory of functional enumeration and
provides an algebra of enumerations closed under sums, products,
guarded r ecursion and bijections. We p artition each enumerated set
into numbered, finite subsets.

We provide a generic enumeration such that the number of each
part corresponds to the size of its values (measured in the num-
ber of constructors). We implement our ideas in a Haskell library
called testing-feat, and make the source code freely available.
Feat provides efficient “random access” to enumerated values. The
primary application is p roperty-based testing, where it is used to
define b oth r andom sampling (for example QuickCheck genera-
tors) and exhaustive enumeration (in the style of SmallCheck). W e
claim that functional enumeration is the b est option for automati-
cally generating test cases from large groups of mutually recursive
syntax tree types. As a case study we use Feat to test the pretty-
printer of the Template Haskell library (uncovering several bugs).

Categories and Subject D escriptors D.1. 1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.2.5 [Testing
and D ebugging]: Testing tools

Keywords Enumeration, Property-based testing, Memoisation



1. Introduction

Enumeration is used to mean many different things in different
contexts. Looking only at the E num class of Haskell we can see
two distinct views: the list view and the function view. In the list
view succ and p red let us move forward or backward in a list
of the form [start . .end] . In the function view we have b ijective
function toEnum ::Int → a that allows direct access to any value of
tfuhen cetniounmt eoraEtniuomn. :T:Ihnet E→ nu amt hclatasa sl liso winste dnidreecdt facorc eenssut moe arnatyivo an tuyep eosf
(types whose constructors have no fields), and some of the methods
(fromEnum in particular) of the class make it difficult to implement
efficient instances for more complex types.

The list view can b e generalised to arbitrary types. Two exam-
ples of such generalisations for Haskell are SmallCheck [Runci-
man et al. 2008] and the less well-known enumerable package.
SmallCheck implements a kind of enumToSize :: N → [a] function
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that provides a finite list of all values bounded by a size limit.
Enumerable instead provides only a lazy [a] of all values.

Our proposal, implemented in a library called F eat, is b ased on
the function view. We focus on an efficiently computable bijective



function indexa ::N→ a, m uch like toEnum in the E num class. T his
enables a wider: Nset→ →ofa o,p meurcahti olinkse ttoo Eenxupmlori en ththee Eennuumm celraatsesd.T sheits.
For instance we can efficiently implement enumFrom ::N → [a]
tFhoart i jnumstpans cdeir wecetlc ya tno eaf gfiicvieenn tslytari tminpgl epmoeinntt tine ntuhem Fenruomme:r:aNtio→ n a [nad]
proceeds to enumerate all values from that p oint. Seeing it in the
light of property-based testing, this flexibility allows us to generate
test cases that are beyond the reach of the other tools.

As an example usage, imagine we are enumerating the values
of an abstract syntax tree for Haskell (this example is from the
Template Haskell library). BothF eat and SmallCheck can easily
calculate the value at position 105 of their respective enumerations:

*Main> index (10^5) : : Exp
AppE (LitE (StringL " " ) ) (CondE (ListE [] )
(ListE [] ) (LitE (IntegerL 1) ) )

But in Feat we can also do this:

*Main> index (10^ 100) : : Exp
ArithSeqE (FromR (AppE (AppE (ArithSeqE
(FromR (ListE [] ) ) ) . . . -- and 20 m ore lines !

Computing this value takes less than a second on a desktop com-
puter. The complexity of indexing is (worst case) quadratic in the
size of the selected value. Clearly any simple list-based enumera-
tion would n ever reach this far into the enumeration.

On the other hand QuickCheck [Claessen and Hughes 2000],
in theory, has no problem with generating large values. However,
it is well known that reasonable QuickCheck generators are really
difficult to write for mutually recursive datatypes (such as syntax
trees) –sometimes the generator grows as complex as the code to be
tested! SmallCheck generators are easier to write, but fail to falsify
some p roperties that Feat can.



We argue that functional enumeration is the only available
option for automatically generating useful test cases from large
groups of mutually recursive syntax tree types. Since compilers are
a very common application of Haskell, Feat fills an important gap
left by existing tools.

For enumerating the set of values of type a we partition a into
numbered, finite subsets (which we call parts). The number asso-
ciated with each p art is the size of the values it contains (measured
in the number of constructors). W e can define a function for com-
puting the cardinality for each p art i.e. carda ::Part → N. We can
also define selecta ::Part → N → a t hat m aps :a: P paarrtt n→ um Nb.eW r p acandn
an index iwithin t:h:Pata p rat →rt tNo a→ →va alut he otfm tyappes aa paanrdt nsuizme p . U ps ainndg
these functions we define the b ijection that characterises our enu-
merations: indexa ::N → a.

We describe (i:n:N § 2→) aa simple theory of functional enumera-
tionW aendd epsrcorviibdee iann a§2lg)eba rs ai mofp elenu thmeeorraytioo fns cunlocsteidon aunld eenru smuemras,-



products, guarded recursion and b ijections. W e present an efficient
Haskell implementation (in §3). These operations make defining
eHnausmkeellrati imonpsle mfore nHtaastikoenll (dinata§ t3y).pe Tsh (eesveeno pmeurtautiaolnlys r mecaukresid vee fionniensg)
completely mechanical.

The efficiency of Feat relies on memoising (of meta informa-
tion, not values) and consequently on sharing, which is illustrated
in detail in §3 and §4.

dWetea dl iinscu§ s3sa n(ind §§45). the generation of data types with invariants,
andW sehod wis (uinss § (6in) §h5o)wt teo deenfeinraet or annd oofd ma tsaam typpleinswg i(thQui nivckaCrihanetcsk,
a[nCdlaes shsoewn a (nind §H6u)ghh eows 2 0to00d ]e gfienener raatnodrso)m mans da mexplhinaugst i(vQeu eicnkuCmheercak-

tion in the style of SmallCheck and combinations of these. In §7 we
sthioonwi n rte shuels tsty flreo omf Sam mcaalselC shtuecdky aunsdinc go Fmebaitn taoti toensst othfe t hperseet.tyI -np§ ri7nt were
of the Template Haskell library and some associated tools.

2. Functional enumeration

For the type E of functional enumerations, the goal of F eat is an
efficient indexing function index ::E a → N → a. For the purpose
oefff pi crioenpter itnyd-beaxsiendg tfuesnticntgio int iisn duesxef::uEl wa i t→h aN g e→ne ar.aF lisoartit ohne pouf rinpodesxe
that selects values by giving size and index. Inspired by this fact, we
represent the enumeration ofa (typically infinite) set S as apartition
of S, where each p art is a numbered finite subset of S representing
values of a certain size. Our theory of functional enumerations is a
simple algebra of such partitions.

DEFINITION 1 (Functional Enumeration). A f unctional enumera-
tion of the set S is a p artition of S that is

• Bijective, each value in S is in exactly one p art (this is implied
by the mathematical definition of a p artition).

• Part-Finite, every p art is finite and ordered.
• Countable, the set of parts is countable.

?

The countability r equirement means that each p art has a number.



This number is (slightly simplified) the size of the values in the
part. In this section we show that this algebra is closed under
disjoint union, Cartesian product, bijective function application and
guarded recursion. In table 1 there is a comprehensive overview
of these operations expressed as a set of combinators, and some
important properties that the operations guarantee (albeit not a
complete specification).

To specify the operations we make a tiny p roof of concept
implementation that does not consider efficiency. In §3 and §4 we
sihmopwle mane entffaitciioenntt himatp dloeemsenn toattic oonn tshidate rad ehffiecreiesn c toy .thI ins s§p3e acnidfic §a4tiow ne.

Representing p arts The p arts of the p artition are finite ordered
sets. W e first specify a data type F inite a that r epresents such sets
and a minimal set of operations that we require. The data type is
isomorphic to finite lists, with the additional requirement of unique
elements. It has two consumer functions: computing the cardinality
of the set and indexing to retrieve a value.

cardF :: Finite a → N
(!!F) :: :: FFiinniittee aa →→ NN → a

As can be expected, f !!F iis defined only for i< cardFf. We can
convert the finite set into a list:

valuesF ::Finite a → [a]
valuesFf:: F=i map ( f→! ! [Fa) [0 . . cardF f − 1]

The translation satisfies these properties:

cardFf ≡ length (valuesFf)
f !!F i ≡≡ (lvenagluthes (Fvafl)u !e e!s si

For constructing F inite sets, we have disjoint u nion, product and
bijective function application. The complete interface for building
sets is as follows:
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Enumeration combinators:

empty ::E a

singleton ::a → E a

(⊕) ::E a → E b → E (Either a b)

(⊗) ::E a → E b → E (a,b)

biMap :: (a → b) → E a → E b

pay ::E a → Ea

Properties:

index (pay e) i ≡ index e i

(index e i1 ≡ index e i2) ≡ (i1 ≡ i2)

pay (e1 ⊕ e2) ≡ pay e1⊕pay e2

pay (e1 ⊗ e2) ≡ pay e1 ⊗ e2

≡ e1 ⊗pay e2

fixp ay ≡ empty

biMapf (biMap g e) ≡ biMap (f ◦ g) e

singleton a ⊗ e ≡ biMap (a, ) e
e ⊗ singleton be ≡ biMap (,b) e

empty ⊕ e ≡ biMap R ight e

e ⊕ empty ≡ biMap L eft e

Table 1. Operations on enumerations and selected p roperties



emptyF ::Finite a
singletonF ::a → Finite a
(⊕F) :::: Fai→ niteF ian →ite Fainite b → Finite (Either a b)
((⊗⊕F) :::: FFiinniittee aa →→ FFiinniittee bb →→ FFiinniittee ((Ea,i bth)e
(b⊗iMapF :::: (Fain →ite b a) →→ FFiinniittee ba →→ F Fiinniittee (ba

The operations are specified b y the following simple laws:

valuesF emptyF ≡ [ ]

valuesF (singletonF a) ≡ [a]

valuesF (f1⊕Ff2) ≡

map L eft ⊕(valuesFf1 )≡ ≡+ + map R ight (valuesFf2)

valuesF (f1⊗Ff2) ≡

[ (x,y) | x ⊗← valuesF f≡1 ,y ← valuesFf2 ]

valuesF (biMapF gf ) ≡ map g (valuesFf)

To preserve the uniqueness of elements, the operand of biMapF
must b e bijective. Arguably the function only needs to b e injective,
it does not need to b e surjective in the type b. It is surjective into the
resulting set of values however, which is the image of the function
g on f.

