
The Essence of Dataflow Programming

Tarmo Uustalu1 and Varmo Vene2

1 Inst. of Cybernetics at Tallinn Univ. of Technology,
Akadeemia tee 21, EE-12618 Tallinn, Estonia

tarmo@cs.ioc.ee
2 Dept. of Computer Science, Univ. of Tartu,

J. Liivi 2, EE-50409 Tartu, Estonia
varmo@cs.ut.ee

Abstract. We propose a novel, comonadic approach to dataflow (stream-
based) computation. This is based on the observation that both general
and causal stream functions can be characterized as coKleisli arrows of
comonads and on the intuition that comonads in general must be a good
means to structure context-dependent computation. In particular, we de-
velop a generic comonadic interpreter of languages for context-dependent
computation and instantiate it for stream-based computation. We also
discuss distributive laws of a comonad over a monad as a means to struc-
ture combinations of effectful and context-dependent computation.
We apply the latter to analyse clocked dataflow (partial stream based)
computation.

1 Introduction

Shall we be pure or impure? Today we shall be very pure. It must always be pos-
sible to contain impurities (i.e., non-functionalities), in a pure (i.e., functional)
way.

The program

fact x = if x <= 1 then 1 else fact (x - 1) * x

for factorial encodes a pure function.
The programs

factM x = (if x == 5 then raise else
if x <= 1 then 1 else factM (x - 1) * x)

‘handle‘ (if x == 7 then 5040 else raise)

and

factL x = if x <= 1 then 1 else factL (x - 1) * (1 ‘choice‘ x)

represent “lossy” versions of the factorial function. The first yields an error on
5 and 6 whereas the second can fail to do some of the multiplications required
for the normal factorial. These impure “functions” can be made sense of in the
paradigms of error raising/handling and non-deterministic computations. Ever

Z. Horváth (Ed.): CEFP 2005, LNCS 4164, pp. 135–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

136 T. Uustalu and V. Vene

since the work by Moggi and Wadler [26,40,41], we know how to reduce impure
computations with errors and non-determinism to purely functional computa-
tions in a structured fashion using the maybe and list monads. We also know how
to explain other types of effect, such as continuations, state, even input/output,
using monads!

But what is more unnatural or hard about the following program?

pos = 0 fby (pos + 1)
fact = 1 fby (fact * (pos + 1))

This represents a dataflow computation which produces two discrete-time signals
or streams: the enumeration of the naturals and the graph of the factorial func-
tion. The syntax is essentially that of Lucid [2], which is an old intensional lan-
guage, or Lustre [17] or Lucid Synchrone [11,31], the newer French synchronous
dataflow languages. fby reads ‘followed by’ and means initialized unit delay of a
discrete-time signal (cons of a stream).

Could it be that monads are capable of structuring notions of dataflow com-
putation as well? No, there are simple reasons why this must be impossible. (We
will discuss these.) As a substitute for monads, Hughes has therefore proposed
a laxer framework that he has termed arrow types [19] (and Power et al. [32]
proposed the same under the name of Freyd categories). But this is—we assert—
overkill, at least as long as we are interested in dataflow computation. It turns
out that something simpler and more standard, namely comonads, the dual of
monads, does just as well. In fact, comonads are even better, as there is more
structure to comonads than to arrow types. Arrow types are too general.

The message of this paper is just this last point: While notions of dataflow
computation cannot be structured with monads, they can be structured perfectly
with comonads. And more generally, comonads have received too little attention
in programming language semantics compared to monads. Just as monads are
good for speaking and reasoning about notions of functions that produce effects,
comonads can handle context-dependent functions and are hence highly relevant.
This has been suggested earlier, e.g., by Brookes and Geva [8] and Kieburtz [23],
but never caught on because of a lack of compelling examples. But now dataflow
computation provides clear examples and it hints at a direction in which there
are more.

The paper contributes a novel approach to dataflow computation based on
comonads. We show that general and causal stream functions, the basic entities
in intensional resp. synchronous dataflow computation, are elegantly described
in terms of comonads. Imitating monadic interpretation, we develop a generic
comonadic interpreter. By instantiation, we obtain interpreters of a Lucid-like
intensional language and a Lucid Synchrone-like synchronous dataflow language.
Remarkably, we get elegant higher-order language designs with almost no effort
whereas the traditional dataflow languages are first-order and the question of
the meaningfulness or right meaning of higher-order dataflow has been seen
as controversial. We also show that clocked dataflow (i.e., partial-stream based
computation) can be handled by distributive laws of the comonads for stream
functions over the maybe monad.

The Essence of Dataflow Programming 137

The organization of the paper is as follows. In Section 2, we give a short
introduction to dataflow programming. In Section 3, we give a brief review of
the Moggi-Wadler monad-based approach to programming with effect-producing
functions in a pure language and to the semantics of corresponding impure lan-
guages. In particular, we recall monadic interpretation. In Section 4, we show
that certain paradigms of computation, notably stream functions, do not fit
into this framework, and introduce the substitute idea of arrow types/Freyd
categories. In Section 5, we introduce comonads and argue that they struc-
ture computation with context-dependent functions. We show that both general
and causal stream functions are smoothly described by comonads and develop
a comonadic interpreter capable of handling dataflow languages. In Section 6,
we show how effects and context-dependence can be combined in the presence
of a distributive law of the comonad over the monad, show how this applies
to partial-stream functions and present a distributivity-based interpreter which
copes with clocked dataflow languages. Section 7 is a summary of related work,
while Section 8 lists our conclusions.

We assume that the reader is familiar with the basics of functional program-
ming (in particular, Haskell programming) and denotational semantics and also
knows about the Lambek-Lawvere correspondence between typed lambda calculi
and cartesian closed categories (the types-as-objects, terms-as-morphisms corre-
spondence). The paper contains a brief introduction to dataflow programming,
but acquaintance with languages such as Lucid and Lustre or Lucid Synchrone
will be of additional help. Concepts such as monads, comonads etc. are defined
in the paper.

The paper is related to our earlier paper [37], which discussed comonad-
based dataflow programming, but did not treat comonad-based processing of
dataflow languages. A short version of the present paper (without introductions
to dataflow languages, monads, monadic interpretation and arrows) appeared
as [38].

2 Dataflow Programming

We begin with an informal quick introduction to dataflow programming as sup-
ported by languages of the Lucid family [2] and the Lustre and Lucid Synchrone
languages [11,31]. We demonstrate a neutral syntax which we will use throughout
the paper.

Dataflow programming is about programming with streams, thought about
as signals in discrete time. The style of programming is functional, but any
expression denotes a stream (a signal), or more exactly, the element of a stream
at an understood position (the value of a signal the time instant understood as
the present). Since the position is not mentioned, the stream is defined uniformly
across all of its positions. Compare this to physics, where many quantities vary
in time, but the time argument is always kept implicit and there is never any
explicit dependency on its value.

138 T. Uustalu and V. Vene

All standard operations on basic types are understood pointwise (so in par-
ticular constants become constant streams). The if-construct is also understood
pointwise.

x x0 x1 x2 x3 x4 x5 . . .

y y0 y1 y2 y3 y4 y5 . . .

x + y x0 + y0 x1 + y1 x2 + y2 x3 + y3 x4 + y4 x5 + y5 . . .

z t f t t f t . . .

if z then x else y x0 y1 x2 x3 y4 x5 . . .

If we had product types, the projections and the pairing construct would also
be pointwise. With function spaces, it is not obvious what the design should
be and we will not discuss any options at this stage. As a matter of fact, most
dataflow languages are first-order: expressions with variables are of course al-
lowed, but there are no first-class functions.

With the pointwise machinery, the current value of an expression is always
determined by the current values of its variables. This is not really interesting.
We should at least allow dependencies on the past values of the variables. This is
offered by a construct known as fby (pronounced “followed by”). The expression
e0 fby e1 takes the initial value of e0 at the beginning of the history, and at
every other instant of time it takes the value that e1 had at the immediately
preceding instant. In other words, the signal e0 fby e1 is the unit delay of the
signal e1, initialized with the initial value of e0.

x x0 x1 x2 x3 x4 x5 . . .

y y0 y1 y2 y3 y4 y5 . . .

x fby y x0 y0 y1 y2 y3 y4 . . .

With the fby operator, one can write many useful recursive definitions where
the recursive calls are guarded by fby and there is no real circularity. Below are
some classic examples of such feedback through a delay.

pos = 0 fby pos + 1
sum x = x + (0 fby sum x)
diff x = x - (0 fby x)
ini x = x fby ini x
fact = 1 fby (fact * (pos + 1))
fibo = 0 fby (fibo + (1 fby fibo))

The value of pos is 0 at the beginning of the history and at every other instant
it is the immediately preceding value incremented by one, i.e., pos generates the
enumeration of all natural numbers. The function sum finds the accumulated
sum of all values of the input up to the current instant. The function diff finds
the difference between the current value and the immediately preceding value of
the input. The function ini generates the constant sequence of the initial value
of the input. Finally, fact and fibo generate the graphs of the factorial and
Fibonacci functions respectively. Their behaviour is illustrated below.

The Essence of Dataflow Programming 139

pos 0 1 2 3 4 5 6 . . .

sum pos 0 1 3 6 10 15 21 . . .

diff pos 0 1 1 1 1 1 1 . . .

ini pos 0 0 0 0 0 0 0 . . .

fact 1 1 2 6 24 120 720 . . .

fibo 0 1 1 2 3 5 8 . . .

