
Lava:
Hardware Design in Haskell

Per Bjesse, Koen Claessen, Mary Sheeran
Chalmers University of Technology, Sweden

{bjesse, koen, ms}Qcs.chalmers.se

Satnam Singh
Xilinx, USA

satnamQxilinx.com

Abstract

Lava is a tool to assist circuit designers in specifying, de-
signing, verifying and implementing hardware. It is a col-
lection of Haskell modules. The system design exploits func-
tional programming language features, such as monads and
type classes, to provide multiple interpretations of circuit
descriptions. These interpretations implement standard cir-
cuit analyses such as simulation, formal verification and the
generation of code for the production of real circuits.

Lava also uses polymorphism and higher order functions to
provide more abstract and general descriptions than are pos-
sible in traditional hardware description languages. Two
Fast Fourier Transform circuit examples illustrate this.

1 Introduction

The productivity of hardware designers has increased dra-
matically over the last 20 years, almost keeping pace with
the phenomenal development in chip technology. The key
to this increase in productivity has been a steady climb
up through levels of abstraction. In the late seventies, de-
signers sat with ‘coloured rectangles’ and laid out individ-
ual transistors. Then came the move through gate-level to
register-transfer level descriptions, and the important step
from schematic capture to the use of programming languages
to describe circuits. Standard Hardware Description Lan-
guages like VHDL and Verilog have revolutionised hardware
design.

However, problems remain. VHDL was designed as a simu-
lation language, but now subsets of it are used as input to
many kinds of tools, from synthesis engines to equivalence
checkers. VHDL is poorly suited to some tasks, for example
formal verification.

Ideally, we would like to be able to describe hardware at a
variety of levels of abstraction, and to analyse circuit de-
scriptions in many different ways. The analyses (or inter-

pretations) that we consider to be essential are simulation
(checking the behaviour of a circuit by giving it some inputs
and studying the resulting outputs), verification (proving
properties of the circuit), and the generation of code that
allows a physical circuit to be produced. We want to be able
to perform all of these tasks on one and the same circuit de-
scription.

The temptation to go away and design yet another hard-
ware description language is strong, but we have resisted it.
Instead, we would like to see how far we can get using the
functional programming language Haskell. We call our de-
sign system Lava. The idea of using a functional hardware
description langauge is, of course, not new, and the work de-
scribed here builds on our earlier work on pFP [She851 and
Ruby [JS90], and on the use of non-standard interpretation
in circuit analysis [SinSl].

What is new about Lava is that we have built a complete
system in which real circuits can be described, verified, and
implemented. An earlier version of the system was used
to generate filters and Bezier curve drawing circuits for im-
plementation in a Field Programmable Gate Array based
PostScript accelerator. Using the current system, very large
combinational multipliers have been verified [SB98]. The
largest formula produced so far from a circuit description
had almost a million connectives. The system is constructed
in a way that systematically makes use of important features
of Haskell: monads, type classes, polymorphism and higher
order functions.

We use ideas from Ruby, for example the use of combinators
to build circuits, but in using Haskell, we gain access to a
fully fledged programming language, with a rich type system
and higher order functions. Having higher order functions
available has greatly eased circuit description in real cir-
cuit examples. Circuits themselves still correspond to first
order functions, but we use higher order functions to con-
struct circuit descriptions. Although we knew in theory that
it is a good idea to have circuits as first class objects, we
were surprised by how useful it is in practice. For example,
higher order functions make it very easy to describe circuits
containing look-up-tables. VHDL descriptions of such cir-
cuits tend to be long and hard to read, precisely because of
the absence of suitable combinators. And even in Ruby, it
is hard to deal with circuits that have a regular structure
but components that vary according to their position in the

174

Figure 1: A half adder circuit

structure.

Although we have moved from a relational to a functional
programming language, we can retain as much of the gen-
erality of relations as we need, because the logical interpre-
tation described later produces formulas that are relational,
in that they do not distinguish between input and output.
What we have lost, in moving away from Ruby, is machine
support for high level design [SR93].

