
On embedding a microarchitectural design language within Haskell

John Launchbury Jeffrey R. Lewis Byron Cook

Oregon Graduate Institute of Science & Technology

Abstract

Baaed on our experience with modelling and verifying mi-
croarchitectural designs within Haskell, this paper exam-
ines our use of Haskell as host for an embedded language.
In particular, we highlight our use of Haskell’s lazy lists,
type classes, lazy state monad, and unsafePerformI0, and
point to several areas where Haskell could be improved in
the future. We end with an example of a benefit gained
by bringing the functional perspective to microarchitectural
modelling.

1 Introduction

There are many ways to design and implement a language.
Landin’s vision of the next 700 programming languages [20],
for example, was to build domain-specific vocabularies on
top of a generic language substrate. In the verification com-
munity, this is known as a shallow embedding of one language
or logic into another. In effect, every abstract data type de-
fines a language. Admittedly, most abstract data types by
themselves make impoverished languages, but when inter-
esting combinators are provided, the language becomes rich
and vibrant in its own right. This explains the continuing
popularity of combinator libraries, from the time of Landin
until now.

The animation language/library Fran is a beautiful ex-
ample [ll, lo]. Fran provides two families of abstract types
in Haskell: behaviors and events. To construct a term of
type Behavior Int, for example, is to write a sentence in
the Fran language, using Fran primitives and Fran combi-
nators. To build complex Fran entities, however, the full
power of Haskell can be brought to bear. Fran objects are
just another abstract data type.

So how good is Haskell as a host for embedded languages?
This is one of those questions that can only be answered
through experience, and is precisely where we see the con-
tribution of this paper. We describe our use of Haskell as
a host for a microarchitectural modelling language, calling
attention to the aspects of Haskell that helped us, t,hose that
hindered us, and the features we wish we had. In particu-
lar, we highlight our use of Haskell’s lazy lists, type classes

Permission to make digital or hard copies of all or part of this work for
PerSOnai or ClaSSrOOm use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-

tege and that copies bear this notice and the full citation on the first page.
To COPY otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
ICFP ‘99 9/99 Paris, France

0 1999 ACM l-581 13-l 1 l-9/99/0009...$5.00

[18], the lazy state monad 1211, and unsafePerform [19].
This paper contains no deep theory, but rather a dose of
measured introspection.

The remainder of this paper is organized iti follows: In
Section 2 we provide the motivation for our work in microar-
chitectural modelling. In Section 3 we introduce Hawk and
show how we use lazy lists to model wires. In Sections 4,
5, and 6, we show how type classes, the lazy state monad,
and unsafePerformI0, respectively, are put to use in Hawk,
and in Section 7 we describe an application that makes use
of all four features. In Section 8 we outline where Haskell
has constrained us, and discuss future directions. Finally,
the paper closes with an example of some new insights into
microarchitectures that arose as a consequence of the func-
tional perspective.

2 Building a Microarchitectural Description Lan-

wage

Contemporary superscalar microarchitectures employ
tremendously aggressive strategies to mitigate dependencies
and memory latency. Their complexity taxes current design
techniques to the limit. The trend continues as the size of
design teams grows exponentially with each new generation
of chip.

To gain an appreciation for the complexity of modern
microarchitectures, take as an example the model of an
instrwtion reorder buffer which occurs frequently in out-
of-order microprocessors like the Pentium III. The purpose
of the instruction reorder buffer is to allow instructions to
be executed at the earliest possible moment. It does this
by maintaining a pool of instructions, so that it can dy-
namically determine which of them are eligible for execu-
tion by keeping track of whether their operands have been
computed. Furthermore, instructions are introduced spec-
ulatively, baaed upon numerous successive branch predic-
tions. Consequently, instructions that have previously been
scheduled and executed must sometimes be rescinded when
a branch is discovered to have been mispredicted. Thus the
instruction reorder buffer must keep track of instructions up
to the point that they can either be retired (committed) or
flushed. Since some instructions following a branch may al-
ready have been executed when a branch misprediction is
discovered, register contents are aiso affected. At a branch
misprediction, register mapping tables must be modified to
invalidate the contents of registers that contain results of
rescinded instructions. The contents of registers that are
possibly live must be preserved until after the branch has

60

been resolved, thus increasing the complexity of the interac-
tion between a instruction reorder buffer and the registers.

In addition, there are all the issues of managing on-chip
resources, of ensuring rapid and correct communication of
results, of cache coherence and so on. It will get worse.
The next generation of microarchitectures will address many
more issues such as explicit instruction parallelism [14] and
multiple instruction threads [35].

As if all these algorithms did not provide enough design
complexity, commercially viable microarchitectures are also
subject to legacy requirements. For example Intel’s Pentium
III must deal with dozens of exception types to remain com-
patible with earlier versions of the X86 architecture. Pen-
tium III also struggles with the variable length of X86 in-
structions. It tries to fetch three each cycle, and it turns
out that dynamically determining the length of instructions
before decoding is one of Pentium III’s primary performance
bottlenecks. Again, this type of problem is not going to go
away. Intel’s recently announced Merced processor executes
not only its new instruction set [9], but X86 code as well
P31.

With designs of this complexity, it is hard to imagine
that designers will not stumble upon subtle interaction and
concurrency bugs. The need for powerful and effective mod-
elling and verification has never been greater. By couching
microarchitecture modelling in terms of higher-level abstrac-
tions and emphasizing the modularity of a design it is pos-
sible to regain control of the design space. This is what
we have done. Influenced by discussions with Intel’s Strate-
gic CAD Laboratory, we have developed Hawk as an exe:
cutable modelling language embedded in Haskell [l]. Hawk
is very high level compared with other hardware description
languages. Consequently, even complex microarchitecture
models remain remarkably brief, allowing designers to re-
tain a high level of intellectual control over the model. For
example, the complete formal model of a speculative, super-
scalar, out-of-order microarchitecture based on the Pentium
III required less than 1000 lines of code [5].