An expression written with pointwise constructs and fby is always causal in
the sense that its present value can only depend on the past and present values of
its variables. In languages à la Lucid, one can also write more general expressions
with physically unrealistic dependencies on future values of the variables. This is
supported by a construct called next. The value of next e at the current instant
is the value of e at the immediately following instant, so the signal next e is the
unit anticipation of the signal e.

x x0 x1 x2 x3 x4 x5 . . .

next x x1 x2 x3 x4 x5 x6 . . .

Combining next with recursion, it is possible to define functions whose present
output value can depend on the value of the input in unboundedly distant future.
For instance, the sieve of Eratosthenes can be defined as follows.

x wvr y = if ini y then x fby (next x wvr next y)
else (next x wvr next y)

sieve x = x fby sieve (x wvr x mod (ini x) /= 0)
eratosthenes = sieve (pos + 2)

The filtering function wvr (pronounced “whenever”) returns the substream
of the first input stream consisting of its elements from the positions where the
second input stream is true-valued. (This is all well as long as there always is a
future position where the second input stream has the value true, but poses a
problem, if from some point on it is constantly false.) The function sieve outputs
the initial element of the input stream and then recursively calls itself on the
substream of the input stream that only contains the elements not divisible by
the initial element.

x x0 x1 x2 x3 x4 x5 . . .

y t f t t f t . . .

x wvr y x0 x2 x3 x5 . . .

pos + 2 2 3 4 5 6 7 . . .

eratosthenes 2 3 5 7 11 13 . . .

Because anticipation is physically unimplementable and the use of it may
result in unbounded lookaheads, most dataflow languages do not support it.
Instead, some of them provide means to define partial streams, i.e., streams
where some elements can be undefined (denoted below by −). The idea is that
different signals may be on different clocks. Viewed as signals on the fastest
(base) clock, they are not defined at every instant. They are only defined at
those instants of the base clock that are also instants of their own clocks.

140 T. Uustalu and V. Vene

One possibility to specify partial streams is to introduce new constructs nosig
and merge (also known as “default”). The constant nosig denotes a constantly
undefined stream. The operator merge combines two partial streams into a par-
tial stream that is defined at the positions where at least one of two given partial
streams is defined (where both are defined, there the first one takes precedence).

nosig − − − − − − . . .

x x0 − − x3 − − . . .

y − − y2 y3 − y5 . . .

merge x y x0 − y2 x3 − y5 . . .

With the feature of partiality, it is possible to define the sieve of Eratosthenes
without anticipation.

sieve x = if (tt fby ff) then x
else sieve (if (x mod ini x /= 0) then x else nosig)

eratosthenes = sieve (pos + 2)

The initial element of the result of sieve is the initial element of the input
stream whereas all other elements are given by a recursive call on the modified
version of the input stream where all positions containing elements divisible by
the initial element have been dropped.

pos + 2 2 3 4 5 6 7 8 9 10 11 . . .

eratosthenes 2 3 − 5 − 7 − − − 11 . . .

3 Monads and Monadic Interpreters

3.1 Monads and Effect-Producing Functions

Now we proceed to monads and monadic interpreters. We begin with a brief
recapitulation of the monad-based approach to representing effectful functions
[26,40,41,6].

A monad (in extension form) on a category C is given by a mapping T : |C| →
|C| together with a |C|-indexed family η of maps ηA : A → TA of C (unit), and
an operation −� taking every map k : A → TB in C to a map k� : TA → TB of
C (extension operation) such that

1. for any f : A → TB, k� ◦ ηA = k,
2. ηA

� = idTA,
3. for any k : A → TB, � : B → TC, (�� ◦ k)� = �� ◦ k�.

Monads are a construction with many remarkable properties, but the cen-
tral one for programming and semantics is that any monad (T, η,−�) defines
a category CT where |CT | = |C| and CT (A, B) = C(A, TB), (idT)A = ηA,
� ◦T k = �� ◦ k (Kleisli category) and an identity on objects functor J : C → CT

where Jf = ηB ◦ f for f : A → B.
In the monadic approach to effectful functions, the underlying object mapping

T of a monad is seen as an abstraction of the kind of effect considered and assigns

The Essence of Dataflow Programming 141

to any type A a corresponding type TA of “computations of values” or “values
with an effect”. An effectful function from A to B is identified with a map A → B
in the Kleisli category, i.e., a map A → TB in the base category. The unit of
the monad makes it possible to view any pure function as an effectful one while
the extension operation provides composition of effect-producing functions. Of
course monads capture the structure that is common to all notions of effectful
function. Operations specific to a particular type of effect are not part of the
corresponding monad structure.

There are many standard examples of monads in semantics. Here is a brief
list of examples. In each case, the object mapping T is a monad.

– TA = A, the identity monad,
– TA = MaybeA = A + 1, error (undefinedness), TA = A + E, exceptions,
– TA = ListA = μX.1 + A × X , non-determinism,
– TA = E ⇒ A, readable environment,
– TA = S ⇒ A × S, state,
– TA = (A ⇒ R) ⇒ R, continuations,
– TA = μX.A + (U ⇒ X), interactive input,
– TA = μX.A + V × X ∼= A × ListV , interactive output,
– TA = μX.A + FX , the free monad over F ,
– TA = νX.A + FX , the free completely iterative monad over F [1].

(By μ and ν we denote the least and greatest fixpoints of functors.)
In Haskell, monads are implemented as a type constructor class with two

member functions (in the Prelude):

class Monad t where
return :: a -> t a
(>>=) :: t a -> (a -> t b) -> t b

mmap :: Monad t => (a -> b) -> t a -> t b
mmap f c = c >>= (return . f)

return is the Haskell name for the unit and (�=) (pronounced ’bind’) is the
extension operation of the monad. Haskell also supports a special syntax for
defining Kleisli arrows, but in this paper we will avoid it.

In Haskell, every monad is strong in the sense that carries an additional op-
eration, known as strength, with additional coherence properties. This happens
because the extension operations of Haskell monads are necessarily internal.

mstrength :: Monad t => t a -> b -> t (a, b)
mstrength c b = c >>= \ a -> return (a, b)

The identity monad is Haskell-implemented as follows.

newtype Id a = Id a

instance Monad Id where
return a = Id a
Id a >>= k = k a

142 T. Uustalu and V. Vene

The definitions of the maybe and list monads are the following.

data Maybe a = Just a | Nothing

instance Monad Maybe where
return a = Just a
Just a >>= k = k a
Nothing >>= k = Nothing

data [a] = [] | a : [a]

instance Monad [] where
return a = [a]
[] >>= k = []
(a : as) >>= k = k a ++ (as >>= k)

The exponent and state monads are defined in the following fashion.

newtype Exp e a = Exp (e -> a)

instance Monad (Exp e) where
return a = Exp (\ _ -> a)
Exp f >>= k = Exp (\ e -> case k (f e) of

Exp f’ -> f’ e)

newtype State s a = State (s -> (a, s))

instance Monad (State s) where
return a = State (\ s -> (a, s))
State f >>= k = State (\ s -> case f s of

(a, s’) -> case k a of
State f’ -> f’ s’)

In the case of these monads, the operations specific to the type of effect
they characterize are raising and handling an error, nullary and binary non-
deterministic choice, consulting and local modification of the environment, con-
sulting and updating the state.

raise :: Maybe a
raise = Nothing

handle :: Maybe a -> Maybe a -> Maybe a
Just a ‘handle‘ _ = Just a
Nothing ‘handle‘ c = c

deadlock :: [a]
deadlock = []

choice :: [a] -> [a] -> [a]
choice as0 as1 = as0 ++ as1

The Essence of Dataflow Programming 143

askE :: Exp e e
askE = Exp id

localE :: (e -> e) -> Exp e a -> Exp e b
localE g (Exp f) = Exp (f . g)

get :: State s s
get = State (\ s -> (s, s))

put :: s -> State s ()
put s = State (\ _ -> ((), s))

3.2 Monadic Semantics

Monads are a perfect tool for formulating denotational semantics of languages for
programming effectful functions. If this is done in a functional (meta-)language,
one obtains a reference interpreter for free. Let us recall how this projectwas carried
out by Moggi and Wadler. Of course we choose Haskell as our metalanguage.

We proceed from a simple strongly typed purely functional (object) language
with two base types, integers and booleans, which we want to be able to extend
with various types of effects. As particular examples of types of effects, we will
consider errors and non-determinism.

The first thing to do is to define the syntax of the object language. Since
Haskell gives us no support for extensible variants, it is simplest for us to include
the constructs for the two example effects from the beginning. For errors, these
are error raising and handling. For non-determinism, we consider nullary and
binary branching.

type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm
| N Integer | Tm :+ Tm | ...
| Tm :== Tm | ... | TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for Maybe
| Error | Tm ‘Handle‘ Tm
-- specific for []
| Deadlock | Tm ‘Choice‘ Tm

In the definition above, the constructors V, L, (:@) correspond to variables,
lambda-abstraction and application. The other names should be self-explanatory.

Next we have to define the semantic domains. Since Haskell is not dependently
typed, we have to be a bit coarse here, collecting the semantic values of all object
language types (for one particular type of effect) into a single type. But in reality,
the semantic values of the different object language types are integers, booleans
and functions, respectively, with no confusion. Importantly, a function takes a
value to a value with an effect (where the effect can only be trivial in the pure
case). An environment is a list of variable-value pairs, where the first occurrence
of a variable in a pair in the list determines its value.