A t ype off unctional e numerations Given the countability re-
quirement, it is natural to define the partition of a set of type a as a
function from N to Finite a. For numbers that do not correspond to
a p art, the function returns the empty set (emptyF is technically not
a part, a p artition only has non-empty elements).

type Part = N
type E a = P art → Finite a

empty ::E a



empty = const emptyF

singleton ::a → E a
ssiinngglleettoonn :a: 0a =→ s Ein agletonF a
singleton =emptyF

Indexing in an enumeration is a simple linear search:



index ::E a → N → a
iinnddeexx :e: iE =a go N0 w→ he are

go p = if i< cardF (e p)
then ep !!F i
else index e (i− cardF (e p))

This representation of enumerations always satisfies countability,
but care i s needed to ensure b ijectivity and p art-finiteness when we
define the operations in Table 1.

The major drawback of this approach is that we can not deter-
mine if an enumeration is finite, which means expressions such as
index empty 0 fail to terminate. In our implementation (§3) we have
ian dmeoxree msepntysib0lf ea b ile thoat veiromurin n(aatne .e rIrnoo ru umre imsspagleem) wenhteantio othne ( §in3)de wxe eihs oavuet
of bounds.

Bijective-function a pplication We can map a b ijective function
over an enumeration.

biMapf e = biMapFf◦ e

Part-finiteness and bijectivity are preserved b y biMap (as long as

ibtiMi saap l wf iasysb iu Msaepdf −o n1.ly withb ijective functions). Thei nverseo f
Disjoint union Disjoint union of enumerations is the p ointwise
union of the parts.

e1 ⊕ e2 = λp → e1p ⊕F e2 p

It is again not h ard to verify that b ijectivity and part-finiteness are
preserved. We can also define an “unsafe” version using biMap
where the user must ensure that the enumerations are disjoint:

union ::E a → E a → E a
uunniioonn e1 e2 =→ b EiM aa→ p ( Eei ather id id) (e1 ⊕ e2)

Guarded r ecursion and c osts Arbitrary recursion may create in-



finite p arts. For example in the following enumeration of natural
numbers:

data N= Z | S Nderiving Show
ndaattaEnN um = =:Z: ZE| S N
natEnum = union (singleton Z ) (biMap S natEnum)

All natural numbers are p laced in the same part, which b reaks
part-finiteness. T o avoid this we place a g uard on (at least) all
recursive enumerations called p ay, which pays a “cost” each time
it is executed. The cost of a value in an enumeration is simply the
part-number associated with the part in which it resides. Another
way to put this is that pay increases the cost of all values in an
enumeration:

pay e 0 = emptyF
pay ep = e (p − 1)

This definition gives fix pay ≡ empty. The cost of a value can be
Tspheicsifd ieedfi ngitiivoenn tghivate swf eix kp naoyw≡ th eem pentyu.mT ehraetic oons tfo rofma vwahluiceh cita nwb ase

selected.

cost ::E t → t → N
ccoosstt :(:sEint g→ letot n→ n→) N ≡ 0
cost (a ⊕ b) (Left x ) ≡≡ c0ost a x
ccoosstt ((aa ⊕⊕ bb)) (Right y ) ≡≡ ccoosstt ba y
ccoosstt ((aa ⊗⊕ bb)) ((xR,iyg)h ≡≡ ccoosstt ab xy+ cost b y
cost (biMap f e) x ≡ cost e x(f+−c1xo)s
cost (pay e) x ≡≡ 1c o+st tc eo(s ft e x

We modify natEnum b y adding an application of pay around the
entire body of the function:

natEnum =p ay (union (singleton Z ) (biMap S natEnum))
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Now because we pay for each r ecursive call, each natural number
is assigned to a separate part:

*Main> map valuesF (map natEnum [0 . . 3])
[ [ ], [Z], [S Z ] , [S (S Z ) ] ]

Cartesian product Product is slightly more complicated to de-
fine. The specification of cost allows a more formal definition of
part:

DEFINITION 2 (Part). Given an enumeration e, the partf or costp
(denoted as P pe) is thef inite set of values in e such that

(v ∈ Pep) ⇔ (coste v ≡ p )

?

The specification of cost says that the cost of a product is the sum of

treehaceprhc eop sesantsrttao  otffio  tanhpe t rhoo idpsueg rciavtn:edP ssap.t ⊗hT ebhf= uoslSlow kpw=ei0nc gaPndak es ×pfiePncbpiit−fiyok.nt F h:eors o eturo ff uv nacltuieosni anl
e1 ⊗ e2 = p airs where

⊗paiersp = concatF (conv (⊗F) e1 e2 p)

concatF :: [Finite a ] → Finite a
concatF :=:[f Foinldilt eua n]io→ nF emptyF
conv :: (a → b → c) → (N → a) → (N → b) → N → [c]

ccoonnvv:f :(f xaf → yp b b=→ →[fc x) )k→ →‘f‘( fNy ( →p −a )k→) →| k( N←→ →[0 . .)p→ ] →]

cvFoaolsrut eeo sacf“ h pc, phe waarthpw icehre”d  iest hf tianhneep e p aqi iunrisvb p aoleta hnste t ho 1efas P neeptd1o⊗ e fe22p .aaB irreescw f ainuitishteea ,t hc p eoamis rbsetip sneo i dsf



finite for all p . For surjectivity: any pair of values (a, b) have costs
ca = coste1 a and cb = coste2 b. This gives (a,b) ∈ (e1 ca⊗F e2 cb).
This product is an element of bc.o nThv (is⊗ gFiv)e e1 e2 b()ca∈ +(e ecb)c aan⊗d as such
T(ah, ibs) p r∈o (due1c t⊗i s se a2n) e(cleam +en nctb o)f. cFoonrv (in⊗jectivity, it’s enough to prove
t(ha,atb )pa∈ irs( e e p1⊗ ⊗ise disjoint from p airs p 2 for p 1 ≡ p 2 and that (a, b)
appears rosn pc1e iins d p iasijrosi (ncta f r+om mcbp ).a iBrsotp h2 2th feosrep p1r6o ≡pep r2tiea sn dfotl lhoawt (far,omb)
the bijectivity of e1 and e2.

3. Implementation

The implementation in the previous section is thoroughly ineffi-
cient; the complexity is exponential in the cost of the input. The
cause is the computation of the cardinalities of parts. These are
recomputed on each indexing (even multiple times for each index-
ing). In Feat we tackle this issue with m emoisation, ensuring that
the cardinality of each p art is computed at most once for any enu-
meration.

Finite s ets First we implement the Finite type as specified in the
previous section. Finite is implemented directly by its consumers:
a cardinality and an indexing function.

type I ndex = Integer
data Finite a = Finite {cardF ::Index

, (c !a !rFd) ::Index → a

}
Since there is no standard type for infinite p recision natural num-
bers in Haskell, we use Integer for the indices. All combinators
follow naturally from the correspondence to finite lists (specified
in §2). Like lists, Finite is a monoid under append (i.e. union):

(⊕F) ::Finite a → F inite a → F inite a
(f1⊕ ⊕F)f::2F =in Fiteina it→e →caF ri niixt ewa h→ ere



⊕car = cardFf1 + cardFf2
ix i= if i< cardFf1

thenf 1 !!F i
else f 2 !!F (i − cardFf1 )

emptyF = Finite 0 (λi → error "Empty" )

instance M onoid (Finite a) where
mempty = emptyF
mappend = (⊕F)

It is also an applicative functor under product, again j ust like lists:

(⊗F) ::Finite a → Finite b → F inite (a, b)
((⊗⊗F)) :f1: Ffi2n =ite eF ain→ iteF cianirt seeb l → wh Feirne

car = cardFf1 ∗ cardFf2
sel i= let (q, r)∗ =c a(rid d‘divMod‘ cardF f2)

in (f1 !!F q,f2 !!F r)
singletonF ::a → F inite a
singletonF :a: a=→ →FiFn iitnei 1e oa ne where

one 0 = a
one = error "Index out of b ounds "

instance Functor Finite where
fmapf  fin =f in {(!!F) =f ◦ (fin! !F) }

instance A pplicative Finite where
pure = s ingletonF
f h∗i a =f map (uncurry ($)) (f ⊗F a)

For indexing we split the index i< c1 ∗ c2 into two components
by dividing either by c1 or c2. For an or∗decring which is consistent
with lists (s.t. valuesF (f h∗i a) ≡ valuesFf h∗i valuesF a) we divide
by the cardinality of t(hef s∗eicao)nd≡ vopaleuraesnd. fBh i∗jiecvatilvuee map is already
covered by the Functor instance, i.e. we require that the argument
of fmap is a bijective function.