3 Lazy Lists: Signals in Haskell

We intend for signals to model values that change over time,
like wires in a microprocessor. Following O’Donnell [28], Sri-
vas & Bickford 1341, and many others, we implement signals
as lazy lists. The idea is simple: the nth element of the list
represents the value of the wire at clock tick n. Thus the
value of each wire is a complete description of its behavior
over time. This approach leads to circuit semantics with
a definite denotational flavor. In contrast, state transition
systems (another popular style) are much more operational
in their nature. There are naturally advantages and disad-
vantages to each.

To represent units with clocked inputs and clocked out-
puts we use functions from signals to signals, known as
stream transformers. Combinational circuits can be turned
into clocked circuits simply by mapping them down their in-
put lists. If add: : (Int , Int) ->Int is a simple addition cir-
cuit, then map add : : C (Int , Int)I -> CIntl is its clocked
equivalent.

The fundamental non-combinational circuit is the delay.
The delay is what makes feedback loops in clocked circuits
possible-without any delays, a feedback loop would just
generate smoke! A delay is defined so that the (n + l)‘t
element of the output is equal to the nth element of its in-

put, with an initial value output for the very first clock tick.
The implementation of delay : : a -> Cal -> [al is sim-
ply “cons” .

Some care is needed within this paradigm, however.
Arbitrary use of list processing functions, especially those
which add or discard elements, can cause problems in that
they fail to model hardware. For example, a function which
duplicates every element on its input list would require an
infinite buffer to ,implement in hardware. To restrict the
way in which a signal can be constructed or altered, we
make the signal type abstract in Hawk and provide a basic
set of manipulation functions that are known to be safe for
the model.

newtype Signal a

delay :: a -> Signal a -> Signal a
lift0 :: a -> Signal a
lift1 :: (a -> b) -> Signal a -> Signal b

:: .
:: .
:: .

The lift family of functions lifts n-ary (curried) functions
to clocked functions over signals. The base case is lift0,
which returns a constant signal, and lift1 is just the map
function for lists. Later we will use the derived operator
bundle, which takes a pair of signals, and produces a signal
of pairs.

Restricting access to the implementation in this way
gives the usual freedoms to provide alternative implementa-
tions, or even to refine the semantics somewhat. For exam-
ple, rather than using lazy lists, we could implement signals
as functions from the natural numbers to values.

If the above signature seems to be missing something, it
is. The rest comes from Haekell itself, in particular, lazy re-
cursive definitions. You could say that the missing operator
of the abstract type is a lazy fixpoint operator. Consider a
resettable counter circuit like:

which, in Hawk, we might model as:

counter : : Signal Boo1 -> Signal Int
counter reset = out

uhere
next = delay 0 (lift1 (+l) out)
out = mux reset (lift0 0) next

The mutual recursion between signals allows for arbitrary
looping in a circuit. Microprocessor models have many
such feedback loops, at many different levels of specification.
Note that the laziness of Haskell is vital for this mutual re-
cursive definition to have the intended meaning. It is not
merely the laziness of signals themselves that is required, but
also the laziness of the definitions. Even if signals are known
to be lazy, a strict language would (by default) attempt to
evaluate the uses of out and next in the right-hand-sides of
the definitions, leading to non-termination. This distinction
between lazy structure and lazy definition is brought out

61

well by Okasaki and Wadler in their respective methods for
adding laziness to Standard ML [29, 371. We can summarize
the principle as follows: (mutually) recursive definitions of
an abstract data type require lazy definitions. This princi-
ple holds even if the abstract datatype is implemented by
a function so that no lazy data structures are actually in-
volved.

One item that is not missing from the signal definition
is a way to observe a list by taking its head or tail. This
is intentional. A circuit that was specified to take the tail
of a list would be asking for a circuit to perform lookahead
in time. We do allow signals to be viewed as lists for the
purpose of viewing simulation results, but this operation is
only provided for use at the top-level.

4 Microarchitectural Abstractions

Two of the goals of Hawk have been to build abstractions
that increase the concision of microarchitectural models [5],
and to facilitate the verification process [25]. For microar-
chitectural abstractions to be relevant, they must be ex-
traordinarily flexible in the types that they operate over.
Instruction sets differ in variety of details: size and type of
data, number and types of registers, and the instructions
themselves. Internally, machines may use other instruction
sets. For example, the AMD K6[33] implements the X86
instruction set, but uses a RISC instruction set within its
execution core.

We use type classes to facilitate the description of circuits
that operate over all instruction sets. For example, the type
of a primitive ALU might be:

alu :: (Instruction i. Word w) =>
(Signal i, Signal w, Signal w> -> Signal Y

This way, alu can be used in an X86 model (where u is
set to 32-bit words and i to X86 instructions) or a 64-bit
RISC instruction set, like that of the Alpha. The Word class
is an extension of Haskell’s Num class that adds operators
related to word size, signedness, etc. The Instruction class
captures the common elements between instruction sets.

With common architectural characteristics captured by
type classes, we are then able to build abstractions that help
organize microarchitectural models. For example, tronsac-
tions [2, 271 are a simple yet powerful grouping of control
and data. A transaction is a machine instruction grouped
together with its current evaluation state. This state might
include:

l Operand and result values.

l A flag indicating that the instruction has c:aused an
exception.

l A predicted jump target, if the instruction is a branch.

It seems a trivial thing to do, when building multiple com-
ponent values are so easy in functional languages, yet it had
significant consequences. For example, we found that mi-
croarchitectural models that utilize transactions can make
decisions locally rather than with a separate control unit,
and to a large extent, definition of local control is far easier
to get right than attempting the same task globally.