144 T. Uustalu and V. Vene

data Val t = I Integer | B Bool | F (Val t -> t (Val t))

type Env t = [(Var, Val t)]

We will manipulate environment-like entities via the following three functions.
(The safe lookup, that maybe returns a value, will be unnecessary, since we can
type-check an object-language term before evaluating it. If this succeeds, we can
be sure we will only be looking up variables in environments where they really
occur.)

empty :: [(a, b)]
empty = []

update :: a -> b -> [(a, b)] -> [(a, b)]
update a b abs = (a, b) : abs

unsafeLookup :: Eq a => a -> [(a, b)] -> b
unsafeLookup a0 ((a,b):abs) = if a0 == a then b else unsafeLookup a0 abs

The syntax and the semantic domains of the possible object languages de-
scribed, we can proceed to evaluation.

The pure core of an object language is interpreted uniformly in the type of
effect that this language supports. Only the unit and bind operations of the
corresponding monad have to be known to describe the meanings of the core
constructs.

class Monad t => MonadEv t where
ev :: Tm -> Env t -> t (Val t)

evClosed :: MonadEv t => Tm -> t (Val t)
evClosed e = ev e empty

_ev :: MonadEv t => Tm -> Env t -> t (Val t)
_ev (V x) env = return (unsafeLookup x env)
_ev (L x e) env = return (F (\ a -> ev e (update x a env)))
_ev (e :@ e’) env = ev e env >>= \ (F k) ->

ev e’ env >>= \ a ->
k a

_ev (N n) env = return (I n)
_ev (e0 :+ e1) env = ev e0 env >>= \ (I n0) ->

ev e1 env >>= \ (I n1) ->
return (I (n0 + n1))

...
_ev TT env = return (B True)
_ev FF env = return (B False)
_ev (Not e) env = ev e env >>= \ (B b) ->

return (B (not b))
...
_ev (If e e0 e1) env = ev e env >>= \ (B b) ->

if b then ev e0 env else ev e1 env

The Essence of Dataflow Programming 145

To interpret the “native” constructs in each of the extensions, we have to use
the “native” operations of the corresponding monad.

instance MonadEv Id where
ev e env = _ev e env

instance MonadEv Maybe where
ev Raise env = raise
ev (e0 ‘Handle‘ e1) env = ev e0 env ‘handle‘ ev e1 env
ev e env = _ev e env

instance MonadEv [] where
ev Deadlock env = deadlock
ev (e0 ‘Choice‘ e1) env = ev e0 env ‘choice‘ ev e1 env
ev e env = _ev e env

We have achieved nearly perfect reference interpreters for the three languages.
But there is one thing we have forgotten. To accomplish anything really inter-
esting with integers, we need some form of recursion, say, the luxury of general
recursion. So we would actually like to extend the definition of the syntax by
the clause

data Tm = ... | Rec Tm

It would first look natural to extend the definition of the semantic intepretation
by the clause

_ev (Rec e) env = ev e env >>= \ (F k) ->
_ev (Rec e) env >>= \ a ->
k a

But unfortunately, this interprets Rec too eagerly, so no recursion will ever stop.
For every recursive call in a recursion, the interpreter would want to know if it
returns, even if the result is not needed at all.

So we have a problem. The solution is to use the MonadFix class (from Con-
trol.Monad.Fix), an invention of Erkök and Launchbury [16], which specifically
supports the monadic form of general recursion 1:

class Monad t => MonadFix t where
mfix :: (a -> t a) -> t a

-- the ideal uniform mfix which doesn’t work
-- mfix k = mfix k >>= k

The identity, maybe and list monads are instances (in an ad hoc way).

1 Notice that ‘Fix’ in ‘MonadFix’ refers as much to fixing an unpleasant issue as it
refers to a fixpoint combinator.

146 T. Uustalu and V. Vene

fix :: (a -> a) -> a
fix f = f (fix f)

instance MonadFix Id where
mfix k = fix (k . unId)

where unId (Id a) = a

instance MonadFix Maybe where
mfix k = fix (k . unJust)

where unJust (Just a) = a

instance MonadFix [] where
mfix k = case fix (k . head) of

[] -> []
(a : _) -> a : mfix (tail . k)

Now, after subclassing MonadEv from MonadFix instead of Monad

class MonadFix t => MonadEv t where ...

we can define the meaning of Rec by the clause

_ev (Rec e) env = ev e env >>= \ (F k) ->
mfix k

After this dirty fix (where however all dirt is contained) everything is clean
and working. We can interpret our pure core language and the two extensions.
The examples from the Introduction are handled by the interpreter exactly as
expected. We can define:

fact = Rec (L "fact" (L "x" (
If (V "x" :<= N 1)

(N 1)
((V "fact" :@ (V "x" :- N 1)) :* V "x"))))

factM = Rec (L "fact" (L "x" (
(If (V "x" :== N 5)

Raise
(If (V "x" :<= N 1)

(N 1)
((V "fact" :@ (V "x" :- N 1)) :* V "x")))

‘Handle‘
(If (V "x" :== N 7)

(N 5040)
Raise))))

factL = Rec (L "fact" (L "x" (
If (V "x" :<= N 1)

(N 1)
((V "fact" :@ (V "x" :- N 1)) :*

(N 1 ‘Choice‘ V "x")))))

The Essence of Dataflow Programming 147

Testing these, we get exactly the results we would expect.

> evClosed (fact :@ N 6) :: Id (Val Id)
Id 720
> evClosed (factM :@ N 4) :: Maybe (Val Maybe)
Just 24
> evClosed (factM :@ N 6) :: Maybe (Val Maybe)
Nothing
> evClosed (factM :@ N 8) :: Maybe (Val Maybe)
Just 40320
> evClosed (factL :@ N 5) :: [Val []]
[1,5,4,20,3,15,12,60,2,10,8,40,6,30,24,120]

4 Arrows

Despite their generality, monads do not cater for every possible notion of impure
function. In particular, monads do not cater for stream functions, which are the
central concept in dataflow programming.

In functional programming, Hughes [19] has been promoting what he has
called arrow types to overcome this deficiency. In semantics, the same concept
was invented for the same reason by Power and Robinson [32] under the name
of a Freyd category.

Informally, a Freyd category is a symmetric premonoidal category together
and an inclusion from a base category. A symmetric premonoidal category is
the same as a symmetric monoidal category except that the tensor need not be
bifunctorial, only functorial in each of its two arguments separately.

The exact definition is a bit more complicated: A binoidal category is a cat-
egory K binary operation ⊗ on objects of K that is functorial in each of its
two arguments. A map f : A → B of such a category is called central if the
two composites A ⊗ C → B ⊗ D agree for every map g : C → D and so do
the two composites C ⊗ A → D ⊗ B. A natural transformation is called central
if its components are central. A symmetric premonoidal category is a binoidal
category (K, ⊗) together with an object I and central natural transformations
ρ, α, σ with components A → A⊗I, (A⊗B)⊗C → A⊗(B⊗C), A⊗B → B⊗A,
subject to a number of coherence conditions. A Freyd category over a Cartesian
category C is a symmetric premonoidal category K together with an identity on
objects functor J : C → K that preserves the symmetric premonoidal structure
of C on the nose and also preserves centrality.

The pragmatics for impure computation is to have an inclusion from the base
category of pure functions to a richer category of which is the home for impure
functions (arrows), so that some aspects of the Cartesian structure of the base
category are preserved. Importantly the Cartesian product × of C is bifunctorial,
so (B × g) ◦ (f × C) = (f × D) ◦ (A × g) : A × C → B × D for any f : A → B
and g : C → D, but for the corresponding tensor operation ⊕ of K this is only
mandatory if either f or g is pure (the idea being that different sequencings of
impure functions must be able to give different results).

148 T. Uustalu and V. Vene

The basic example of a Freyd category is the Kleisli category of a strong
monad. Another standard one is that of stateful functions. For a base category C,
the maps of the Freyd category are the maps A×S → B×S of C where S is some
fixed object of C. This is not very exciting, since if C also has exponents, the maps
A×S → B ×S are in a natural bijection with the maps A → S ⇒ B ×S, which
means that the Freyd category is essentially the same as the Kleisli category of
the state monad. But probably the best known and most useful example is that
of stream functions. In this case the maps A → B of the Freyd category are the
maps StrA → StrB of C of C where StrA = νX.A×X is the type of streams over
the type A. Notice that differently from stateful functions from A to B, stream
functions from A to B just cannot be viewed as Kleisli arrows.

In Haskell, arrow type constructors are implemented by the following type
constructor class (appearing in Control.Arrow).

class Arrow r where
pure :: (a -> b) -> r a b
(>>>) :: r a b -> r b c -> r a c
first :: r a b -> r (a, c) (b, c)

returnA :: Arrow r => r a a
returnA = pure id

second :: Arrow r => r c d -> r (a, c) (a, d)
second f = pure swap >>> first f >>> pure swap

pure says that every function is an arrow (so in particular identity arrows arise
from identity functions). (>>>) provides composition of arrows and first pro-
vides functoriality in the first argument of the tensor of the arrow category.