Enumerate As we hinted earlier, memoisation of cardinalities
(i.e. of F inite values) is the key to efficient indexing. The remain-
der of t his section is about this t opic and implementing efficient
versions of the operations specified in the previous section. A sim-
ple solution is to explicitly memoise the function from p art num-
bers to p art sets. D epending on where you apply such memoisation
this gives different memory/speed tradeoffs (discussed later in this
section).

In order to avoid h aving explicit memoisation we use a different
approach: we replace the outer function with a list. This may
seem like a regression to the list view of enumerations, but the
complexity of indexing is not adversely affected since it already
does a linear search on an initial segment of the set of parts.
Also the interface in the previous section can be r ecovered by j ust
applying (! !) to the list. W e define a data type E numerate a for
enumerations containing values of type a .

data E numerate a = E numerate {parts :: [Finite a] }

In the previous section we simplified b y supporting only infinite
enumerations. Allowing finite e numerations is practically useful
and gives an algorithmic speedups for many common applications.
This gives the f ollowing simple definitions of empty and singleton
enumerations:

empty ::Enumerate a
empty = E numerate [ ]

singleton ::a → E numerate a
ssiinngglleettoonn :a: a=→ →EnE unmuemreatrea t[esi angletonF a]

Now we define an indexing function with bounds-checking:

index ::Enumerate a → Integer → a
iinnddeexx =::E inndumexe0 ◦parts →w hIneterge

index0 [] ia =rts e wrrhoerr "eindex out of bounds"
index0 (f : rest) i



| i< cardF f =f !!F i
|| io<thcerawrdise = index0 rest (i− cardFf)
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This type is more useful for a propery-based testing driver (see §6)
bTehcisaut syep eit csam n odreeteu cset wfulitf ho cre artap irontpye rify -itb hasaesd dtte eststeidn galdl rvivaleure( ss eoef t§h6e)
type.

Disjoint union Our enumeration type is a monoid u nder disjoint
union. We use the infix operator (♦) = mappend (from the library
Data.Monoid) for both the Finite and the E numerate union.

instance M onoid (Enumerate a ) where
mempty = empty
mappend = union

union ::Enumerate a → E numerate a → E numerate a
uunniioonn :a: bE =u mE enruamtee raa→ te $E zniupmPleursa (t♦e )a →(paE rtnsu uam) e(rpaatretas b )

where
zipPlus :: (a → a → a) → [a] → [a] → [a]
zziippPPlluussf :: ((ax :→ →xsa) (→y →: ays)) → →=[  fa x] y →: z[ aipP]→ lus [fa ]x s y s
zipPlus xs ys = x s ++ ys

It is up to the user to ensure that the operands are really disjoint.
If they are not t hen the r esulting enumeration may contain repeated
values. For examplep ure True ♦pure True type checks and runs but
it is probably not what the programmer intended. If we replace one
of the Trues with F alse we get a perfectly reasonable enumeration
of B ool.

Cartesian product and b ijective f unctions First we define a



Functor instance for E numerate in a straightforward fashion:

instance Functor E numerate where
fmapf e = E numerate (fmap (fmapf ) (parts e))

An important caveat is that the function mapped over the enumer-
ation must b e bijective in the same sense as for biMap, otherwise
the resulting e numeration may contain duplicates.

Just as Finite, Enumerate is an applicative functor u nder product
with singleton as the lifting operation.

instance A pplicative E numerate where
pure = singleton
f h∗i a =f map (uncurry ($)) (prodf a)

Similar to f map, the first operand of h∗i must b e an enumeration
oSifm mbiiljaerctt iovef mfuanpc,tti honesf i. Tsytp oipcearlalyn dwo ef gh∗eti ms uuchst a bne ae nnuem neurmatieornat obyn
lifting or p artially applying a constructor function, e.g. if e has type
Enumerate a thenf =pure (, ) h∗i e has type Enumerate (b → (a, b))
aEnnduf m he∗ria tee haasth teynpef =Enpuumreer(,a)teh ∗(iae, ah)a.s

dT fwh ∗o theh inagss ycpomeE plniucamteer tahtee cao,am)p.utation of the product com-
pared to its definition in §2. One is accounting for finite enumer-
apatiroends,t othi et so tdheefir niist idoenfini nin §g2 t.hO e ncoen isvoa luctcioounn t fuinngctf ioonr foinni t lies tesn.

A first definition of conv (that computes the set of pairs of
combined cost p ) might look like this (with mconcat equivalent to
foldl (⊕F) emptyF):

badConv :: [Finite a] → [Finite b] → Int → Finite (a, b)
bbaaddCCoonnvv x: :s[ ysp e=a am] →con[ cFaint

(zipWith (⊗F) (takep xs) (reverse (take p y s)))

The problem with this implementation is memory. Specifically
it needs to r etain the result of all multiplications p erformed b y
(⊗F) which yields quadratic memory use for each product in an
(e⊗numeration.



Instead we want to perform the multiplications each time the
indexing function is executed and j ust retain pointers to e1 and e2.

The problem then is the reversal. With p artitions as functions it is
trivial to iterate an inital segment of the partition in reverse order,
but with lists it is r ather inefficient and we do not want to reverse
a linearly sized list every time we index into a product. To avoid
this we define a function that returns all r eversals of a given list.
We then define a product funtion that takes the parts of the first
operand and all reversals of the parts of the second operand.

reversals :: [a] → [ [a] ]
rreevveerrssaallss =::[ go →[ →] w [[ahe]]re

go [ ] = [ ]
go rev (x :xs) = let rev0 = x : rev

in rev0 :go rev0 xs

prod ::Enumerate a → E numerate b → Enumerate (a, b)
pprroodd e1 e2 m=e e Erantuema er →atEe $n

prod0 (parts e1) (reversals (parts e2))

prod0 :: [Finite a] → [ [Finite b] ] → [Finite (a, b) ]

In any sensible Haskell implementation evaluating an inital seg-
ment of reversals x s uses linear memory in the length of the seg-
ment, and constructing the lists is done in linear time.

We define a version of conv where the second operand is already
reversed, so it is simply a concatenation of a zipWith.

conv :: [Finite a ] → [Finite b] → Finite (a, b)
ccoonnvv x: :s[ y s =it eFa in]i→t e

(sum $ zipWith (∗) (map cardF xs) (map cardF ys))
((λsuim m→$ zmicpoWnictha(t (∗)zi p(Wmaipth c(a⊗rFd) x s ys) !!F i)

The worst case complexity of this function is the same as for the
conv that reverses the list (linear in the list length). The b est case
complexity is constant however, since indexing into the result of



mconcat is j ust a linear search. It might be tempting to move the
mconcat out of the indexing function and use it directly to define
the r esult of conv. T his is semantically correct but the result of the
multiplications are never garbage collected. E xperiments show an
increase in memory usage from a few megabytes to a few hundred
megabytes in a r ealistic application.

For specifying p rod0 we can revert to dealing with only infinite
enumerations i.e. assume p rod0 is only applied to “padded” lists:

parts = let rep = repeat emptyF in Enumerate $
prod0 (parts e1 ++ rep) (reversals (parts e2 ++ rep))

Then we define p rod0 as:

prod0 xs rys = map (conv xs) rys

Analysing the behaviour of prod we notice that if e2 is finite then
we eventually start applying convxs on the reversal of parts e2 with
a increasing chunk of emptyF prepended. Analysing conv reveals
that each such emptyF corresponds to j ust dropping an element
from the first operand (xs), since the h ead of the list is multiplied
with emptyF. This suggest a strategy of computing p rod0 in two
stages, the second used only if e2 is finite:

prod0 xs@(:xs0) (ys :yss) = goYy s yss where

goY ry rys = conv x s ry :case rys of
[ ] → goX ry xs0
(ry0 : rys0) →→ goY rryy0 rxyss0

goX ry = map (flip conv ry) ◦ tails
progdo0X =ry) )[◦ ◦]

If any of the enumerations are empty the r esult is empty, otherwise
we map over the reversals (in goY) with the twist that if the list
is depleted we pass the final element (the reversal of all parts of
e2) to a new map (goX) that applies conv to this reversal and every
suffix of xs. With a bit of analysis it is clear that this is semantically



equivalent to the padded version (except that it produces a finite
list if both operands are finite), but it is much more efficient if
one or both the operands are finite. For instance the complexity of
computing the cardinality at part p of a product is typically linear
in p , but if one of the operands is finite it is maxp lwhere lis the
length of the part list of the finite operand (which is typically very
small). The same complexity argument holds for indexing.
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Assigning c osts So far we are not assigning any costs to our enu-
merations, and we need the guarded recursion operator to complete
the implementation:

pay ::Enumerate a → E numerate a
pay :e: E=n Eunmuemraeterata e→ →(em EpntuymFe :parts e)

To verify its correctness, consider that p arts (pay e) !!0 ≡ emptyF
aTnod v perairfyts (itpsac yo re)r e!c c! n(pe s+s ,1c) ≡ns sip daertrst hea a! !tp p.a Irtns o (pthaeyr we)o!r!d0s≡, ≡a pepmlypityng
tahned l pisat rintsd( epxainyge )f!u!n(cptio+n1 o)n≡ ≡thp ea lritsst eo!f! ppa.r tIsn r  oetchoevre wrso trdhes ,da epfpinlyitiionng
of pay in the previous section (except in the case of finite enumer-
ations where padding is needed).