To get a feel for transactions, consider the following ex-
ample. Suppose the instruction fetch unit issues an instruc-
tion that Registers 1 and 2 are to be added and the result

placed in. Register 4, that is, “r4<-r2*rl”. The initial trans-
action corresponding to this would lack values for each of
this registers, i.e. “(r4,_)<-(12,_)+(ri._)“. As the trans-
action passes through the register file, its operand values are
filled in: “(r4,_)<-(r2,4)+(1:1,4)“. After the ALU, the
computed result is also filled in: “(r4,8)<-(r2,4)+(r1.4:)“,
and now the transaction is ready to go back tco the register
file to store the result.

Hawk provides a library of functions for creating and
modifying transactions. For example, bypass takes two
transactions and builds a new transaction where the val-
ues from the destination operands of the first transaction
are forwarded to the source operands of the scecond. If i is
the transaction:

“(r4,8) <- (r2,4) + (r1,4)”

and j is the transaction:

“rL0 <- (r4.6) + (r1.4)”

then bypass i j produces the transaction:

“r10 <- (r4.8) + (r1,4)”

That is, bypass inserts i’s more recent valuation of r4 into
the destination operand of j .

The bypass function is an example of a local control oper-
ator. The control function it performs is selective forwarding
of newly computed results to other instruction transactions
that may otherwise contain stale information.

bypass :: (Word u, Register r) =>
Tram i r w -> Trans i r v -> Trans i r w

By parameterizing over the instances of finite words and
registers, bypass can be used in many contexts. Within our
Pentium III-like microarchitectural model we use bypass on
instructions with both concrete register references and vir-
tual register references (which arise as a result of dynamic
register renaming for the out-of-order core of the proces-
sor). Both types of register are instances of the type class
Register. In our Merced-like model [6], we use the same
bypass with IA-64 instructions.

5 Lazy State: Using State-Based Components

There has been debate in the Haskell community about the
merits of laziness/strictness within the state monad. In this
section we describe an application where laz:y state is just
right [21].

Some microarchitectural components, such as register
files, are more naturally (and efficiently) presented as state
transition systems than as list transformers. For example,
imagine modelling a primitive register file as an array which,
on each clock tick, is both written to and read from. Here it
is, using the basic idiom of lazy state, done first with explicit
lazy-lists to show the recursion structure.

regFile : : [(Addr ,w) I -> [Addrl -> Cul
regFile writes reads

= runST (
do { reg <- newSTArray (minAddr. maxAddr)

(error “uninitialized”)
; regLoop reg writes reads
1

>

62

regLoop :: STArray s Addr Y ->
[(Addr ,u>] -> [Addr] -> ST s [WI

ragLoop reg ((a,w) :aws> (r:rs)
= do i writeSTArray reg a w

; v <- raadSTArray reg r
; vs <- regLoop rag aws rs
; return (v:vs)
1

As with both versions of encapsulated state, the state
within the scope of runST is completely hidden from the
outside world. Thus as far as the rest of the program is
concerned, reg is completely pure, as indicated by its type.
The encapsulation of the state is guarenteed by the type of
runST [23]. Inside the implementation of regFile, however,
the situation is quite different. The array writes are “imper-
ative”, a constant-time operation having effects immediately
visible to subsequent reads.

The semantics of lazy state is as follows. The monadic
structure sequentializes the operations of the monad but
forces nothing. When the result of the state thread is de-
manded (in this case, the output list of values), execution
proceeds to meet the demand, but in the order determined
by the monadic sequentialization. Thus, while execution
proceeds by demand, some of that demand is transmitted
through the state sequencer. As more and more of the re-
sult signal is demanded though execution of the rest of the
Hawk model, so a larger and larger prefix of the sequence
of state instructions are executed. Laziness with respect to
later state operations is essential here: the computed value
v must be made available to the outside world before the
recursive call to regLoop aus rs is performed.

To recast this in the context of Hawk abstract signals
is straightforward. Within the definition of signals, we in-
troduce a new family of functions 1iftST n, which are the
monadic map on signals. For example:

liftST2 :: (a -> b -> ST s c) ->
Signal a -> Signal b -> ST s (Signal c)

The corresponding Hawk definition of the register file is as
follows:

rag :: Register r =>
Signal (r ,w) -> Signal r -> Signal u

rag writes reads
= runST (

do { reg <- neuSTArray (minReg, maxReg)
(error “uninitialized”)

* liftST2 (regFile reg) writes reads
i>

regFile ::Register r => STArray s Addr w ->
(r.u) -> r -> ST s u

regFile reg (a,w> r
= do c uriteSTArray reg a w

; readSTArray reg r
1

In the use of liftST2 above, the state machine is executed
step by step, consuming its list input and generating its list
output on the way. In particular, the lif tST construct does
not attempt to execute the state machine completely before
releasing the output list. It is this behavior we require of the
state monad and fortunately, though not officially a part of
Haskell, most implementations provide it.

6 Use and Abuse of unsafePerform

When embedding a language, one often needs “language
primitives” that provide good things but could not be de-
fined directly. Fran for example, has a function :

importBitmap : : Filename -> Bitmap

which imports a bitmap file and treats it as a pure value.
There are two basic approaches to defining this kind of

primitive. The first is to write code in C, and add it as a new
primitive in the run-time system of the host language. The
alternative is to provide the host language with a generic,
though potentially unsafe, mechanism of writing new prim-
itives, and to make clear what extra proof obligations arise
that make its use predictable.

In this vein, most Haskell implementations provide
an implementor’s function unsafeperf onrIO : : IO a -> a
which performs an IO operation and then casts the result as
a pure value. The Fran function importBitmap, for example,
is defined in this way. The action of reading a bitmap file is
performed, and then unsafePerform is used to treat the
bitmap as a pure value.

As its name suggests, unsaf ePerformI0 is potentially un-
safe. By abusing it one can do all manner of bad things. But
under the alternative scenario of hacking the run-time sys-
tem in C, one can also do all manner of bad things. The
question is, which is worse? Providing the extension mech-
anism at the source language level avoids large classes of er-
rors that could otherwise arise from mangling the run-time
system, and works uniformly across many language imple-
mentations. Over the last few years, a fairly strong con-
sensus has emerged that if extra primitives are needed they
might as well be defined at source language level through a
judicious use of a mechanism like unsaf ePerf ormI0.