In Haskell, Kleisli arrows of monads are shown to be an instance of arrows as
follows (recall that all Haskell monads are strong).

newtype Kleisli t a b = Kleisli (a -> t b)

instance Monad t => Arrow (Kleisli t) where
pure f = Kleisli (return . f)
Kleisli k >>> Kleisli l = Kleisli ((>>= l) . k)
first (Kleisli k) = Kleisli (\ (a, c) -> mstrength (k a) c)

Stateful functions are a particularly simple instance.

newtype StateA s a b = StateA ((a, s) -> (b, s))

instance Arrow (State A s) where
pure f = StateA (\ (a, s) -> (f a, s))
StateA f >>> StateA g = StateA (g . f)
first (StateA f) = StateA (\ ((a, c), s) -> case f (a, s) of

(b, s’) -> ((b, c), s’))

Stream functions are declared to be arrows in the following fashion, relying
on streams being mappable and zippable. (For reasons of readability that will

The Essence of Dataflow Programming 149

become apparent in the next section, we introduce our own list and stream
types with our own names for their nil and cons constructors. Also, although
Haskell does not distinguish between inductive and coinductive types because
of its algebraically compact semantics, we want to make the distinction, as our
work also applies to other, finer semantic models.)

data Stream a = a :< Stream a -- coinductive

mapS :: (a -> b) -> Stream a -> Stream b
mapS f (a :< as) = f a :< mapS f as

zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

unzipS :: Stream (a, b) -> (Stream a, Stream b)
unzipS abs = (mapS fst abs, mapS snd abs)

newtype SF a b = SF (Stream a -> Stream b)

instance Arrow SF where
pure f = SF (mapS f)
SF k >>> SF l = SF (l . k)
first (SF k) = SF (uncurry zipS . (\ (as, ds) -> (k as, ds)) . unzipS)

Similarly to monads, every useful arrow type constructor has some operation
specific to it. The main such operation for stream functions are the initialized
unit delay operation ‘followed by’ of intensional and synchronous dataflow lan-
guages and the unit anticipation operation ‘next’ that only exists in intensional
languages. These are really the cons and tail operations of streams.

fbySF :: a -> SF a a
fbySF a0 = SF (\ as -> a0 :< as)

nextSF :: SF a a
nextSF = SF (\ (a :< as) -> as)

5 Comonads

5.1 Comonads and Context-Dependent Functions

While Freyd categories or arrow types are certainly general and cover signifi-
cantly more notions of impure functions than monads, some non-monadic impu-
rities should be explainable in more basic terms, namely via comonads, which
are the dual of monads. This has been suggested [8,23,25], but there have been
few useful examples. One of the goals of this paper is to show that general and
causal stream functions are excellent new such examples.

A comonad on a category C is given by a mapping D : |C| → |C| together with a
|C|-indexed family ε of maps εA : DA → A (counit), and an operation −† taking

150 T. Uustalu and V. Vene

every map k : DA → B in C to a map k† : DA → DB (coextension operation)
such that

1. for any k : DA → B, εB ◦ k† = k,
2. εA

† = idDA,
3. for any k : DA → B, � : DB → C, (� ◦ k†)† = �† ◦ k†.

Analogously to Kleisli categories, any comonad (D, ε,−†) defines a category
CD where |CD| = |C| and CD(A, B) = C(DA, B), (idD)A = εA, � ◦D k = � ◦ k†

(coKleisli category) and an identity on objects functor J : C → CD where Jf =
f ◦ εA for f : A → B.

Comonads should be fit to capture notions of “value in a context”; DA would
be the type of contextually situated values of A. A context-dependent function
from A to B would then be a map A → B in the coKleisli category, i.e., a map
DA → B in the base category. The function εA : DA → A discards the context
of its input whereas the coextension k† : DA → DB of a function k : DA → B
essentially duplicates it (to feed it to k and still have a copy left).

Some examples of comonads are the following: each object mapping D below
is a comonad:

– DA = A, the identity comonad,
– DA = A × E, the product comonad,
– DA = StrA = νX.A × X , the streams comonad,
– DA = νX.A × FX , the cofree comonad over F ,
– DA = μX.A × FX , the cofree recursive comonad over F [36].

Accidentally, the pragmatics of the product comonad is the same as that of
the exponent monad, viz. representation of functions reading an environment.
The reason is simple: the Kleisli arrows of the exponent monad are the maps
A → (E ⇒ B) of the base category, which are of course in a natural bijection
with the with the maps A × E → B that are the coKleisli arrows of the product
comonad. But in general, monads and comonads capture different notions of im-
pure function. We defer the discussion of the pragmatics of the streams comonad
until the next subsection (it is not the comonad to represent general or causal
stream functions!).

For Haskell, there is no standard comonad library2. But of course comonads
are easily defined as a type constructor class analogously to monads.

class Comonad d where
counit :: d a -> a
cobind :: (d a -> b) -> d a -> d b

cmap :: Comonad d => (a -> b) -> d a -> d b
cmap f = cobind (f . counit)

The identity and product comonads are defined as instances in the following
fashion.
2 There is, however, a contributed library by Dave Menendez, see http://www.
eyrie.org/∼zednenem/2004/hsce/

http://www.
eyrie.org/~zednenem/2004/hsce/

The Essence of Dataflow Programming 151

instance Comonad Id where
counit (Id a) = a
cobind k d = Id (k d)

data Prod e a = a :& e

instance Comonad (Prod e) where
counit (a :& _) = a
cobind k d@(_ :& e) = k d :& e

askP :: Prod e a -> e
askP (_ :& e) = e

localP :: (e -> e) -> Prod e a -> Prod e a
localP g (a :& e) = (a :& g e)

The stream comonad is implemented as follows.

instance Comonad Stream where
counit (a :< _) = a
cobind k d@(_ :< as) = k d :< cobind k as

nextS :: Stream a -> Stream a
nextS (a :< as) = as

Just as the Kleisli categories of strong monads are Freyd categories, so are
the coKleisli categories of comonads.

newtype CoKleisli d a b = CoKleisli (d a -> b)

pair f g x = (f x, g x)

instance Comonad d => Arrow (CoKleisli d) where
pure f = CoKleisli (f . counit)
CoKleisli k >>> CoKleisli l = CoKleisli (l . cobind k)
first (CoKleisli k) = CoKleisli (pair (k . cmap fst) (snd . counit))

5.2 Comonads for General and Causal Stream Functions

The general pragmatics of comonads introduced, we are now ready to discuss
the representation of general and causal stream functions via comonads.

The first observation to make is that streams (discrete time signals) are nat-
urally isomorphic to functions from natural numbers: StrA = νX. A × X ∼=
(μX. 1 + X) ⇒ A = Nat ⇒ A. In Haskell, this isomorphism is implemented as
follows:

str2fun :: Stream a -> Int -> a
str2fun (a :< as) 0 = a str2fun (a :< as) (i + 1) = str2fun as i

fun2str :: (Int -> a) -> Stream a
fun2str f = fun2str’ f 0

where fun2str’ f i = f i :< fun2str’ f (i + 1)

152 T. Uustalu and V. Vene

General stream functions StrA → StrB are thus in natural bijection with
maps Nat ⇒ A → Nat ⇒ B, which, in turn, are in natural bijection with maps
(Nat ⇒ A)×Nat → B, i.e., FunArg NatA → B where FunArg S A = (S ⇒ A)×S.
Hence, for general stream functions, a value from A in context is a stream (sig-
nal) over A together with a natural number identifying a distinguished stream
position (the present time). Not surprisingly, the object mapping FunArg S is a
comonad (in fact, it is the “state-in-context” comonad considered by Kieburtz
[23]) and, what is of crucial importance, the coKleisli identities and composi-
tion as well as the coKleisli lifting of FunArg Nat agree with the identities and
composition of stream functions (which are really just function identities and
composition) and with the lifting of functions to stream functions. In Haskell,
the parameterized comonad FunArg and the interpretation of the coKleisli arrows
of FunArg Nat as stream functions are implemented as follows.

data FunArg s a = (s -> a) :# s

instance Comonad (FunArg s) where
counit (f :# s) = f s
cobind k (f :# s) = (\ s’ -> k (f :# s’)) :# s

runFA :: (FunArg Int a -> b) -> Stream a -> Stream b
runFA k as = runFA’ k (str2fun as :# 0)

where runFA’ k d@(f :# i) = k d :< runFA’ k (f :# (i + 1))

The comonad FunArg Nat can also be presented equivalently without using
natural numbers to deal with positions. The idea for this alternative presentation
is simple: given a stream and a distinguished stream position, the position splits
the stream up into a list, a value of the base type and a stream (corresponding
to the past, present and future of the signal). Put mathematically, there is a
natural isomorphism (Nat ⇒ A) × Nat ∼= Str A × Nat ∼= (List A × A) × Str A
where ListA = μX. 1 + (A × X) is the type of lists over a given type A. This
gives us an equivalent comonad LVS for representing of stream functions with
the following structure (we use snoc-lists instead of cons-lists to reflect the fact
that the analysis order of the past of a signal will be the reverse direction of
time):

data List a = Nil | List a :> a -- inductive

data LV a = List a := a

data LVS a = LV a :| Stream a

instance Comonad LVS where
counit (az := a :| as) = a
cobind k d = cobindL d := k d :| cobindS d

where cobindL (Nil := a :| as) = Nil
cobindL (az’ :> a’ := a :| as) = cobindL d’ :> k d’

where d’ = az’ := a’ :| (a :< as)

The Essence of Dataflow Programming 153

cobindS (az := a :| (a’ :< as’)) = k d’ :< cobindS d’
where d’ = az :> a := a’ :| as’

(Notice the visual purpose of our constructor naming. In values of types LVSA,
both the cons constructors (:>) of the list (the past) and the cons constructors
(:<) of the stream (the future) point to the present which is enclosed between
the constructors (:=) and (: |).)