Examples Having defined all the building b locks we can start
defining enumerations:

boolE ::Enumerate B ool
boolE = pay $pure False ♦pure True

blistE ::Enumerate [Bool]
blistE =pay $ p ure [ ]

♦ ((:) h$i boolE h∗i blistE)

A simple example shows what we have at t his stage:



*Main> take 16 (map cardF $parts blistE)
[0, 1,0, 2,0,4, 0,8,0, 16, 0, 32, 0,64,0, 128]

*Main> valuesF (parts blistE !!5)
[ [False,False], [False, True] ,[True,False], [True, True] ]

We can also very efficiently access values at extremely large in-
dices:

*Main> length$indexb listE (101000)
3321

*Main> f oldl1 x or$index blistE (101000)
True

*Main> f oldl1 x or$index blistE (101001)
False

Computational c omplexity Analysing the complexity of index-
ing, we see that union adds a constant factor to the indexing func-
tion of each p art, and it also adds one to the generic size of all
values (since it can b e considered an application of L eft or Right).
For product we choose between p different branches where p is
the cost of the indexed value, and increase the generic size by one.
This gives a pessimistic worst case complexity of p ∗ s where s is
tThhei sgeg niveerisca sip zees.s iImf iwsteic cdw o nrsott caapspelyc pay deixrietcyto lyf p to∗ thswe hr eesruelts oi sf
another p ay, then p 6 s which gives s2. This could be improved to
s log p by using a b inary search in the product case, but this also
increases the memory consumption (see below).

The memory usage is (as always in a lazy language) difficult to
measure exactly. Roughly speaking it is the product of the n umber
of distinguished enumerations and the highest p art to which these
enumerations are evaluated. T his number is equal to the sum of
all constructor arities of the enumerated (monomorphic) types. For



regular ADTs this i s a constant, for non-regular ones it is bounded
by a constant multiplied with the highest evaluated p art.

Sharing As mentioned, F eat r elies on memoisation and subse-
quently sharing for efficient indexing. To demonstrate this, we
move to a more realistic implementation of the list enumerator
which is p arameterised over the underlying enumeration.

listE ::Enumerate a → Enumerate [a]
lliissttEE a::SE n=u pay a$t p ure →[ E]

♦ ((:) h$i aS h∗i listE aS)

blistE2 ::Enumerate [Bool]
blistE2 = listE boolE



This simple change causes the p erformance of blistE2 to drop
severely compared to blistE. The reason is that every evaluation of
listE2 aS creates a separate enumeration, even though the argument
to the function has been u sed previously. I n the original we had
blistE in the tail instead, which is a top level declaration. Any
clever Haskell compiler evaluates such declarations at most once
throughout the execution of a program (although i t is technically
not required by the Haskell language report). We can r emedy the
problem b y manually sharing the r esult of the computation with a
let binding (or equivalently b y using a fix p oint combinator):

listE2 ::Enumerate a → E numerate [a]
lliissttEE22 a::SE n=u mlete rlaistteEa =→ pay $u p ure [e e]

♦ ((:) h$i aS h∗i listE)
in listE

blistE3 ::Enumerate [Bool]
blistE3 = listE2 boolE

This is efficient again but it has one major problem, it requires
the user to explicitly mark recursion. T his is especially painful for
mutually recursive data types since all members of a system of such
types m ust be defined i n the same scope:

data Tree a = L eaf a | B ranch (Forest a )
dneatwatyT preee eFa o=r esL t e aa =f aF o |rB ersatn [cThre (eF oar]

treeE =f st ◦ treesAndForests
forestE == sfnstd◦ ◦t rtereeseAsAndndFFoorreesststs
ftorereesstAEnd= Fos rnedst◦st :r :e eEensAunmdeFraortee sat → (Enumerate (Tree a )

,EEnnuummeerraattee ((FTroereesa t) )a ))
treesAndForests eA =

let eT =p ay$ (Leaf h$i eA) ♦ (Branch h$i eF)
eeFT == pay $$ F(Loereasfth hh$$ii eliAs)tE♦2( eBTra

in (eeFT ,=eFp )a



Also there is still no sharing between different evaluations of treeS
and forestS i n other p arts of the program. This forces everything
into the same scope and crushes modularity. What we really want
is a class ofenumerable types with a single overloaded enumeration
function.

class Enumerable a where
enumerate ::Enumerate a

instance Enumerable B ool where
enumerate = boolE

instance Enumerable a ⇒ Enumerable (Tree a) where
setnaunmceer Eantue m=e pay $e (aL⇒ eafE hm$ie reanbulem( eTrraetee)

♦ (Branch hh$$ii eennuummeerraattee))

instance Enumerable a ⇒ Enumerable [a] where
setnaunmceer Eantue m=e rliasbtEl2e aen ⇒umE enruatmee

instance Enumerable a ⇒ Enumerable (Forest a ) where
setnaunmceer Eantue m=e e praaybl$e Fa o ⇒restE hn$uim meneurambleera( Fteo

This solution performs well and it’s modular. The only potential
problem is that there is no guarantee of enumerate b eing evaluated
at most once for each monomorphic type. W e write potential prob-
lem because it is difficult to determine if this is a problem in p rac-
tice. It is possible to provoke GHC into reevaluating instance mem-
bers, and even if GHC mostly does what we want other compilers
might not. In the next section we discuss a solution that guarantees
sharing of instance members.

4. Instance sharing

Our implementation r elies on memoisation for efficient calculation
of cardinalities. This in turn relies on sharing; specifically we want
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to share the instance methods of a type class. For instance we may
have:

instance E numerable a ⇒ E numerable [a] where
setnaunmceer Eantue m=e pay $e p ure [E E]n

♦ ((:) h$i enumerate h∗i enumerate)

The typical way of implementing Haskell type classes is using dic-
tionaries, this essentially translates the instance above into a func-
tion similar to enumerableList :: E numerate a → E numerate [a].
Dtioetnes rmiminiilanrg teoxa ecntluym werhaebnl eGLiHsCt: :oE r noutmheerr acotmea pi→ lersE rneucmomerpautete tahe].
result of this function requires significant insight into the workings
of the compiler and its runtime system. Suffice it to say that when
re-evaluation does occur it has a significant negative impact on the
performance of Feat. In this section we present a p ractical solution
to this problem.

A m onad for t ype-based sharing The general formulation of
this problem is that we have a value x ::C a ⇒ f a, and for each
tmhiosnp ormoobrlepmhici styt phea tTw weeh hwavaenta ax :v:afl uTe txo :beC sa ha ⇒redf , ai.e, .a ntod b feo reve aaluch-
ated at most once. The most direct solution to this problem seems to
be a map from types to values i.e. B ool is mapped to x ::f B ool and
() to x ::f (). The map can then either b e threaded through a compu-
tation using a state monad and updated as new t ypes are discovered
or updated with unsafe IO operations (with careful consideration of
safety). We have chosen the former approach h ere.

The map must be dynamic, i.e. capable of storing values of
different types (but we still want a type safe interface). W e also
need r epresentations of Haskell types that can b e used as k eys. Both



these features are provided b y the Typeable class.
We define a data structure we call a dynamic map as an (ab-

stract) data type p roviding type safe insertion and lookup. The type
signatures of dynInsert and d ynLookup are the significant p art of
the code, but the full implementation is provided for completeness.

import D ata.Dynamic (Dynamic,fromDynamic, toDyn)
import D ata.Typeable (Typeable, TypeRep, typeOf)
import Data.Map a s M

newtype D ynMap = D ynMap (M.Map TypeRep Dynamic)
deriving Show

dynEmpty ::DynMap
dynEmpty = D ynMap M.empty

dynInsert :: Typeable a ⇒ a → D ynMap → D ynMap
ddyynnIInnsseerrtt :a: T(DypyenaMblaepa am⇒ ) =a

DynMap (M.insert (typeOf a) (toDyn a ) m )

To associate a value with a type we j ust map its type representation
to the dynamic (type casted) value.

dynLookup ::Typeable a ⇒ D ynMap → M aybe a
ddyynnLLooookkuupp :(:DTyypnMeaablpe ema ) ⇒= hDlypn Mruna p⊥→ →wM heareyb

hnLlpo :o: kTuyppe( Dabylen Ma a⇒p
p(T::yTpyepReeapb l→e a aM ⇒ aybe a ) → a → M aybe a

hlp(T fy ap =eRef p(t→ ypeM Oafy ba)e
run tr = M.lookup tr m >>  =fromDynamic

Lookup is also easily defined. The dynamic library provides a func-
tionf romDynamic ::Dynamic → Maybe a. In our case the M.lookup
ftiuonnctf iroomn hDaysn aalmreiacd:y:D Dmynatachmeidc →theM Mtyapyeb ereap.reI nse onutartc ioasne a tghaeiMn st.l ao otykupep
stored in the map, so f romDynamic is guaranteed to succeed (as
long as values are only added u sing the insert f unction).