However, because it does extend the primitive base
of Haskell, there is a clear sense in which any use of
unsafePerform means that the resulting program is no
longer written in Haskell per se, but rather in some exten-
sion to Haskell. Thus, properties that apply to all Haskell
programs, may cease to apply to programs written in poorly
defined extensions. It is not just the delicate properties, like
parametricity for example, that are at risk, but even basic
properties like referential transparency and type safety. For
example, unsaf ePerf ormI0 is strong enough to allow the
definition of a new primitive function cast:

cast :: a -> b
cast x = let bot = bot

r = unsafePerform (neuIORef hot)
in unsafePerform

(do CuriteIORef r x; readIORef r))

The use of unsafePerformI0 resurrects the original ML-
reference problem. The reference r is unconstrained at cre-
ation, and the use of unsafePerf ormI0 allows it to be bound
by a let-construct, and so has its type generalized. It can
store or retrieve values of any type. Thus there is no prob-
lem storing a value of type a nor of reading a value of type
b, even though precisely the same value will be written and
read! Incidentally, avoiding exactly this problem (amongst
others) lead to the careful use of parametricity in the defi-
nition of runST [23].

All is not lost, however. There are many examples of
careful uses of unsaf ePerf ormI6 that extend Haskell in ways
entirely consistent with its underlying philosophy. We give
one below.

63

6.1 Observing Signals

When using Hawk, we found that we often wanted to observe
the values flowing across a signal. Unfortunately, IKaskell’s
semantic purity makes this viewing rather difficult, as view-
ing a signal often implied recoding the model so that the
stream we were interested in was available at the top level.
As au alternative, we provide the function:

probe : : Filename -> Signal a -> Signal a

As far as Hawk-level models are concerned, a probe is simply
the identity function on signals. However, the external world
receives a different view. Probes are side-effecting, writing
values to a file, even though they apparently have a pure
type. Thus, probes cannot be defined within Haskell-proper.
Instead, they need to be introduced as a Haskell extension
through the”use of unsafePerformI0.

probe name vals =
lift2 (write name) clock vals

write name tick val = unsafePerform
do < h <- openFile name AppendMode

; hPutStrLn h (show tick ++ l’:”
show val)

; hClose h
; return val
3

++

(clock is a stream that enumerates the natural numbers.)
Notice that we are careful not to change the strictness of
the argument stream of probe. Each element of the list
is wrapped in an independent side-effecting closure which,
when evaluated, writes its value to the file required, and
then returns the value. This definition makes essential use
of the strictness of the IO monad, in contrast to the laziness
of the ST monad earlier. Without strictness, the final value
would simply be returned, with none of the effects having
been performed.

Because the Hawk models do not depend on the contents
of the filestore, we can guarantee that a model is unchanged
by the addition of probe functions.

We went much further than just writing the probe infor-
mation to a file. We used the commercial drawing package
Visio to build a front end to Hawk. We can now draw dia-
grams in Visio and then, at the push of a button, generate
a corresponding Hawk model containing one probe function
per wire on the diagram. During and after the execution
of the model, double-clicking on any wire causes the corre-
sponding probe lile to be opened, displaying the contents
of the wire. This provided an invaluable feedback toot for
debugging microarchitectures.

In summary, we found unsafePerform to be a power-
ful facility for building tools to observe but not affect the
microarchitectural models.

7 Verification in Hawk

We wanted Hawk to provide tools that can be used to for-
mally verify properties of microarchitectural models. Sup-
pose, for example,that we want to prove the following prop-
erties about the resettable counter from Section 3:

1. When the reset line is low on the next clock cycle, the
output is the value at the current cycle plus 1;

2. When the reset line is high at the current clock cycle,
the output is zero.

In Hawk, we might express these properties as follows.
Assume that r0 and rl are the values of the reset line at
time t and t + 1 respectively, and that n and m are the
corresponding integer outputs from the circuit.

propCounter r0 xl n m = ‘prop-one %% prop-two
where

prop-one =: not rl ==> (n + 1 === m)
prop-two =: r0 ==> (n === 0)

We would like to show that these properties hold for arbi-
trary values of r0 and rl, and for arbitrary values of t;he
internal state element of the counter circuit. To do this,
we will use symbolic values for r0 and rl, and symbolically
simulate the circuit.

The approach we take to symbolic sim.ulation is a
straightforward application of polymorphism and overload-
ing, given in more detail elsewhere [8]. We introduce a
datatype of symbolic expressions (variables and additional
term structure). For example, we have used the following
datatype for symbolic simulation of simple arithmetic cir-
cuits.

data Symbo a =
Const a

I Var String
I Plus (Symbo a) (Symbo a)
I Times (Syrnbo a) (Symbo a>

Sufficiently polymorphic functions that arise in a Hawk
model can be instantiated at new types and at the sym-
bolic type Symbo in particular. The catch is that some care
is required in making functions “sufficiently polymorphic”.
In brief, the parts of the program that you wish to sym-
bolically evaluate cannot use concrete types, because those
types must be able to be replaced by symbolic counterparts.

7.1 Symbolic Simulation in Haskell

In places, Haskell’s prelude is remarkably amenable to sym-
bolic simulation. Take the Num class, for example. As al-
most every numeric operator is overloaded, so too are the
vast bulk of numeric expressions. Thus to symbolically ex-
ecute a numeric expression, all we have to do is declare an
instance of class Num over the Symbo type.

instance Num a => Nun (Symbo a) where . . .

Now any numeric expression is immediately sy:mbolically ex-
ecutable.