The interpretation of the coKleisli arrows of the comonad LVS as stream
functions is implemented as follows.

runLVS :: (LVS a -> b) -> Stream a -> Stream b
runLVS k (a’ :< as’) = runLVS’ k (Nil := a’ :| as’)

where runLVS’ k d@(az := a :| (a’ :< as’))
= k d :< runLVS’ k (az :> a := a’ :| as’)

Delay and anticipation are easily formulated in terms of both FunArg Nat and
LVS.

fbyFA :: a -> (FunArg Int a -> a)
fbyFA a0 (f :# 0) = a0
fbyFA _ (f :# (i + 1)) = f i

fbyLVS :: a -> (LVS a -> a)
fbyLVS a0 (Nil := _ :| _) = a0
fbyLVS _ ((_ :> a’) := _ :| _) = a’

nextFA :: FunArg Int a -> a
nextFA (f :# i) = f (i + 1)

nextLVS :: LVS a -> a
nextLVS (_ := _ :| (a :< _)) = a

Let us call a stream function causal, if the present of the output signal only
depends on the past and present of the input signal and not on its future3. Is there
a way to ban non-causal functions? Yes, the comonad LVS is easy to modify so
that exactly those stream functions can be represented that are causal. All that
needs to be done is to remove from the comonad LVS the factor of the future. We
are left with the object mapping LV where LV A = List A×A = (μX. 1+A×X)×
A ∼= μX. A× (1 + X), i.e., a non-empty list type constructor. This is a comonad
as well and again the counit and the coextension operation are just correct in the
sense that they deliver the desirable coKleisli identities, composition and lifting.
In fact, the comonad LV is the cofree recursive comonad of the functor Maybe
(we refrain from giving the definition of a recursive comonad here, this can be

3 The standard terminology is ‘synchronous stream functions’, but want to avoid it,
because ‘synchrony’ also refers to all signals being on the same clock and to the
hypothesis on which the applications of synchronous dataflow languages are based:
that in an embedded system the controller can react to an event in the plant in so
little time that it can be considered instantaneous.

154 T. Uustalu and V. Vene

found in [36]). It may be useful to notice that the type constructor LV carries a
monad structure too, but the Kleisli arrows of that monad have nothing to do
with causal stream functions!

In Haskell, the non-empty list comonad LV is defined as follows.

instance Comonad LV where
counit (_ := a) = a
cobind k d@(az := _) = cobindL k az := k d

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)

runLV :: (LV a -> b) -> Stream a -> Stream b
runLV k (a’ :< as’) = runLV’ k (Nil := a’ :| as’)

where runLV’ k (d@(az := a) :| (a’ :< as’))
= k d :< runLV’ k (az :> a := a’ :| as’)

With the LV comonad, anticipation is no longer possible, but delay is unprob-
lematic.

fbyLV :: a -> (LV a -> a)
fbyLV a0 (Nil := _) = a0
fbyLV _ ((_ :> a’) := _) = a’

Analogously to causal stream functions, one might also consider anticausal
stream functions, i.e., functions for which the present value of the output sig-
nal only depends on the present and future values of the input signal. As
A × Str A ∼= Str A, it is not surprising now anymore that the comonad for an-
ticausal stream functions is the comonad Str, which we introduced earlier and
which is very canonical by being the cofree comonad generated by the identity
functor. However, in real life, causality is much more relevant than anticausality!

5.3 Comonadic Semantics

Is the comonadic approach to context-dependent computation of any use? We
will now demonstrate that it is indeed by developing a generic comonadic in-
terpreter instantiable to various specific comonads, in particular to those that
characterize general and causal stream functions. In the development, we mimic
the monadic interpreter.

As the first thing we again fix the syntax of our object language. We will
support a purely functional core and additions corresponding to various notions
of context.

type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
| N Integer | Tm :+ Tm | ...
| Tm :== Tm | ... | TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for both general and causal stream functions

The Essence of Dataflow Programming 155

| Tm ‘Fby‘ Tm
-- specific for general stream functions only
| Next Tm

The type-unaware semantic domain contains integers, booleans and functions
as before, but now our functions are context-dependent (coKleisli functions).
Environments are lists of variable-value pairs as usual.

data Val d = I Integer | B Bool | F (d (Val d) -> Val d)

type Env d = [(Var, Val d)]

And we are at evaluation. Of course terms must denote coKleisli arrows, so
the typing of evaluation is uncontroversial.

class Comonad d => ComonadEv d where
ev :: Tm -> d (Env d) -> Val d

But an interesting issue arises with evaluation of closed terms. In the case of
a pure or a monadically interpreted language, closed terms are supposed to
be evaluated in the empty environment. Now they must be evaluated in the
empty environment placed in a context! What does this mean? This is easy to
understand on the example of stream functions. By the types, evaluation of an
expression returns a single value, not a stream. So the stream position of interest
must be specified in the contextually situated environment that we provide. Very
suitably, this is exactly the information that the empty environment in a context
conveys. So we can define:

evClosedI :: Tm -> Val Id
evClosedI e = ev e (Id empty)

emptyL :: Int -> List [(a, b)]
emptyL 0 = Nil
emptyL (i + 1) = emptyL i :> empty

emptyS :: Stream [(a, b)]
emptyS = empty :< emptyS

evClosedLVS :: Tm -> Int -> Val LVS
evClosedLVS e i = ev e (emptyL i := empty :| emptyS)

evClosedLV :: Tm -> Int -> Val LV
evClosedLV e i = ev e (emptyL i := empty)

Back to evaluation. For most of the core constructs, the types tell us what
the defining clauses of their meanings must be—there is only one thing we can
write and that is the right thing. In particular, everything is meaningfully pre-
determined about variables, application and recursion (and, for recursion, the
obvious solution works). E.g., for a variable, we must extract the environment

156 T. Uustalu and V. Vene

from its context (e.g., history), and then do a lookup. For an application, we
must evaluate the function wrt. the given contextually situated environment
and then apply it. But since, according to the types, a function wants not just
an isolated argument value, but a contextually situated one, the function has to
be applied to the coextension of the denotation of the argument wrt. the given
contextually situated environment.

_ev :: ComonadEv d => Tm -> d (Env d) -> Val d
_ev (V x) denv = unsafeLookup x (counit denv)
_ev (e :@ e’) denv = case ev e denv of

F f -> f (cobind (ev e’) denv)
_ev (Rec e) denv = case ev e denv of

F f -> f (cobind (_ev (Rec e)) denv)
_ev (N n) denv = I n
_ev (e0 :+ e1) denv = case ev e0 denv of

I n0 -> case ev e1 denv of
I n1 -> I (n0 + n1)

...
_ev TT denv = B True
_ev FF denv = B False
_ev (Not e) denv = case ev e denv of

B b -> B (not b)
...
_ev (If e e0 e1) denv = case ev e denv of

B b -> if b then ev e0 denv else ev e1 denv

There is, however, a problem with lambda-abstraction. For any potential con-
textually situated value of the lambda-variable, the evaluation function should
recursively evaluate the body of the lambda-abstraction expression in the ap-
propriately extended contextually situated environment. Schematically,

_ev (L x e) denv = F (\ d -> ev e (extend x d denv))

where

extend :: Comonad d => Var -> d (Val d) -> d (Env d) -> d (Env d)

Note that we need to combine a contextually situated environment with a con-
textually situated value. One way to do this would be to use the strength of the
comonad (we are in Haskell, so every comonad is strong), but in the case of the
stream function comonads this would necessarily have the bad effect that either
the history of the environment or that of the value would be lost. We would like
to see that no information is lost, to have the histories zipped.

To solve the problem, we consider comonads equipped with an additional
zipping operation. We define a comonad with zipping to be a comonad D coming
with a natural transformation m with components mA,B : DA × DB → D(A ×
B) that satisfies coherence conditions such as εA×B ◦ mA,B = εA × εB (more
mathematically, this is a symmetric semi-monoidal comonad).

In Haskell, we define a corresponding type constructor class.

The Essence of Dataflow Programming 157

class Comonad d => ComonadZip d where
czip :: d a -> d b -> d (a, b)

The identity comonad, as well as LVS and LV are instances (and so are many
other comonads).

instance ComonadZip Id where
czip (Id a) (Id b) = Id (a, b)

zipL :: List a -> List b -> List (a, b)
zipL Nil _ = Nil
zipL _ Nil = Nil
zipL (az :> a) (bz :> b) = zipL az bz :> (a, b)

zipS :: Stream a -> Stream b -> Stream (a, b)
zipS (a :< as) (b :< bs) = (a, b) :< zipS as bs

instance ComonadZip LVS where
czip (az := a :| as) (bz := b :| bs)

= zipL az bz := (a, b) :| zipS as bs

instance ComonadZip LV where
czip (az := a) (bz := b) = zipL az bz := (a, b)

With the zip operation available, defining the meaning of lambda-abstractions
is easy, but we must also update the typing of the evaluation function, so that
zippability becomes required4.

class ComonadZip d => ComonadEv d where ...