Using t his map t ype we define a sharing monad with a function
share that b inds a value to its type.

type Sharing a = State D ynMap a

runSharing ::Sharing a → a
rruunnSShhaarriinngg m::S =ha ervianlgSta a →te ma dynEmpty

share ::Typeable a ⇒ Sharing a → Sharing a
sshhaarree m::T =yp deaob

mx ← g ets dynLookup
cmaxs e← ← mg xe otfs

Just e → return e
Nothing →→ rmetfiuxr r$n λ ee → do

omthoidngify → →(dm ynfiIxn$seλrte e→)
m

Note that we require a monadic fixpoint combinator to ensure
that recursive computations are shared. If it had not b een used
(i.e. if the Nothing case had b een m >> = modify ◦ dynInsert) then
any r  ifectu hresivN eolyth idnegfinc eadse em h awdo bueled ne mven>t> u =almlyo edvifaylu◦adtey sIhnasreer m) ahendn
enter the Nothing case. Using the fix point combinator ensures
that a reference to the result of m is added to the map before m
is computed. T his makes any e valuations of share m inside m end
up in the J ust case which creates a cyclic reference in the value
(exactly what we want for a r ecursive m). For example if we have
x = s hare (liftM pay x ) the fixpoint combinator ensures that we get
runSharing x ≡ fixp ay instead of ⊥.

Self-optimising e numerations Now we have a monad for shar-
ing and one way to proceed is to replace E numerate a with
Sharing (Enumerate a ) and re-implement all the combinators for
that type. W e don’t want t o lose the simplicity of our current type
though and it seems a very high p rice to pay for guaranteeing shar-
ing which we are u sed to getting for free.

Our solution extends the enumeration type with a self-optimising



routine, i.e. all enumerations have the same functionality as before
but with the addition of an optimiser record field:

data E numerate a = E numerate
{parts :: [Finite a]
, oppartitsmiser ::Sharing (Enumerate a)
} deriving Typeable

The combinator for binding a type to an enumeration is called
eShare.

eShare ::Typeable a ⇒ Enumerate a → Enumerate a
eeSShhaarree :e: T=y pee {a obpletia m⇒ iserE n=u smhearraet (eoa pt→ imE isnerum me)e r}a

We can resolve the sharing u sing optimise.

optimise ::Enumerate a → Enumerate a
ooppttiimmiissee :e: E=n ulemt ee0r a=te era un→ ShE arnuinmg e(roaptteima iser e) i n

e0 {optimiser = return e0 }

If eShare is used correctly, optimise is semantically equivalent to
id but possibly with a higher degree of sharing. But using eShare
directly is p otentially harmful. It’s possible to create “optimised”
enumerations that differ semantically from the original. For in-
stance λe → eShare t e yields the same enumerator when applied
tstoa tnwcoe λdeiff →eree nSt eanreumt e eray iteolrds sot fh eths ea smaem een tu ympee.r aA tosr aw gheennera aplp rluieled
the enumeration passed to eShare should be a closed expression
to avoid such problems. Luckily users of Feat never h ave to use
eShare, instead we provide a safe interface that uses it internally.

An implication of the semantic changes that eShare may intro-
duce is the possibility to replace the Enumerable instances for any
type t hroughout another enumerator by simply inserting a value
in the dynamic map b efore computing the optimised version. This
could give unintuitive results if such enumerations are later com-
bined with other enumerations. In our library we provide a sim-
plified version of this feature where instances can b e replaced but
the resulting enumeration is optimised, which makes the replace-



ment completely local and guarantees that optimise still preserves
the semantics.

The next step is to implement sharing in all the combinators.
This is simply a matter of lifting the operation to the optimised
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enumeration. Here are some examples where ... is the original
definitions of parts.

fmapf e = e {...
aopptif me i s=ere ={ . f..map (fmapf ) $ optimiser e }

f h∗i a = Enumerate { ...
o∗iptaim= isE ernu u=m elifratMte2{ (. h.∗.i) (optimalf ) (optimiser a) }

pure a = E numerate { ...
orep atim= is Eern u=m reeratutren{ (..p.ure a ) }

The only noticeable cost ofusing eShare is the reliance on Typeable.
Since almost every instance should use eShare and consequently
require type p arameters to be Typeable and since Typeable can be
derived by GHC, we chose to have it as a superclass and implement
a default sharing mechanism with eShare.

class Typeable a ⇒ E numerable a where
aesnsuT mypeeraabtel :e: Ean ⇒umE enraumtee ar

shared ::Enumerable a ⇒ Enumerate a
sshhaarreedd =::E enSuhmareer aebnluema e ⇒ratEe

optimal ::Enumerable a ⇒ E numerate a
ooppttiimmaall =::E onputimmeirsaeb slhea ar⇒e d

The idiom is t hat enumerate is used to define instances and shared
is used to combine them. Finally optimal is used b y libraries to



access the contents of the enumeration (see §6).

Non-regular e numerations The sharing monad works very well
for enumerations of regular types, where there is a closed system
of shared enumerations. For non-regular enumerations (where the
number of enumerations is unbounded) the monadic computation
may fail to terminate. In these (rare) cases the programmer must
ensure termination.

Free p airs and b oilerplate i nstances There are several ways to
increase the sharing further, thus reducing memory consumption.
Particularly we want to share the cardinality computation of every
sequenced application (h∗i). To do this we introduce the FreePair
dsaeqtau etyncpeed dw ahpipclhic aist ijo unst( lhi∗kie) .aT opad iro e txhciespw t ecoi nntsrtorudcutcinegt oenFe eceaPrriaeisr
no cost i.e. the cost of the pair is equal to the total costs of its
components.

data FreePair a b = FreePair a b
deriving (Show, Typeable)

instance (Enumerable a,Enumerable b) ⇒

E( Ennuummeerarabblele e(Fa r,eEenPuamire raa bb)l ewb h)e⇒ re
enumerate = FreePair h$i shared h∗i shared

Since the size of FreePair a b is equal to the sum of the sizes of a
and b, we know that for these functions:

f ::a → b → c

g ::FreePair a b → c
g (::FFrreeeePPaairir aa b b) →=c f a b

We have f h$i shared h∗i shared isomorphic to g h$i shared but in
Wthee lhaatvteer fc ha$sie thhaer pdrho∗diucsht orfe dthi es menourmpheircatit oong s f$oirs haa arendd bbu tai ren

always shared with other enumerations that require it (because
shared :: FreePair a b is always shared. In other words deep un-



currying functions b efore applying them to shared often improve
the performance of the resulting enumeration. For this purpose we
define a function which is equivalent to uncurry from the Prelude
but that operates on F reePair.

funcurry :: (a → b → c) → FreePair a b → c
ffuunnccuurrrryyf :: ((Far→ eePb a →ir ac )b→) =F f r eae bP

Now in order to make an enumeration for a data constructor we
need one more function:



unary ::Enumerable a ⇒ (a → b) → E numerate b
uunnaarryyf :: =Enuf mh$ei rsahbalreead

Together with p ure for nullary constructors, unary and funcurry
can b e used to map any data constructor to an enumeration. For
instance p ure [ ] and unary (funcurry (:)) are enumerations for the
constructors of [a]. In order to build a new instance we still need
to combine the enumerations for all constructors andp ay a suitable
cost. Sincepay is distributive over ♦, we can pay once for the whole
type:

consts :: [Enumerate a] → Enumerate a
ccoonnssttss x: :s[ E=n p uamye$raftoelda l ](→♦ ) m empty ax tse

This gives the following instance for lists:

instance Enumerable a ⇒ Enumerable [a] where
setnaunmceer Eantue m=e craobnsltesa a[⇒ pureE n[ ]u ,unary (efu [an]cw urhrye r(e:)) ]

5. Invariants

Data type invariants are a major challenge in p roperty-based test-
ing. An invariant is just a property on a data type, one often wants to
test that it holds for the result of a function. But we also want to test
other properties only with input that is known to satisfy the invari-
ant. In random testing this can sometimes be achieved by filtering:
discarding the test cases that do not satisfy the invariant and gener-
ating new ones instead, but if the invariant is an arbitrary boolean
predicate finding test data that satisfies the invariant can be as dif-
ficult as finding a bug. For systematic testing (with SmallCheck or
Feat) t his method is slightly more feasible since we do not r epeat
values which guarantees p rogress, but filtering is still a brute force
solution.