In other places Haskell’s prelude is not so amenable to
symbolic simulation, Booleans provide an ex.cellent exam-
ple. Comparison <and conditional operations in Haskell’s pre-
lude have booleans hardwired in place. The historical reason
is clear. Overloading in Haskell was introduced precisely be-
cause the designers of the language already had many differ-
ent versions of numbers that t,hey wanted to add and multi-
ply (integer, rational, floating point, complex, etc.), but only
one version of booleans: simple True and Fal.se. However,
there are more v,arieties of booleans that we are now com-
ing across, particularly in the realm of embedded languages.
Fox example, Fran needs to be able to compare expression
that vary with time, leading naturally to the concept of a
boolean result that also varies with time. In our context we

64

want the boolean operations to apply to symbolic expres-
sions representing booleans.

To capture the operations of both concrete and symbolic
booleans we echo the development of the Num class, and de-
fine a class Boolean, which makes all the boolean operators
from the prelude abstract:

class Boolean b where
true :: b
false :: b
(h&) :: b -> b -> b
(II) :: b -> b -> b
(==>) :: b -> b -> b
not :: b -> b

We also define a class Eql, which is similar to the standard
Eq class, except that it is also abstracted over equality’s
result type.

class Boolean b => Eql a b where
(cc) :: a -> a -> b

Conditional expressions, too, must be abstract:

class MUX c a where
mux :: c -> a -> a -> a

If the condition on which we branch is symbolic, it is clear
that the result must be symbolic as well. Hence there is a re-
lationship between the type of the conditional, and the type
of the result-just the sort of thing that multi-parameter
type classes express well.

To capture the common usage of conditional expressions,
we make Boo1 an instance of MUX

instance MUX Boo1 a where
mux x y z = if x then y else z

Of course, we also make signals of boolean-like things in-
stances of the MUX class.

We can now employ many implementations of Booleans.
In particular we can use binary decision diagrams (BDDs)
[4], which implement semantic equality between symbolic
boolean expressions in constant time. Using H/Direct [12]
and unsafePerformI0, we have imported the CMU BDD
package into Haskell [7]. In the style of the Voss modelling
language (311, Hawk treats BDDs just like Booleans. But,
thanks to type classes, a user can also choose not to use
BDDs, but some other instance of Boolean.

7.2 Proving a Property

We now have the infrastructure needed to verify our proper-
ties. Our strategy is to simulate the counter with symbolic
values on the reset line for the first two ticks, and then test
the desired property on the first two outputs. To ensure the
result applies at any stage of the execution we also need to
be able to initialize the state element (the delay component)
of the counter by placing a symbolic value there as well. The
new definition of counter is as follows:

counter :: (Num a, Boolean b) =>
a -> Signal b -> Signal a

counter init reset = out
where
next = delay init (lift1 (+l) out)
out = mux reset (lift0 0) next

We can use this definition directly in verification of the prop-
erty:

test : : BDD
test = propCounter r0 rl n m

where
a = vx “a” : : BDD-Vector8
r0 = VW “r0” : : BDD
rl = var ‘?I” : : BDD
reset = r0 ‘delay’ rl ‘delay‘ false
Cn, ml = counter a reset QQQ CO, 11

where (@@Q is an operator for sampling a signal at the spec-
ified times.) By evaluating test, we are proving that, for
Boolean vectors of length 8, the counter circuit meets our
specification. Using types more general than BDD-Vectors,
we can prove the properties for counters of arbitrary size.

One of the unsatisfying aspects of this verification ex-
ample is that it was necessary to make the internal state
of the counter an explicit parameter. Doing this in a
complex model would entail passing around a lot of extra
parameters-just the sort of thing we’d like to avoid. Also,
in forcing the model to be explicit about its internal state,
it undercuts one of the strengths of the signal transformer
model that sets it apart from state transformer models, mak-
ing it a sort of unwelcome hybrid. However, using ideas from
Symbolic Trajectory Evaluation [15], we are currently work-
ing with symbolic domains that have a partial order struc-
ture. Symbolic simulation proceeds by starting with initial
states set to bottom, with iteration of the model gradually
adding more information. The fit with lazy stream models
looks very good indeed.

8 Where Haskell and Hawk Tangle

For our domain, Haskell has turned out to be an excellent
tool for experimenting with language design. However, in a
few places, Hsskell is not a perfect match. In this section we
point to some of the hinderences that we have encountered.

8.1 Lazy Lists

In some cases Haskell is a little too generous. Our preferred
semantics for signals is that of truly infinite, or coinductive,
lists-i.e., not that of finite, infinite, and partially defined
lists, as in Haskell. Any feedback loop that did not include
at least one delay should be rejected by Hawk as being ill-
defined-the corresponding hardware would generate more
smoke than data. Haskell, however, will stubbornly do its
best to make sense of even such ill-defined definitions. Could
Haskell be coerced to match our intended application better?

We have constructed a shallow embedding of Hawk in
Isabelle [30], which is much less forgiving. In order to have
Isabelle accept our recursive definitions we have had to de-
velop a richer theory of induction over coinductive datatypes
than previously available [24]. Using this theory, Isabelle is
able to accept all the valid Hawk definitions that we have
thrown at it, while rejecting the invalid ones. It would be
useful if Haskell’s type system could be extended to handle
this-perhaps using unpointed types [22] to express valid
coinductive definitions.

8.2 Type Classes

For generality, the type representing an instruction set must
remain abstract. Consequently we cannot directly pattern

65

match on it. Instead, the operations of the Instruction
class provide predicates to identify common instructions
such as naps, arithmetic ops, loads and stores and jumps.

class (Show i, Eq i) => Instruction i where
isNoOp : : i -> Boo1
isAddOp :: i -> Boo1
isSubOp :: i -> Boo1

If Haskell allowed arbitrary views of datatypes then this
could be handled much more nicely. Such a proposal would
not need to go so far as Wadler’s views [36] (with their prob-
lems of hidden computation) to be useful.