_ev (L x e) denv = F (\ d -> ev e (cmap repair (czip d denv)))
where repair (a, env) = update x a env

It remains to define the meaning of the specific constructs of our example
languages. The pure language has none. The dataflow languages have Fby and
Next that are interpreted using the specific operations of the corresponding
comonads. Since each of Fby and Next depends on the context of the value of its
main argument, we need to apply the coextension operation to the denotation
of that argument to have this context available.

instance ComonadEv Id where
ev e denv = _ev e denv

instance ComonadEv LVS where
ev (e0 ‘Fby‘ e1) denv = ev e0 denv ‘fbyLVS‘ cobind (ev e1) denv
ev (Next e) denv = nextLVS (cobind (ev e) denv)
ev e denv = _ev e denv

4 The name ‘repair’ in the code below alludes both to getting a small discrepancy in
the types right and to rearranging some pairings.

158 T. Uustalu and V. Vene

instance ComonadEv LV where
ev (e0 ‘Fby‘ e1) denv = ev e0 denv ‘fbyLV‘ cobind (ev e1) denv
ev e denv = _ev e denv

In dataflow languages, the ‘followed by’ construct is usually defined to mean
the delay of the second argument initialized by the initial value of the first
argument, which may at first seem like an ad hoc decision (or so it seemed
to us at least). Why give the initial position any priority? In our interpreter,
we took the simplest possible solution of using the value of the first argument
of Fby in the present position of the history of the environment. We did not
use any explicit means to calculate the value of that argument wrt. the initial
position. But the magic of the definition of fbyLVS is that it only ever uses its
first argument when the second has a history with no past (which corresponds
to the situation when the present actually is the initial position in the history
of the environment). So our most straightforward naive design gave exactly the
solution that has been adopted by the dataflow languages community, probably
for entirely different reasons.

Notice also that we have obtained a generic comonads-inspired language de-
sign which supports higher-order functions and the solution was dictated by
the types. This is remarkable since dataflow languages are traditionally first-
order and the question of the right meaning of higher-order dataflow has been
considered controversial. The key idea of our solution can be read off from the
interpretation of application: the present value of a function application is the
present value of the function applied to the history of the argument.

We can test the interpreter on the examples from Section 2. The following
examples make sense in both the general and causal stream function settings.

-- pos = 0 fby pos + 1
pos = Rec (L "pos" (N 0 ‘Fby‘ (V "pos" :+ N 1)))
-- sum x = x + (0 fby sum x)
sum = L "x" (Rec (L "sumx" (V "x" :+ (N 0 ‘Fby‘ V "sumx"))))
-- diff x = x - (0 fby x)
diff = L "x" (V "x" :- (N 0 ‘Fby‘ V "x"))
-- ini x = x fby ini x
ini = L "x" (Rec (L "inix" (V "x" ‘Fby‘ V "inix")))
-- fact = 1 fby (fact * (pos + 1))
fact = Rec (L "fact" (N 1 ‘Fby‘ (V "fact" :* (pos :+ N 1))))
-- fibo = 0 fby (fibo + (1 fby fibo))
fibo = Rec (L "fibo" (N 0 ‘Fby‘ (V "fibo" :+ (N 1 ‘Fby‘ V "fibo"))))

Testing gives expected results:

> runLV (ev pos) emptyS
0 :< (1 :< (2 :< (3 :< (4 :< (5 :< (6 :< (7 :< (8 :< (9 :< (10 :< ...
> runLV (ev (sum :@ pos)) emptyS
0 :< (1 :< (3 :< (6 :< (10 :< (15 :< (21 :< (28 :< (36 :< (45 :< ...
> runLV (ev (diff :@ (sum :@ pos))) emptyS
0 :< (1 :< (2 :< (3 :< (4 :< (5 :< (6 :< (7 :< (8 :< (9 :< (10 :< ...

The Essence of Dataflow Programming 159

The ‘whenever’ operator and the sieve of Eratosthenes, which use anticipation,
are only allowed with general stream functions.

-- x wvr y = if ini y then x fby (next x wvr next y)
-- else (next x wvr next y)
wvr = Rec (L "wvr" (L "x" (L "y" (

If (ini :@ V "y")
(V "x" ‘Fby‘ (V "wvr" :@ (Next (V "x")) :@ (Next (V "y"))))
(V "wvr" :@ (Next (V "x")) :@ (Next (V "y")))))))

-- sieve x = x fby sieve (x wvr x mod (ini x) /= 0)
sieve = Rec (L "sieve" (L "x" (

V "x" ‘Fby‘ (
V "sieve" :@ (wvr :@ V "x" :@ (

V "x" ‘Mod‘ (ini :@ (V "x")) :/= N 0))))))
-- eratosthenes = sieve (pos + 2)
eratosthenes = sieve :@ (pos :+ N 2)

Again, testing gives what one would like to get.

> runLVS (ev eratosthenes) emptyS
2 :< (3 :< (5 :< (7 :< (11 :< (13 :< (17 :< (19 :< (23 :< (29 :< ...

6 Distributive Laws

6.1 Distributive Laws: A Distributive Law for Causal Partial-Stream
Functions

While the comonadic approach is quite powerful, there are natural notions of
impure computation that it does not cover. One example is clocked dataflow or
partial-stream based computation. The idea of clocked dataflow is that different
signals may be on different clocks. Clocked dataflow signals can be represented
by partial streams. A partial stream is a stream that may have empty positions
to indicate the pace of the clock of a signal wrt. the base clock. The idea is to
get rid of the different clocks by aligning all signals wrt. the base clock.

A very good news is that although comonads alone do not cover clocked
dataflow computation, a solution is still close at hand. General and causal partial-
stream functions turn out to be describable in terms of distributive combinations
of a comonad and a monad considered, e.g., in [8,33]. For reasons of space, we will
only discuss causal partial-stream functions as more relevant. General partial-
stream functions are handled completely analogously.

Given a comonad (D, ε,−†) and a monad (T, η, −�) on a category C, a distribu-
tive law of the former over the latter is a natural transformation λ with compo-
nents DTA → TDA subject to four coherence conditions. A distributive law of
D over T defines a category CD,T where |CD,T | = |C|, CD,T (A, B) = C(DA, TB),
(idD,T)A = ηA ◦ εA, � ◦D,T k = l� ◦ λB ◦ k† for k : DA → TB, � : DB → TC (call
it the biKleisli category), with inclusions to it from both the coKleisli category

160 T. Uustalu and V. Vene

of D and Kleisli category of T . If the monad T is strong, the biKleisli category
is a Freyd category.

In Haskell, the distributive combination is implemented as follows.

class (ComonadZip d, Monad t) => Dist d t where
dist :: d (t a) -> t (d a)

newtype BiKleisli d t a b = BiKleisli (d a -> t b)

instance Dist d t => Arrow (BiKleisli d t) where
pure f = BiKleisli (return . f . counit)
BiKleisli k >>> BiKleisli l = BiKleisli ((>>= l) . dist . cobind k)
first (BiKleisli k) = BiKleisli (\ d ->

k (cmap fst d) >>= \ b ->
return (b, snd (counit d)))

The simplest examples of distributive laws are the distributivity of the identity
comonad over any monad and the distributivity of any comonad over the identity
monad.

instance Monad t => Dist Id t where
dist (Id c) = mmap Id c

instance ComonadZip d => Dist d Id where
dist d = Id (cmap unId d)

A more interesting example is the distributive law of the product comonad over
the maybe monad.

instance Dist Prod Maybe where
dist (Nothing :& _) = Nothing
dist (Just a :& e) = Just (a :& e)

For causal partial-stream functions, it is appropriate to combine the causal
stream functions comonad LV with the maybe monad. And this is possible, since
there is a distributive law which takes a partial list and a partial value (the past
and present of the signal according to the base clock) and, depending on whether
the partial value is undefined or defined, gives back the undefined list-value pair
(the present time does not exist according to the signal’s own clock) or a defined
list-value pair, where the list is obtained from the partial list by leaving out
its undefined elements (the past and present of the signal according to its own
clock). In Haskell, this distributive law is coded as follows.

filterL :: List (Maybe a) -> List a
filterL Nil = Nil
filterL (az :> Nothing) = filterL az
filterL (az :> Just a) = filterL az :> a

instance Dist LV Maybe where
dist (az := Nothing) = Nothing
dist (az := Just a) = Just (filterL az := a)

The Essence of Dataflow Programming 161

The biKleisli arrows of the distributive law are interpreted as partial-stream
functions as follows.

runLVM :: (LV a -> Maybe b) -> Stream (Maybe a) -> Stream (Maybe b)
runLVM k (a’ :< as’) = runLVM’ k Nil a’ as’

where runLVM’ k az Nothing (a’ :< as’)
= Nothing :< runLVM’ k az a’ as’

runLVM’ k az (Just a) (a’ :< as’)
= k (az := a) :< runLVM’ k (az :> a) a’ as’

6.2 Distributivity-Based Semantics

Just as with comonads, we demonstrate distributive laws in action by present-
ing an interpreter. This time this is an interpreter of languages featuring both
context-dependence and effects.