In QuickCheck p rogrammers can manually define custom test



data generators that guarantee any invariant, but it may require a
significant p rogrammer effort and analysing the r esulting generator
to ensure correctness and statistical coverage can be difficult. Intro-
ducing this kind of complexity into testing code is hazardous since
complex usually means error prone.

In F eat the room for customised generators is weaker (corre-
sponding to the difference between monads and applicative func-
tors). In theory it is possible to express any invariant by providing a
bijection from a Haskell data type to the set ofvalues that satisfy the
invariant (since functional enumerations are closed u nder b ijective
function application). In practice the performance of the bijection
needs to b e considered because it directly affects the performance
of indexing.

A simple and very common example of an invariant is the non-
empty list. The function uncurry (:) is a b ijection into non-empty
lists of a from the type (a, [a]). The preferred way of dealing with
these invariants in Feat is by defining a newtype for each restricted
type, and a smart constructor which is the previously mentioned
bijection and export it instead of the data constructor.

newtype NonEmpty a = M kNonEmpty {nonEmpty :: [a] }
dwetyrpivienN go TnyEpmeapbtlye a

mkNonEmpty :: a → [a] → NonEmpty a
mmkkNNoonnEEmmppttyy : x: ax s→ →= [ Ma]k→ NoN nEomnEpmty p(txy y: axs)

instance Enumerable a ⇒ Enumerable (NonEmpty a) where
setnaunmceer Eantue m=e craobnsltesa a[⇒ unaE ryn u(mfuenrcaubrlrey( (mNokNnoEmnEpmtypta y))w ]

To use this in an instance declaration, we only need the nonEmpty
record function. In this example we look at the instance for the data
type Type from the Template Haskell abstract syntax tree which
describes the syntax of (extended) Haskell types. Consider the
constructor for universal quantification:
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ForallT :: [TyVarBndr] → Cxt → Type → Type

This constructor must not be applied to the empty list. We use
nonEmpty to ensure this:

instance Enumerable Type where
enumerate = consts [...

,funcurry $funcurry $ ForallT ◦ nonEmpty]

Here ForallT ◦ nonEmpty has type:

NonEmpty TyVarBndr → Cxt → Type → Type

The only addition from the unrestricted enumeration is ◦nonEmpty.

Enumerating Sets o f natural numbers Another fairly common
invariant is sorted lists of unique elements i.e. Sets. It is not ob-
vious that sets can be b uilt from our basic combinators. W e can
however define a bijection from lists of natural numbers to sets of
natural numbers: scanl (((+) ◦ (+ 1)). For example the list [0, 0,0]
rneaptrueraslenn tus mthbee sse:t s [ca0,n 1l ,(2((],+ t)he◦ l(+ist1 [) 1) , 1F ,o0r] rxeapmrepsleen tthse e[ l1i ,t3[, 04], a,n0d]
so on. We can define an enumerator for natural numbers using a
bijection from Integer.

newtype Nat = Nat {nat ::Integer}
dwetyrpivienN ga (tS= hoN wa, tTy{ pnaeat:b:lIen, tEegq,e Orr}d)

mkNat ::Integer → Nat
mmkkNNaatt :a: I=n Negaetr r$→ →abNs $a at ∗ 2 −ifa > 0 then 1else 0
minksNtaantca e =EnN umate$raabblse$ Naa∗t2 2w−hiefrae

enumerate = unary mkNat



Then we define sets of naturals:

newtype N atSet = MkNatSet {natSet :: [Integer] }
dwetyrpivienN ga TtSyepte=a bl Me

mkNatSet :: [Nat] → N atSet
mmkkNNaattSSeett =::[ NMaktN]a→ tS eNta a◦t sSecatnl1 ((+) ◦ (+1)) ◦ map nat

Generalising t o s ets o fa rbitrary t ypes Sets of naturals are useful
but what we really want is a data type Set a = M kSet {set :: [a] }
abundt wa hbaijtew cteio nre atlol ythw isa tnytp eis f aro dmat aso tmypeeth Sientg aw= hicM h wSeet c {asne at:lr:e[aad]y}
enumerate. Since we j ust defined an enumeration for sets of natu-
rals, an efficient b ijective mapping from natural numbers to a is all
we need. Since this is the definition of a functional enumeration,
we appear to b e in luck.

mkSet ::Enumerate a → N atSet → Set a
mmkkSSeett :e: E=n uM mkeSerat t◦e map ( NinadteSxe te→) →◦ SneattSa et

instance E numerable a ⇒ E numerable (Set a) where
setnaunmceer Eantue m=e unary a(m⇒ kSE etn uompetimraabll)e

This implementation works but it’s slightly simplified, it doesn’t
use the cardinalities of a when determining the indices to use. This
distorts the cost of our sets away from the actual size of the values.

6. Accessing enumerated values

This section discusses strategies for accessing the values of enu-
merations, especially for the purpose of property-based testing. The
simplest function values is simply all values in the enumeration par-
titioned b y size. W e include the cardinalities as well, this is often
useful e.g. to report to the user how many values are in a part be-



fore initiating testing on values. For this reason we give values type
Enumerate a → [ (Integer, [a]) ].

uGmievernat etha a→t →F[ ea(It itse gientre,n[da]e)d] to be u sed primarily with the type
class E numerable we have implemented the library functions to use
class members, but provide non-class versions of the functions that
have the suffix With:



type E numL a = [(Integer, [a])]

values ::Enumerable a ⇒ [ (Integer, [a] ) ]
vvaalluueess =::E vnaulmueesrWabitlhe o ap ⇒tim[ a(lI

valuesWith ::Enumerate a → [ (Integer, [a]) ]
vvaalluueessWWiitthh =::E map (eλraft e→a (→car[ d(IFntefg, gvearl,u[eas])F]f)) ◦parts

Parallel enumeration A generalisation of values is possible since
we can “skip” an arbitrary number of steps into the enumeration at
any point. The function striped takes a starting index and a step
size n and enumerates every nth value after the initial index in the
ordering. As a special case values = striped 0 0 1. One purpose
of this function is to enumerate in parallel. If n p rocesses execute
uncurry striped k n where k is a p rocess-unique id in the range
[0 . .n−1 ] then all values are eventually evaluated by some process
a[n0.d,. ne−ven1 ]tht hoeungh al lthv ea processes aenret un aoltl yce omvamluuanteicdatb iyn gs,o mthee pwroorcke siss
evenly distributed in t erms of number and size of test cases.

stripedWith ::Enumerate a → I ndex → Integer → EnumL a
ssttrriippeeddWWiitthh e o0 step a=t esta ri→ pedI Wnditehx0 →(paI rnttse ge)e o0 w Ehneurem

stripedWith0 (Finite crd ix :ps) o =
(max 0 d, thisP) : stripedWith0 ps o0
where

o0 = if space 6 0 t hen o − crd else step − m − 1
thisP == map aixc e(6g en0 et rhiceTnaok e− −dc$r ditee rlasete s (te+ps−tepm) −o)1
space = crd − o
s(dpa,mce) == dcrivdM−ood space s tep

Bounded enumeration Another feature afforded b y random-
access indexing is the ability to systematically select manageable
portions of gigantic parts. Specifically we can devise a function
bounded :: Integer → EnumL a such t hat each list in bounded n
cboountnadinesd :a:t mnteosget nr →eleEm neunmtsL. Iaf ths uecreh a threa tme oacreh thl iastn inn e bleomuenndtesd inn



a part we systematically sample n values that are evenly spaced
across the part.

samplePart :: Integer → Finite a → (Integer, [a])
ssaammpplleePPaarrtt m::I (nFteingierte →crdF iinx)i e=a

let step = crd % m
in if crd 6 m

then (crd, map ix [0 . .crd − 1])
etlhseen ((mcr,d map iixx [[ ro..ucnrdd −(k1 1∗] ]s)tep)

[| rko ←un map ∗tostRepa)tional [0 . .m − 1] ] )

boundedWith ::Enumerate a → Integer → E numL a
bboouunnddeeddWWiitthh :e: nE n=u map t(es aam→ pl eIPnategrte nr)→ →$pE arntusm meL

Random sampling A noticeable feature of Feat is that it p ro-
vides r andom sampling with uniform distribution over a size-
bounded subset of a type. T his is not j ust nice for compatibility
with QuickCheck, it is genuinely difficult to write a uniform gener-
ator even for simple r ecursive types with the tools provided b y the
QuickCheck library.

The function uniform ::Enumerable a ⇒ P art → Gen a gener-
atesT v haelu feusn octfi othne ugniivfeonr msiz::eE onru smmearlalebrl.e

uniformWith ::Enumerate a → Int → Gen a
uunniiffoorrmmWWiitthh =::E unnuim ◦parts aw→ heIr ne

iufonir :m: [WFiitnhit= e au n] i→◦ pI natr t→s w wGheenr ae
uunnii [::][ a=] →errI onrt →"unG iefnor am: empty enumeration"
unip s m axp = let (incl, rest) = splitAt maxp p s

fin = mconcat incl
in case cardFfin of

0 → uni rest 1
→→ dunoi iir ←est tc1 hoose (0, cardFfin − 1)

ire← turc nh (oofins e! ! (F0 ,i)c
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*Main> sample (sized uniform :: Gen [ [Bool] ] )

[]
[[]]
[[], []]
[[True]]
[[False], [], []]
[ [ ], [False,False, True] ]
[ [False, True,False, True, True] ]

[[False], [], [], []]
[ [True], [True] , [ ], [False, True] ]
[ [False], [False, True,False,False, True] ]

Table 2 . Randomly chosen values from the enumeration of [Bool]

data Exp = CaseE Exp [Match] | ...

data M atch = M atch Pat B ody [Dec]

data B ody = NormalB Exp | ...

data Dec = FunD N ame [Clause] | ...

data Clause = Clause [Pat] B ody [Dec]

data Pat = ViewP Exp Pat | ...