8.3 The State Monad

Haskell’s syntactic support for state is not a perfect fit. In
particular, Haskell has no way to declare storage statically,
although this is exactly what is required. In the register
example, the array is allocated at the beginning, and nothing
else is allocated afterwards. This reflects the fact that silicon
cannot be allocated on the fly. Furthermore, when we come
to consider other interpretations of Hawk models, it would
be useful to guarantee that the body of the state code did
not affect the shape of the store, merely its contents.

8.4 Using unsafeperf ormI0

Probes often work quite well, but there are some glitches.
While we have been careful to preserve the semantics of
Haskell in introducing probes, the semantics of probes are
not really preserved by Haskeil. Due to lazy evaluation,
there is nothing to ensure that probe output will appear in
the order expected. The output of a probe at clock tick
9 might be put in the file before the output of a probe at
clock tick 7. Another glitch arises because a given unit can
be used repeatly within a microarchitectural model. If that
unit has an embedded probe, the output of both uses of the
probes will be merged in one file. This is not problematic for
execution of the model (for probes cannot affect the models
themselves), but there is no way of identifying which output
is from which use of the probe.

8.5 Symbolic Simulation

Our drive to make the entire Hawk library sufficiently
polymorphic to perform symbolic evaluation has made us
painfully aware of the shortcomings of Haskell’s type class
system in describing abstract data types. Haskell’s module
system can be used in a limited way to effect abstraction,
as we have used for the signal type. This allows us to work
around some of the problems with type classes, because we
can completely reinterpret the meaning of symbols, both
their types and their values. But Haskell’s module system
is only intended as name space management, and is a poor
match when you intend to use abstract types instantiated at
many different types. Whether an ML-style module system
would work better in this case is an interesting question.

The type class system at times works brilliantly. What
is perhaps most impressive is how well it has worked even
when we use it for tasks far beyond its original intended
use (simply as a system of overloading numeric and equality
types). However, the fit is not always perfect. One place
is the lsck of explicit control over which instances are used
where. One of the neat aspects of symbolic evaluation is

that it allows us to take an existing executable model and
verify properties of it, without changing the model at all.

However, this does not work quite as well as it could be-
cause of limitations in the class system. Ideally, we would
like to instantiate the test e.xpression above at different
symbolic types. However, there is no good way to param-
eterize test by the types in question, without resorting to
unpleasantries like adding dummy arguments. The type of
the data for counter is purely an intermediate value in the
definition of test. If we were not specific abmout the type
of the initial value a, Haskell would consider the declaration
ambiguous. We would like a way to parameterize which in-
stance is used without having a dummy value parameter.

8.6 Elaboration Monads

One of the shortcomings of Hawk is that it has no explicit
notion of elaboration, separate from the sem.antics of the
model. Elaboration is the process of translating a possibly
higher-order Hawk model into a first-order description, such
as a netlist, or utilizing primitives of hardware description
languages like VHDL or Verilog. This was not always the
case. Initially, Hawk was similar to Lava [3] (in fact the
two languages started from a common block of definitions),
and used a monad of circuits to express circuit elaboration.
Different implementations of the abstract monad would be
used to generate net-lists for low level tools to manipulate,
or logical formulae for input to a theorem prover, or simply
execution for simulation and testing. To perform simulation,
for example, the circuit monad is implemented simply as
the identity monad, since all we have to do is glue together
functions. A richer version of simulation, however, could
provide the machinery to allow the output of duplicated
probes to be separated, so removing the problem with probes
that we outlined earlier.

There were two reasons we departed from an explicit
monadic style. First, the presence of the monad made simple
function application tedious. We could live with this, or
work around it. Much more serious, however, was the lack of
any syntactic help for mutual recursion between the results
of monadic actions. The idiom of mutually recmsive streams
works so well for describing circuit feedback that we wanted
something similar for monadic computations. For example,
restating the example of the counter in monadic form ought
to come out something like this:

counter : : Signal Boo1 -> Circuit (Signal Int)
counter reset = do

C next <- delay 0 inc
; inc <- lift1 (+l) out
; out <- mux reset zero next
; zero <- lift0 0
; return out3

Unfortunately, a corresponding recursive do-form is not cur-
rently available. We would like to see the do notation ex-
tended so that the bindings are mutually recursive, with the
recursion being defined by a user-supplied definition of an
mfix function:

mfix :: Monad m => (a -> m a> -> m a

Note that, as the counter example shows, the obvious
generic definition of mfix as

mfix f = do < z <- mfix f
; f 23

66

is simply not appropriate. We want the looping to take
place on the values manipulated by the monad, not on the
effects the execution of the monad generates. Rather we
need something with the behaviour off ixST [23]. Finding an
appropriate axiomatization for mfix is the subject of current
research.

9 Hardware Algebra

As promised, we close with a section describing how the
functional perspective gives us new insight into the structure
of microarchitectures.

Transformational laws are well known in digital hard-
ware, and form the basis of logic simplification and mini-
mization, and of many retiming algorithms. Traditionally,
these laws occur at the gate level: de Morgan’s law being a
classic example. We were quite surprised when correspond-
ing laws started to emerge at the microarchitectural level!

Perhaps we shouldn’t have been surprised. After all,
functional languages are especially good at expressing trans-
formational laws, and algebraic techniques have long been
used in the relational hardware-description language Ruby
[32]. Sizeable Ruby circuits have been successfully derived
and verified through algebraic manipulation [16, 171. Even
so, the Ruby research has emphasized circuits at the gate
level and, a priori, there is no reason to think that large mi-
croarchitectural components should satisfy any interesting
algebraic laws: the components are constructed from thou-
sands of individual gates, and boundary cases could easily
remove any uniformity that would have to exist for simple
laws to be present. Yet we have found that when microar-
chitectural units are presented in a particular way, many
powerful laws appear.