As previously, our first step is to fix the syntax of the object language.

type Var = String

data Tm = V Var | L Var Tm | Tm :@ Tm | Rec Tm
| N Integer | Tm :+ Tm | ...
| Tm :== Tm | ... | TT | FF | Not Tm | ... | If Tm Tm Tm
-- specific for causal stream functions
| Tm ‘Fby‘ Tm
-- specific for partiality
| Nosig | Tm ‘Merge‘ Tm

In the partiality part, Nosig corresponds to a nowhere defined stream, i.e., a
signal on an infinitely slow clock. The function of Merge is to combine two
partial streams into one which is defined wherever at least one of the given
partial streams is defined.

The semantic domains and environments are defined as before, except that
functions are now biKleisli functions, i.e., they take contextually situated values
to values with an effect.

data Val d t = I Integer | B Bool | F (d (Val d t) -> t (Val d t))

type Env d t = [(Var, Val d t)]

Evaluation sends terms to biKleisli arrows; closed terms are interpreted in the
empty environment placed into a context of interest.

class Dist d t => DistEv d t where
ev :: Tm -> d (Env d t) -> t (Val d t)

evClosedLV :: DistEv LV t => Tm -> Int -> t (Val LV t)
evClosedLV e i = ev e (emptyL i := empty)

The meanings of the core constructs are essentially dictated by the types.

162 T. Uustalu and V. Vene

_ev :: DistEv d t => Tm -> d (Env d t) -> t (Val d t)
_ev (V x) denv = return (unsafeLookup x (counit denv))
_ev (L x e) denv = return

(F (\ d -> ev e (cmap repair (czip d denv))))
where repair (a, env) = update x a env

_ev (e :@ e’) denv = ev e denv >>= \ (F f) ->
dist (cobind (ev e’) denv) >>= \ d ->
f d

_ev (Rec e) denv = ev e denv >>= \ (F f) ->
dist (cobind (_ev (Rec e)) denv) >>= \ d ->
f d

_ev (N n) denv = return (I n)
_ev (e0 :+ e1) denv = ev e0 denv >>= \ (I n0) ->

ev e1 denv >>= \ (I n1) ->
return (I (n0 + n1))

...
_ev TT denv = return (B True)
_ev FF denv = return (B False)
_ev (Not e) denv = ev e denv >>= \ (B b) ->

return (B (not b))
_ev (If e e0 e1) denv = ev e denv >>= \ (B b) ->

if b then ev e0 denv else ev e1 denv

Similarly to the case with the monadic interpreter, the clause for of Rec in the
above code this does not quite work, because recursive calls get evaluated too
eagerly, but the situation can be remedied by introducing a type constructor
class DistCheat of which LV with Maybe will be an instance.

class Dist d t => DistCheat d t where
cobindCheat :: (d a -> t b) -> (d a -> d (t b))

instance DistCheat LV Maybe where
cobindCheat k d@(az := _) = cobindL k az := return (unJust (k d))

where cobindL k Nil = Nil
cobindL k (az :> a) = cobindL k az :> k (az := a)

Using the operation of the DistCheat class, the meaning of Rec can be redefined
to yield a working solution.

class DistCheat d t => DistEv d t where ...

_ev (Rec e) denv = ev e denv >>= \ (F f) ->
dist (cobindCheat (_ev (Rec e)) denv) >>= \ d->
f d

The meanings of the constructs specific to the extension are also dictated by
the types and here we can and must of course use the specific operations of the
particular comonad and monad.

The Essence of Dataflow Programming 163

instance DistEv LV Maybe where
ev (e0 ‘Fby‘ e1) denv = ev e0 denv ‘fbyLV‘ cobind (ev e1) denv
ev Nosig denv = raise
ev (e0 ‘Merge‘ e1) denv = ev e0 denv ‘handle‘ ev e1 denv

The partial, causal version of the sieve of Eratosthenes from Section 2 is
defined as follows.

-- sieve x = if (tt fby ff) then x
-- else sieve (if (x mod ini x /= 0) then x else nosig)
sieve = Rec (L "sieve" (L "x" (

If (TT ‘Fby‘ FF)
(V "x")
(V "sieve" :@
(If ((V "x" ‘Mod‘ (ini :@ V "x")) :/= N 0)

(V "x")
Nosig)))))

-- eratosthenes = sieve (pos + 2)
eratosthenes = sieve :@ (pos :+ N 2)

Indeed, testing the above program, we get exactly what we would wish.

> runLVM (ev eratosthenes) (cmap Just emptyS)
Just 2 :< (Just 3 :< (Nothing :< (Just 5 :< (Nothing :< (Just 7 :< (
Nothing :< (Nothing :< (Nothing :< (Just 11 :< (Nothing :< (Just 13 :< (
Nothing :< (Nothing :< (Nothing :< (Just 17 :< ...

7 Related Work

Semantic studies of Lucid, Lustre and Lucid Synchrone-like languages are not
many and concentrate largely on the so-called clock calculus for static well-
clockedness checking [10,11,14]. Relevantly for us, however, Colaço et al. [13] have
very recently proposed a higher-order synchronous dataflow language extending
Lucid Synchrone, with two type constructors of function spaces.

Hughes’s arrows [19] have been picked up very well by the functional pro-
gramming community (for overviews, see [30,20]). There exists by now not only
a de facto standardized arrow library in Haskell, but even specialized syntax
[29]. The main application is functional reactive programming with its special-
izations to animation, robotics etc. [27,18]. Functional reactive programming is
of course the same as dataflow programming, except that it is done by functional
programmers rather than the traditional dataflow languages community. The ex-
act relationship between Hughes’s arrows and Power and Robinson’s symmetric
premonoidal categories has been established recently by Jacobs and colleagues
[21,22].

Uses of comonads in semantics have been very few. Brookes and Geva [8]
were the first to suggest to exploit comonads in semantics. They realized that,
in order for the coKleisli category of a comonad to have exponential-like objects,
the comonad has to come with a zip-like operation (they called it “merge”), but

164 T. Uustalu and V. Vene

did not formulate the axioms of a symmetric monoidal comonad. Kieburtz [23]
made an attempt to draw the attention of functional programmers to comonads.
Lewis et al. [25] must have contemplated employing the product comonad to
handle implicit parameters (see the conclusion of their paper), but did not carry
out the project. Comonads have also been used in the semantics of intuitionistic
linear logic and modal logics [5,7], with their applications in staged computation
and elsewhere, see e.g., [15], and to analyse structured recursion schemes, see e.g.,
[39,28,9]. In the semantics of intuitionistic linear and modal logics, comonads are
strong symmetric monoidal.

Our comonadic approach to stream-based programming is, to the best of our
knowledge, entirely new. This is surprising, given how elementary it is. Workers
in dataflow languages have produced a number of papers exploiting the final
coalgebraic structure of streams [12,24,4], but apparently nothing on stream
functions and comonads. The same is true about works in universal coalge-
bra [34,35].

8 Conclusions and Future Work

We have shown that notions of dataflow computation can be structured by
suitable comonads, thus reinforcing the old idea that one should be able to
use comonads to structure notions of context-dependent computation. We have
demonstrated that the approach is fruitful with generic comonadic and distribu-
tivity-based interpreters that effectively suggest designs of dataflow languages.
This is thanks to the rich structure present in comonads and distributive laws
which essentially forces many design decisions (compare this to the much weaker
structure in arrow types). Remarkably, the language designs that these inter-
preters suggest either coincide with the designs known from the dataflow lan-
guages literature or improve on them (when it comes to higher-orderness or to
the choice of the primitive constructs in the case of clocked dataflow). For us,
this is a solid proof of the true essence and structure of dataflow computation
lying in comonads.

For future work, we envisage the following directions, in each of which we
have already taken the first steps. First, we wish to obtain a solid understand-
ing of the mathematical properties of our comonadic and distributivity-based
semantics. Second, we plan to look at guarded recursion schemes associated to
the comonads for stream functions and at language designs based on correspond-
ing constructs. Third, we plan to test our interpreters on other comonads (e.g.,
decorated tree types) and see if they yield useful computation paradigms and
language designs. Fourth, we also intend to study the pragmatics of the combi-
nation of two comonads via a distributive law. We believe that this will among
other things explicate the underlying enabling structure of language designs such
Multidimensional Lucid [3] where flows are multidimensional arrays. Fifth, the
interpreters we have provided have been designed as reference specifications of
language semantics. As implementations, they are grossly inefficient because of
careless use of recursion, and we plan to investigate systematic efficient imple-

The Essence of Dataflow Programming 165

mentation of the languages they specify based on interpreter transformations.
Sixth, we intend to take a close look at continuous-time event-based dataflow
computation.

Acknowledgments. We are grateful to Neil Ghani for his suggestion to also look
into distributive laws. This work was partially supported by the Estonian Science
Foundation grant No. 5567.

References

1. P. Aczel, J. Adámek, S. Milius, J. Velebil. Infinite trees and completely iterative
theories: A coalgebraic view. Theoret. Comput. Sci., 300 (1–3), pp. 1–45, 2003.

2. E. A. Ashcroft, W. W. Wadge. LUCID, The Dataflow Programming Language.
Academic Press, New York, 1985.

3. E. A. Ashcroft, A. A. Faustini, R. Jagannathan, W. W. Wadge. Multidimensional
Programming. Oxford University Press, New York, 1995.

4. B. Barbier. Solving stream equation systems. In Actes 13mes Journées Franco-
phones des Langages Applicatifs, JFLA 2002, pp. 117–139. 2002.