Table 3 . Parts of the Template Haskell AST type. N ote that all the
types are mutually recursive.



Since we do not make any local random choices, performance
is favourable compared to hand written generators. The typical
usage is sized uniform, which generates values bounded b y the
QuickCheck size parameter. In Table 2 we present a typical output
of applying the function sample from the QuickCheck library to the
uniform generator for [ [Bool] ] . The function drafts values f rom the
generator u sing increasing sizes from 0 to 20.

7. Case study: Enumerating the ASTs of Haskell

As a case study, we use the enumeration technique developed in
this p aper to generate values of Haskell ASTs, specifically the ab-
stract syntax of Template Haskell, taken from the module Lan-
guage.Haskell.TH.Syntax.

We use the generated ASTs to test the Template Haskell pretty-
printer. The b ackground is that in working with B NFC-meta
[Dureg˚a rd and Jansson 2011], which relies heavily on meta pro-
gramming, we noticed that the TH pretty printer occasionally pro-
duced un-parseable output. BNFC-meta also r elies on the more ex-
perimental package haskell-src-meta that forms a bridge between
the haskell-src-exts parser and Template Haskell. W e wanted to t est
this tool chain on a system-level.

The AST t ypes We limited ourselves t o testing expressions, fol-
lowing dependencies and adding a few newtype wrappers this
yielded a system of almost 30 data types with 80+ constructors.
A small part is shown in Table 3.

We excluded a few non-standard extensions (e.g. bang p atterns)
because the specification for these are not as clear (especially the
interactions between different Haskell extensions).

Comparison t o existing testf rameworks We wanted to compare



Feat to existing test frameworks. For a set of mutual-recursive
datatypes of this size, it is very difficult to write a sensible
QuickCheck generator. We therefore excluded QuickCheck from
the case study.



On the other h and, generators for SmallCheck and Feat are
largely boilerplate code. To avoid having the results skewed by
trying to generate the large set of strings for names (and to avoid
using GHC-internal names which are not printable), we fix the
name space and regard any name as h aving size 1. But we do
generate characters and strings as literals (and found bugs in these).

Test c ase d istribution The result shows some interesting differ-
ences between F eat and SmallCheck on the distribution of the gen-
erated values. We count the number of values of each part (depth
for SmallCheck and size for Feat) of each generator.

Size 1 2 3 4 5 6 20
SmallCheck19951××××
Feat0151×12×04×96507296×5

Table 4. The number of test cases b elow certain size

It is clear that for big datatypes such as ASTs, SmallCheck quickly
hits a wall: the number of values b elow a fixed size grows ag-
gressively, and we are not able to complete the enumeration of
size 4 (given several hours of execution time). In the case of Feat,
the growth in the number of values in each category is more con-
trolled, due to its more refined definition of size. If we look more
closely into the values generated by SmallCheck b y sampling the
first 10000 values of the series on depth 4 . A count reveals that
the maximum size in this sample is 35, with more than 50% of the
values having a size more t han 20. T hus, contrary to the goal of
generating small values, SmallCheck is actually generating pretty
large values from early on.

Testing the TH P rettyPrinter The generated AST values are
used as test cases to find bugs in Template Haskell’s prettyprinter
(Language.Haskell.TH.Ppr). W e start with a simple property: a
pretty-printed expression should be syntactically valid Haskell. We
use haskell-src-exts as a test oracle:



propp arses e =
case p arse $pprint (e ::Exp) ::ParseResult Exp of

ParseOk → True
ParseFailed→ Tsr →ue False

After a quick r un, Feat reports numerous bugs, some of which are
no doubt false positives. A small example of a confirmed bug is
expression [Con.. ]. The correct syntax has a space after the con-
structor name (i.e. [Con ..]). As we can see, this counter example
is r ather small (having size 6 and depth 4). However, after hours of
testing SmallCheck is not able to find this bug even though many
much larger (but not deeper) values are tested. Given a very large
search space that is not exhaustible, SmallCheck tends to get stuck
in a corner of the space and test large but similar values. The p ri-
mary cause of SmallCheck’s inability to deal with ASTs is that
the definition of “small” as “shallowly nested” means that there
are very many small values but many types can p ractically not be
reached at all. For instance generating any Exp with a where-clause
seems to require at least depth 8, which is far out of reach.

Comparatively, the b ehaviour of Feat is much better. It advances
quickly to cover a wider r ange of small values, which maximises
the chance of finding a bug. The guarantee “correct for all inputs
with 15 constructors or less” is much stronger than “correct for all
values of at most depth 3 and a few million of depth 4”. When there
is no bug reported, Feat reports a more meaningful portion of the
search space that has been tested.

It is worth mentioning that SmallCheck has the facility of p er-
forming “depth-adjustment”, that allows manual increment of the
depth count of individual constructors to reduce the number of val-
ues in each category. For example, instead counting all construc-
tors as 1, one may choose to count a binary constructor as having
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depth 2 to reflect the fact that it may create a larger value than a
unary one (similar to ourp ay function). I n our opinion, this adjust-
ment is a step towards an imprecise approximation of size as used
in our approach. Even if we put time into manually adjusting the
depth it is unclear what kind of guarantee testing up to depth 8 im-
plies, especially when the definition of depth has been altered away
from generic depth.

Testing r ound t rip p roperties We also tested an extension of this
property that does not only test the syntactic correctness but also
that the information in the AST is preserved when pretty p rinting.
We tested this by making a round trip function that pretty p rints the
AST, parses it with haskell-src-exts and converts it back to Tem-
plate Haskell AST with haskell-src-meta. This way we could test
this tool chain on a system level finding b ugs in haskell-src-meta as
well as the pretty printer. The minimal example of a p retty printer
error found was StringL "\n" which is pretty printed to " ", dis-
carding the newline character. This error was not found b y Small-
Check partly because it is too deep (at least depth 4 depending on
the character generator), and p artly because the default character
generator only tests alphabetical characters. Presumably an expe-
rienced SmallCheck tester would use a newtype to generate more
sensible string literals.

8. Related Work

SmallCheck, L azy S mallCheck and QuickCheck Our work
is heavily i nfluenced by the property based testing frameworks



QuickCheck [Claessen and Hughes 2000] and SmallCheck [Runci-
man et al. 2008]. The similarity is greatest with SmallCheck and
we improve upon it in two distinct ways:

• (Almost) Random access times to enumerated values. This
presents a number of possibilities that are not present in Small-
Check, including random or systematic sampling of large val-
ues (too large to exhaustively enumerate) and overhead-free
parallelism.

• A definition of size which is closer to the actual size. Especially
for testing abstract syntax tree types and other “wide” types this
seems to be a very important feature (see §7).

Since our library provides r andom generation as an alternative
or complement to exhaustive enumeration it can b e considered a
“best of two worlds” link between SmallCheck and QuickCheck.
We provide a QuickCheck compatible generator which should ease
the reuse of existing properties.

SmallCheck systematically tests b y enumerating all values
bounded b y depth of constructor n estings. In a sense this is also
a p artitioning b y size. The major problem with SmallCheck is that
the number of values in each partition grow too quickly often hit-
ting a wall after a few levels of depth. For AST’s this is doubly
true (the growth is p roportional to the n umber of constructors in
the type, and it’s unlikely you can ever test beyond depth 4 or so.
This means that most constructors in an AST are never touched.

Lazy SmallCheck can cut the number of tests on each depth
level b y using the inherent laziness of Haskell. It can detect if a
part of the tested value is evaluated b y the property and if it is not it
refrains from refining this value further. In some cases this can lead
to an exponential decrease of the number of required test cases. In
the case oftesting a pretty printer (as we do in §7) Lazy SmallCheck



wtheouclads eoofffetre ntion gaadvparnetttaygep sinitnecre( atshew epdroopienrt§y7 )fuLallyzy eSvmalaulaltCehs citsk
argument every time.

After the submission of this p aper, a package named GenCheck
is uploaded to Hackage [Uszkay and Carette 2012]. GenCheck i s
designed t o generalise both QuickCheck and SmallCheck, which
is similar t o Feat in goal. T his initial release has very limited



documentation, which prevents a more comprehensive comparison
at the moment.

EasyCheck In the functional logic p rogramming language Curry
[Hanus et al. 2006], one form of enumeration of values comes
for free in the form of a search tree. As a result, testing tools
such as EasyCheck [Christiansen and Fischer 2008] only need
to focus on the traversal strategy for test case generation. It is
argued in [Christiansen and Fischer 2008] that this separation of
the enumeration scheme and the test case generation algorithm is
particularly b eneficial in supporting flexible testing strategies.