Before we consider one of the laws in some detail, note
first that we inherit for free the ground rule of referential
transparency or, in hardware terms, a circuit duplication
law. Any circuit whose output is used in multiple places is
equivalent to duplicating the circuit itself, and using each
output once. Because Hawk is embedded in Haskell (and
introduces no new features that would otherwise break ref-
erential transparency), every circuit satisfies this law. That
is, it is impossible within Hawk for a specification of a com-
ponent to cause hidden side-effects observable to any other
component specification. Of course, in many specification
languages this law does not hold universally. For exam-
ple, duplicating a circuit that incremented a global variable
on every clock cycle would cause the global variable to be
incremented multiple times per clock period, breaking be-
havioral equivalence. Hawk circuits can still be stateful, but
all stateful behavior is forced to be local (the encapsulated
state example) and/or expressed using feedback.

9.1 Register-Bypass Law

The law we will discuss in some detail is the register-bypass
law. To do so, we need to discuss register files and bypasses
in more detail than we have up to now.

Consider a transaction-based specification of a register
file. This component has two input signals (for reading and
writing) and one output signal, each of which are signals
of transactions. At each clock cycle, the read-input is ex-
pected to contain a transaction whose opcode and register
name fields have been set, but whose value fields are absent,
whereas the write-input contains a completed transaction

from a previously executed instruction. Execution proceeds
as in the simplified example in Section 5. The register-file
first performs the write by updating its internal state on
the basis of the destination register-name and value fields
of the write-input. Then, it performs the read by filling in
the value fields for the source-operands of the transaction on
the read-input. The resulting transaction is placed on the
output. In this model, all this work is performed in a single
clock-cycle.

Now consider bypasses, and the role they have in the
specification of forwarding. The purpose of forwarding logic
in a pipeline is to ensure that results computed in later
stages of the pipeline are available to earlier stages in time
to be used. Conceptually, the forwarding logic at each
pipeline stage examines its current instruction’s source reg-
ister names to see if they match a later stage’s destination
register name. For every matching source name, the corre-
sponding value is replaced with the result value computed by
the later pipeline stage. Non-matching source operands con-
tinue to use operand values given by the preceding pipeline
stage.

This conceptual logic can be implemented concisely us-
ing transactions. A bypass circuit has two inputs, each a
signal of transactions. The first contains the input trans-
actions from the preceding pipeline stage, and the second
is the control or update input, containing transactions from
later stages in the pipeline. At each clock cycle, the by-
pass circuit compares the source names of the current in-
put transaction with the destination names of the current
update-transaction. The output of the bypass is identical
to the input, except that source operands matching the up-
date’s destination operand are updated.

Bypasses have many nice properties by themselves. Not
only are they time-invariant (delays can pass over them) but
they are idempotent in their second argument:

Vinp . Vupd .
bypass upd (bypass upd inp) = bypass upd inp

Most interesting, however, is their interaction with register
files, which can be expressed with the register-bypass law:

Vread . Vwrite .
bypass w&e (reg (delay Nop write) read) =
reg write read

In other words, we can delay writing a value into the register
file, so long as we also forward the write-value to the output,
in case that register was being read on the same clock cycle.
We use this law repeatedly to efiminate forwarding logic
when simplifying pipelines. Seen the other way around, this
law explains the origin of forwarding logic.

Initially we considered the register-byp,+ss law to be a
theorem about register files, and accordingly we proved that
it held for a number of different implementations. However,
it is also tempting to view this law as an axiom of register
files. In effect, by using the law repeatedly from right to
left, we obtain a specification for how the register file must
behave for any time prefix.

9.2 Transforming the Microarchitecture

Other laws of microarchitectural algebra include a hazard-
bypass law, for transforming multi-cycle pipelines in the
presence of data hazards, and projection laws, for express-
ing local properties of signals [25, 261. Here we note that

67

the laws we have discovered up to now are by th.emselves
sufficiently powerful to simplify a pipelined microarchitec-
ture that uses forwarding, branch speculation and pipeline
stalling for hazards. The resulting simplified pipeline is very
similar to the reference machine specification (i.e. no for-
warding logic), while still retaining cycle-accurate behavior
with the original implementation pipeline.

10 Acknowledgements

For their contributions we would like to thank Mark Aa
gaard, Borislav Agapiev, Todd Austin, Robert Jones, John
O’Leary, and Carl-Johan Seger of Intel Corporation; Tim
Leonard and Abdelillah Mokkedem of Compaq/Digital Cor-
poration; Simon Peyton Jones of Microsoft Corporation; Per
Bjesse, Koen Claessen, and Mary Sheeran of Chalmers; Sat-
nam Singh of Xilinx; Elias Sinderson of GlobalStar; and
Tito Autrey, Nancy Day, Dick Kieburtz, Sava KrstiC, John
Matthews, Thomas Nordin, and Mark Shields of OGI.

This research is supported in part by the Intel Corpora-
tion. the National Science Foundation (DGE-9818388. EIA-
9805542), the Defense Advanced Research Projects Agency,
and Air Force Material Command (F19628-96-C-0161).

References

Hawk website.
http://www.cse.ogi.edu/PacSoft/projects/Hawk/.

AAGAARD, M., AND LEESER, M. Reasoning about
pipelines with structural hazards. In Second Interna-
tional Conference on Theorem Provers in Gircuit De-
sign (Bad Herrenalb, Germany, Sept. 1994).

BJESSE, P., CLAESSEN, K., SHEERAN, M., AND SINGH,
S. Lava: Hardware design in Haskell. In Interna-
tional Conference on finctional Programming (Balti-
more, July 1998).

BRYANT, R. E. Symbolic boolean manipulation with
ordered binary decision diagrams. ACM Computing
Surueys .&$, 3 (1992).

COOK, B., LAUNCHBURY, J., AND MATTHEWS, J.
Specifying superscalar microprocessors with Hawk.
In Workshop on Formal Techniques for Hardware
(Maarstrand, Sweden, June 1998).