5. N. Benton, G. Bierman, V. de Paiva, M. Hyland. Linear lambda-calculus and cat-
egorical models revisited. In E. Börger et al., eds, Proc. of 6th Wksh. on Computer
Science Logic, CSL ’92, v. 702 of Lect. Notes in Comput. Sci., pp. 61–84. Springer-
Verlag, Berlin, 1993.

6. N. Benton, J. Hughes, E. Moggi. Monads and effects. In G. Barthe, P. Dybjer,
L. Pinto, J. Saraiva, eds., Advanced Lectures from Int. Summer School on Applied
Semantics, APPSEM 2000, v. 2395 of Lect. Notes in Comput. Sci., pp. 42–122.
Springer-Verlag, Berlin, 2002.

7. G. Bierman, V. de Paiva. On an intuitionistic modal logic. Studia Logica, 65(3),
pp. 383–416, 2000.

8. S. Brookes, S. Geva. Computational comonads and intensional semantics. In M. P.
Fourman, P. T. Johnstone, and A. M. Pitts, eds., Applications of Categories in
Computer Science, v. 177 of London Math. Society Lecture Note Series, pp. 1–44.
Cambridge Univ. Press, Cambridge, 1992.

9. V. Capretta, T. Uustalu, V. Vene. Recursive coalgebras from comonads. Inform.
and Comput., 204(4), pp. 437–468, 2006.

10. P. Caspi. Clocks in dataflow languages. Theoret. Comput. Sci., 94(1), pp. 125–140,
1992.

11. P. Caspi, M. Pouzet. Synchronous Kahn networks. In Proc. of 1st ACM SIGPLAN
Int. Conf. on Functional Programming, ICFP’96, pp. 226–238. ACM Press, New
York, 1996. Also in ACM SIGPLAN Notices, 31(6), pp. 226–238, 1996.

12. P. Caspi, M. Pouzet. A co-iterative characterization of synchronous stream func-
tions. In B. Jacobs, L. Moss, H. Reichel, J. Rutten, eds., Proc. of 1st Wksh. on
Coalgebraic Methods in Computer Science, CMCS’98, v. 11 of Electron. Notes in
Theoret. Comput. Sci.. Elsevier, Amsterdam, 1998.

13. J.-L. Colaço, A. Girault, G. Hamon, M. Pouzet. Towards a higher-order syn-
chronous data-flow language. In Proc. of 4th ACM Int. Conf. on Embedded Soft-
ware, EMSOFT’04, pp. 230–239. ACM Press, New York, 2004.

14. J.-L. Colaço, M. Pouzet. Clocks and first class abstract types. In R. Alur, I. Lee,
eds., Proc. of 3rd Int. Conf. on Embedded Software, EMSOFT 2003, v. 2855 of
Lect. Notes in Comput. Sci., pp. 134–155. Springer-Verlag, Berlin, 2003.

166 T. Uustalu and V. Vene

15. R. Davies, F. Pfenning. A modal analysis of staged computation. J. of ACM, 48(3),
pp. 555-604, 2001.

16. L. Erkök, J. Launchbury. Monadic recursive bindings. In Proc. of 5th ACM SIG-
PLAN Int. Conf. on Functional Programming, ICFP’00, pp. 174–185. ACM Press,
New York, 2000. Also in ACM SIGPLAN Notices, 35(9), pp. 174–185, 2000.

17. N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud. The synchronous data flow pro-
gramming language LUSTRE. Proc. of the IEEE, 79(9), pp. 1305–1320, 1991.

18. P. Hudak, A. Courtney, H. Nilsson, J. Peterson. Arrows, robots, and functional
programming. In J. Jeuring, S. Peyton Jones, eds., Revised Lectures from 4th Int.
School on Advanced Functional Programming, AFP 2002, v. 2638 of Lect. Notes in
Comput. Sci., pp. 159–187. Springer-Verlag, Berlin, 2003.

19. J. Hughes. Generalising monads to arrows. Sci. of Comput. Program., 37(1–3),
pp. 67–111, 2000.

20. J. Hughes. Programming with arrows. In V. Vene, T. Uustalu, eds., Revised
Lectures from 5th Int. School on Advanced Functional Programming, AFP 2004,
v. 3622 of Lect. Notes in Comput. Sci., pp. 73–129. Springer-Verlag, Berlin, 2005.

21. C. Heunen, B. Jacobs. Arrows, like monads, are monoids. In S. Brookes, M. Mis-
love, eds., Proc. of 22nd Ann. Conf. on Mathematical Foundations of Program-
ming Semantics, MFPS XXII, v. 158 of Electron. Notes in Theoret. Comput. Sci.,
pp. 219–236. Elsevier, Amsterdam, 2006.

22. B. Jacobs, I. Hasuo. Freyd is Kleisli, for arrows. In C. McBride, T. Uustalu, Proc. of
Wksh. on Mathematically Structured Programming, MSFP 2006, Electron. Wkshs.
in Computing. BCS, 2006.

23. R. B. Kieburtz. Codata and comonads in Haskell. Unpublished manuscript, 1999.
24. R. B. Kieburtz. Coalgebraic techniques for reactive functional programming,

In Actes 11mes Journées Francophones des Langages Applicatifs, JFLA 2000,
pp. 131–157. 2000.

25. J. R. Lewis, M. B. Shields, E. Meijer, J. Launchbury. Implicit parameters: Dynamic
scoping with static types. In Proc. of 27th ACM SIGPLAN-SIGACT Symp. on
Principles of Programming Languages, POPL’00, pp. 108–118. ACM Press, New
York, 2000.

26. E. Moggi. Notions of computation and monads. Inform. and Comput., 93(1),
pp. 55–92, 1991.

27. H. Nilsson, A. Courtney, J. Peterson. Functional reactive programming, continued.
In Proc. of 2002 ACM SIGPLAN Wksh. on Haskell, Haskell’02, pp. 51–64. ACM
Press, New York, 2002.

28. A. Pardo. Generic accumulations. J. Gibbons, J. Jeuring, eds., Proc. of IFIP
TC2/WG2.1 Working Conf. on Generic Programming, v. 243 of IFIP Conf. Proc.,
pp. 49–78. Kluwer, Dordrecht, 2003.

29. R. Paterson. A new notation for arrows. In Proc. of 6th ACM SIGPLAN Int. Conf.
on Functional Programming, ICFP’01, ACM Press, New York, pp. 229–240, 2001.
Also in ACM SIGPLAN Notices, 36(10), pp. 229–240, 2001.

30. R. Paterson. Arrows and computation. In J. Gibbons, O. de Moor, eds., The Fun
of Programming, Cornerstones of Computing, pp. 201–222. Palgrave MacMillan,
Basingstoke / New York, 2003.

31. M. Pouzet. Lucid Synchrone: tutorial and reference manual. Unpublished
manuscript, 2001.

32. J. Power, E. Robinson. Premonoidal categories and notions of computation. Math.
Structures in Comput. Sci., 7(5), pp. 453–468, 1997.

33. J. Power, H. Watanabe. Combining a monad and a comonad. Theoret. Comput.
Sci., 280(1–2), pp. 137–162, 2002.

The Essence of Dataflow Programming 167

34. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoret. Comput.
Sci., 249(1), pp. 3–80, 2000.

35. J. J. M. M. Rutten. Behavioural differential equations: a coinductive calculus of
streams, automata, and power series. Theoret. Comput. Sci., 308(1–3), pp. 1–53,
2003.

36. T. Uustalu, V. Vene. The dual of substitution is redecoration. In K. Hammond,
S. Curtis (Eds.), Trends in Functional Programming 3, pp. 99–110. Intellect,
Bristol / Portland, OR, 2002.

37. T. Uustalu, V. Vene. Signals and comonads. J. of Univ. Comput. Sci., 11(7), pp.
1310-1326, 2005.

38. T. Uustalu, V. Vene. The essence of dataflow programming (short version). In
K. Yi, ed., Proc. of 3rd Asian Symp. on Programming Languages and Systems,
APLAS 2005, v. 3780 of Lect. Notes in Comput. Sci., pp. 2–18. Springer-Verlag,
Berlin, 2005.

39. T. Uustalu, V. Vene, A. Pardo. Recursion schemes from comonads. Nordic J. of
Computing, 8(3), pp. 366–390, 2001.

40. P. Wadler. The essence of functional programming. In Conf. Record of 19th
Ann. ACM SIGPLAN-SIGACT Symp. on Principles of Programming Languages,
POPL’92, pp. 1–14. ACM Press, New York, 1992.

41. P. Wadler. Monads for functional programming. In M. Broy, ed., Program Design
Calculi: Proc. of Marktoberdorf Summer School 1992, v. 118 of NATO ASI Series
F, pp. 233–264. Springer-Verlag, Berlin, 1993. Also in J. Jeuring, E. Meijer, eds.,
Tutorial Text from 1st Int. Spring School on Advanced Functional Programming
Techniques AFP ’95, v. 925 of Lect. Notes in Comput. Sci., pp. 24–52. Springer-
Verlag, Berlin, 1995.

	Introduction
	Dataflow Programming
	Monads and Monadic Interpreters
	Monads and Effect-Producing Functions
	Monadic Semantics

	Arrows
	Comonads
	Comonads and Context-Dependent Functions
	Comonads for General and Causal Stream Functions
	Comonadic Semantics

	Distributive Laws
	Distributive Laws: A Distributive Law for Causal Partial-Stream Functions
	Distributivity-Based Semantics

	Related Work
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