Feat’s functional enumeration, with its ability to exhaustively
enumerate finite values, and to randomly sample very large values,
lays an excellent groundwork for supporting various test case gen-
eration algorithms. One can easily select test cases of different sizes
with a desired distribution.

AGATA AGATA [Dureg˚a rd 2009] is the previous work of J onas
Dureg ˚ard. Although it is based entirely on random testing it is a
predecessor ofFeat in the sense that it attempts to solve the problem
of testing syntactic p roperties of abstract syntax trees. It is our
opinion that Feat subsumes AGATA in this and every other aspect.

Generating (Typed) L ambda Terms To test more aspects of a
compiler other than the libraries that perform syntax manipulation,
it is more desirable to generate terms that are type correct.

In [Yakushev and Jeuring 2009], well-typed terms are enumer-
ated according t o their costs—a concept similar t o our notion of
size. Similar to SmallCheck, the enumeration in [Yakushev and
Jeuring 2009] adopts the list view, which prohibits the sampling of
large values. On the other h and, the special-purpose QuickCheck
generator designed in [Pałka et al. 2011], randomly generates well-
typed terms. Unsurprisingly, it has no problem with constructing
individual large terms, but falls short in systematicness.

It is shown [Wang 2005] that well-scoped (but not necessarily



well-typed) lambda terms can be uniformly generated. The tech-
nique used in [Wang 2005] is very similar to ours, in the sense
that the number of possible terms for each syntactic constructs are
counted (with memoization) to guide the random generation for
a uniform distribution. This work can be seen as a special case of
Feat, and Feat can indeed b e straightforwardly instrumented to gen-
erate well-scoped lambda terms.

Feat is at present not able to express complicated invariants such
as type correctness of the enumerated terms. One p otential solution
is to adopt more advanced type systems as in [Yakushev and Jeuring
2009], so that the type of the enumeration captures more p recisely
its intended range.

Combinatorial species In mathematics a combinatorial species
is an endo-functor on the category of finite sets and b ijections.
Each object A in this category can b e described b y its cardinality
n and a finite enumeration of its elements: f : Nn → A . In other
words, for each n there is a canoncial object (label →setA ) .N Inn. oEthacehr
arrow phi :A → B in this category is between objects of the same
cararrdowinap lihtiy: An , →andB c iann hb eis dc eastcergioberyd bisy b ae tp weeremnuo tabtijoenct osfo ftht eh seest aNmne.
This means that the object action S0 of an endofunctor S maps a
pair (n,f) to a p air S0 (n,f) whose first component is the cardinality
of the resulting set (we call it card n). (The arrow action S1 maps
permutations on Nn to p ermutations on Ncard n.)

In the species library (decribed in [Yorgey 2010]) there is a
method enumerate :Enumerablef ⇒ [a] → [f a] which takes a (list
rmeeptrheosden etantuiomne oraf)t ea:nE onbujmecetr aa btloe eafll ⇒f a[-ast]ru→ct[ufr eas] w obhtaicinhe tad kbeys ta h e(l Sis0t
map. The key to comparing this with our paper is to r epresent the
objects as finite enumerations Nn → a instead of as lists [a]. Then
enumerate0 :Enumerablef ⇒ (Nn →→ aa)i →nst (eNadcao rdf n s→l isf t sa[ ).a W]. eT cheann

fTuhrtehe furn lectti aon be seN lpi san badsd iecfailnleys a enli pn=effeicniuemntev raetres0ioidn:o Nfct ahrdep i n→defxN inpg.
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function in the F eat library. The elements in the image of g for a
particular n are (defined to be) those of weight n. The union of
all those images form a set (a type). Thus a species is roughly a
partition of a set into subsets of elements of the same size.

The theory of species goes further than what we present in this
paper, and the species library implements quite a bit of that theory.
We cannot (yet) handle non-regular species, but for the regular ones
we can implement the enumeration efficiently.

Boltzmann samplers A combinatorial class is b asically the same
as what we call a “functional enumeration”: a set C of combina-
torial objects with a size function such that all the parts Cn of the
induced partitioning are finite. A B oltzmann model is a p robability
distribution (parameterized over a small real number x ) over such a
class C, such that a uniform discrete probability distribution is used
within each p art Cn. A B oltzmann sampler is (in our terminology)
a random generator of values in the class C following the Boltz-
mann model distribution. The datatype generic Bolztmann sampler
defined in [Duchon et al. 2004] follows the same structure as our
generic enumerator. We believe a closer study of that paper could
help defining random generators for ASTs in a principled way from
our enumerators.

Decomposable c ombinatorial s tructures. The research field of
enumerative combinatorics has worked on what we call “functional
enumeration” already in the early 1990:s and Flajolet and Salvy
[1995] provide a short overview and a good entry point. They define
a grammar for “decomposable” combinatorial structures i ncluding
constructions for (disjoint) union, product, sequence, sets and cy-
cles (atoms or symbols are the implicit b ase case). The theory (and



implementation) is based on representing the counting sequences
{Ci} as generating functions as there is a close correspondance be-
{twCe}ena sthg ee grammar cuonnctstioruncstsa sat nhde arleg iesba rac iclo osepec roartrioesnpso onnd atnhec gen-
erating functions. For decomposable structures they compute gen-
erating function equations and b y embedding this in a computer
algebra system (Maple) the equations can be symbolically manip-
ulated and sometimes solved to obatin closed forms for the GFs.
What they don’t do is consider the p ragmatic solution of just tabu-
lating the counts instead (as we do). They also don’t consider com-
plex algebraic datatypes, j ust universal (untyped) representations
of them. Complex ASTs can perhaps be expressed (or simulated)
but rather awkwardly. They also don’t seem to implement the index
function into the enumeration (only r andom generation). N everthe-
less, their development is impressive, both as a mathematical theory
and as a computer library and we want to explore the connection
further in future work.

9. Conclusions and Future work

Since there are now a few different approaches to p roperty-based
testing available for Haskell it would be useful with a library of
properties to compare the efficiency of the libraries at finding b ugs.
The library could contain “tailored” p roperties that are constructed
to exploit weaknesses or utilise strengths of known approaches, but
it would b e interesting to h ave naturally occurring b ugs as well
(preferably from production code). It could also be used to evaluate
the paradigm of property-based testing as a whole.

Instance (dictionary) sharing Our solution to instance sharing is
not perfect. It divides the interface into separate class functions for
consuming and combining enumerations and it requires Typeable.

A solution based on stable names [Peyton Jones et al. 1999]
would r emove the Typeable constraint but it’s not obvious that



there is any stable name to hold on to (the stable p oint is actually
the dictionary function, but that is off-limits to the p rogrammer).
Compiler support is always a possible solution (i.e. by a flag or a
pragma), but should only be considered as a last resort.
Enumerating f unctions For completeness, Feat should support
enumerating function values. We argue that in practice this is sel-
dom useful for property-based testing because non trivial higher
order functions often h ave some r equirement on their function ar-
guments, for instance the ∗By functions in D ata.List need functions
tghuamt aenret sto, ftoarl ionrdstearnincgest h, ae ∗ paBryalf leuln cfotilodn nsei nedD s aatna a.Lsissotcn iaeteivdef fuuncncttiioonns
etc. This can not be checked as a p recondition, the best bet is prob-
ably to supply a few manually written total orderings or possibly
use a very clever QuickCheck generator.

Regardless of this, it stands to reason thatf unctional enumera-
tions should h ave support for functions. This is largely a question
of finding a suitable definition of size for functions, or an efficient
bijection from an algebraic type into the function type.

Invariants The primary reason why enumeration can not replace
the less systematic approach of QuickCheck testing is invariants.
QuickCheck can always b e used to write a generator that satisfies
an invariant, but often with no guarantees on the distribution or
coverage of the generator.

The general understanding seems to b e that it is not possible
to use systematic testing and filtering to test functions that require
e.g. type correct programs. Thus QuickCheck gives you something,
while automatic enumeration gives you nothing. The reason is that
the ratio type correct/syntactically correct programs is so small that
finding valid non-trivial test cases is too time consuming.

It would b e worthwhile to try and falsify or confirm the general
understanding for instance b y attempting to r epeat the results of
[Pałka et al. 2011] using systematic enumeration.

Invariants and c osts We have seen any bijective function can be
mapped on an enumeration, preserving the enumeration criterion.



This also preserves the cost of values, in the sense that a value x in
the enumerationf mapf e costs as much as f −1x.

This might not be the intention, particularly this means that
a strong size guarantee (i.e. that the cost is equal to the number
of constructors) is typically not preserved. As we show in §7 the
odfef cinointsiotnru octfo rssi)zei sct aynp bicea leysse nontti aplr eisne p rvreacdt.iA ces a wnde sthheo wco irnre§ l7atit ohne
between cost and the actual number of constructors in the value
should b e preserved as far as possible. There may be useful opera-
tions for manipulating costs of enumerations.

Conclusions We present an algebra of enumerations, an efficient
implementation and show t hat it can handle large groups of mutu-
ally recursive datatypes. We see this as a step on the way to a unified
theory of test data enumeration and generation. F eat is available as
an open source package from the HackageDB r epository:
http : //hackage .haskell .org/package/testing-feat
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