COOK, B., LAUNCHBURY, J., MATTHEWS, J., AND
KIEBURTZ, D. Formal verification of explicitly parallel
microprocessors. In Conference on Correct Hardware
Design and Verification Methods (1999).

DAY, N. A., LAUNCHBURY, J., AND LEWIS, J. R. Log-
ical abstractions in Haskell. submitted for publication,
1999.

DAY, N. A., LEWIS, J. R., AND COOK, B. Sym-
bolic simulation of microprocessor models using type
classes in Haskell. Tech. Rep. CSE-99-005, Department
of Computer Science and Engineering, Oregon Gradu-
ate Institute, 1999.

DULONG, C. The IA-64 architecture at work. IEEE
Compm?er 31, 7 (1998).

WI

WI

VI

IW

[I71

iI91

PO1

WI

1221

1231

[241

[251

WI

ELLIOTT, C. An embedded modeling language ap-
proach to interactive 3D and multimedia animation. To
appear in IEEE Transact:ions on Softwart: Engineering
(1999).

ELLIOTT, C., AND HUDAK, P. Functional reactive an-
imation. In The International Conference on fi7~c-
tional Programming (Amsterdam, The Netherlands,
June 1997).

FINNE, S., LEIJEN, D., MEIJER, E., ‘<ND JONES,
S. P. H/Direct: A binary foreign langualge interface
for Haskell. In International Conference on Functional
Programming (Baltimore, July 1998).

GWENNAP, L. First Merced patent surfaces. M~cT-OPTV-
cessor Report 11, 3 (1997).

GWENNAP, L. Intel, HP make EPIC disclosure. Micro-
processor Report 11, 14 (1997).

HAZELHURST, S., AND SEGER, C.-J. H. Symbolic tra-
jectory evaluation. In Formal Hardware Verificution.
Springer-Verlog, 1997.

JONES, G., ANT) SHEERAN, M. Collecting butterflies.
Tech. rep., Oxford University Computing Laboratory,
1991.

JONES, G., AND SHEERAN, M. Designing arithmetic
circuits by refinement in ruby. In Mathematics of PTO-
gram Construction (1993), vol. 669 of LNCS, Springer
Verlag.

JONES, M. P. Qua&d Types: Theory and Practice.
PhD thesis, Department of Computer Science, Oxford
University, 1992.

JONES, S. P., AND MARLOW, S. Stretching the storage
manager: weak pointers and stable names in. Haskell,
1999. Submitted for publication.

LANDIN, P. J. The Next 700 Programming La.nguages.
Communications of the ACM 9, 3 (March 1986), 157-
164.

LAUNCHBURY, J., AND JONES, S. P. Lazy functional
state threads. In Programming Languages Design and
Implementation (Orlando, Florida, 1994), ACM Press.

LAUNCHBURY, J., AND PATTERSON, R. Parametricity
and unboxing with unpointed types. In The rnterna-
tional Conference on Functional Programming (1996).

LAUNCHBURY, J., AND PEYTON JONES, S. L. State in
Haskell. Lisp and Symbolic Computation 8, 4 (Decem-
ber 1995), 293-341.

MATTHEWS, J. Recursive function definition over coin-
ductive types. In The 1.2th International Conference on
Theorem Proving in Higher Order Logics (Sept. 1999).

MATTHEWS, J., ANU LAUNCHBURY, J. Elementiwy mi-
croarchitecture algebra. In International Conference on
Computer-Aided Verification (Trento, Italy, July 1999).

MATTHEWS, J., AND LAUNCHBURY, J. Elementary mi-
croarchitecture algebra: Top-level proof of pipelined
microarchitecture. Tech. Rep. CSE-99-002, Oregon
Graduate Institute, Computer Science Department,
Portland, Oregon, Mar. 1999.

68

[271 M ATTHEWS, J., LAUNCHBURY, J., AND COOK, B.
Specifying microprocessors in Hawk. In IEEE Interna-
tional Conference on Computer Languages (Aug. 1998).

[28] O’DONNELL, J. Prom transistors to computer architec-
ture: Teaching functional circuit specification in Hydra.
In Symposium on Functional Programming Languages
in Education (July 1995).

[29] OKASAKI, C. Purely Functional Data Structures. PhD
thesis, School of Computer Science, Carnegie Mellon
University, September 1996.

[30] PAULSON, L. Isabelle: A Generic Theorem Prover.
Springer-Verlag, 1994.

[31] SEGER, C.-J. Voss - a formal hardware verification sys-
tem. Tech. Rep. 93-45, University of British Columbia,
1993.

[32] SHARP, R., AND RASMUSSEN, 0. An introduction to
Ruby. Teaching Notes ID-U: 1995-80, Dept. of Com-
puter Science, Technical University of Denmark, Octo-
ber 1995.

[33] SHRIVER, B., AND SMITH, B. The Anatomy of a High-
Performance MiCTOpTOCeSSOT: A Systems Perspective.
IEEE Computer Society Press, 1998.

[34] SRIVAS, M., AND BICKFORD, M. Formal verification of
a pipelined microprocessor. IEEE Software 7, 5 (1990).

[35] TULLSEN, D. M., EGGERS, S. J., EMER, J. S., LEVY,
H. M., Lo, J. L., AND STAMM, R. L. Exploiting
choice: Instruction fetch and issue on an implementable
simultaneous multithreading processor. In 23rd An-
nual International Symposium on Computer Architec-
ture (Philadelphia, PA, May 1996).

[36] WADLER, P. Views: a way for pattern matching to
cohabit with data abstraction. In 14 ‘th ACM Sympo-
sium on Principles of Progmmming Languages (Mu-
nich, Germany, January 1987).

[37] WADLER, P., TAHA, W., AND MACQUEEN, D. B. HOW
to add laziness to a strict language withouth even being
odd. In Proceedings of the 1998 ACM Workshop on ML
(Sept. 1998), pp. 24-30. Baltimore, MD.

69