After choosing to use Haskell for hardware description, we
again had two options: to make a Haskell variant and write
specialised tools (compilers, synthesis engines and so on)
to process it, or to make use of existing Haskell compilers
by embedding a hardware description language in Haskell.
Launchbury and his group are investigating the first op-
tion [CLM98]. We chose the second.

2 Overview of the System

This section presents the types and abstractions used in the
Lava system.

2.1 Monads

Dealing with an embedded language in a functional language
requires a significant amount of information plumbing. A
good way to hide this is to use monads [Wad92]. Defining
a monad means defining the language’s features; a monadic
expression is a program in the embedded language. More-
over, Haskell provides syntactic support and general combi-
nator libraries for monads.

Let us take a look at a small example, and see how we can
define a half adder circuit (figure 1):

halfAdd : : Circuit m => (Bit, Bit) -> m (Bit, Bit)
halfAdd (a, b) =

do carry <- and2 (a, b)
sum <- xor2 (a. b)
return (carry, sum)

This circuit has two input wires (bits) and two output wires.
By convention, wires axe grouped together so that a circuit
always has one input value, and one output value. The
halfAdd circuit consists of an and gate and an xor gate.

Note that the type of a circuit description contains a type
variable m, indicating that it is overloaded in the underly-
ing monad. This means that we can later decide how to
interpret the description by choosing an appropriate imple-
mentation of m. The same description can be interpreted in
many ways, giving various different semantics to the embed-
ded language. Examples of such interpretations are simula-
tion (where we run the circuit on specific values), and the
symbolic evaluation that is used to produce VHDL code.

Provable
prove,

Figure 2: Type Class structure for Interpretations

2.2 Type Classes

Some circuit operations are meaningful only to certain in-
terpretations; Lava is therefore structured with type classes
(see figure 2). For example, a higher-level abstract circuit
can deal with arithmetic operators, such as plus and times,
where a physical circuit has no notion of numbers at all.
We can point out groups of operations, which are supported
by some interpretations but not by others, thus forming a
hierarchy of classes.

The base class of the hierarchy is called Circuit. To be a
Circuit, means to be a Monad, and to support basic opera-
tions like and and or.

class Monad m => Circuit m where
and2, or2 :: (Bit, Bit) -> m Bit
. . .

Subclasses of Circuit are for example the Arithmetic class,
for higher-level interpretations supporting numbers, and the
Sequential class, for interpretations containing delay oper-
ations.

class Circuit m => Arithmetic m where
plus, times :: (NumSig, NumSig) -> m NumSig
. . .

class Circuit m => Sequential m where
delay :: Bit -> Bit -> m Bit
loop : : (Bit -> m Bit) -> m Bit
. . .

A circuit description will typically be constrained in the type
to indicate what interpretations are allowed to run the de-
scription. The following circuit can only be run by interpre-
tations supporting arithmetic:

square :: Arithmetic m => NumSig -> m NumSig
square x = times (x, x1

The architecture of the system makes it easy for the user
to add new classes of operations to the hierarchy, and new
interpretations that give semantics to them (see section 4.1).

2.3 Primitive Data Types

We use the datatype Bit to represent a bit. For now, this
datatype can be regarded as just a boolean value, but we

175

-f-g-h-

Figure 3: compose [f,g,h]

will slightly extend the datatype later (see section 3.2). We
provide two constant values of this type:

data Bit = Boo1 Boo1 1 . . .

low, high :: Bit
low = Boo1 False
high = Boo1 True

To describe circuits at a higher level, we add another prim-
itive datatype, a NumSig, which represents an abstract wire
through which numbers (integers) can flow. The NumSig
wires will of course never appear in a physical circuit as an
interpretation needs to be in the type class Arithmetic to
handle this datatype.

data NumSig = Int Int 1 . . .

int :: Int -> NumSig
int n = Int n

It is possible for the user to add other datatypes to Lava
(see section 4.1).

2.4 Combinators

Common circuit patterns are captured using combinators
which allow the designer to describe regular circuits com-
pactly and in a way that makes the patterns explicit. This
section describes some simple combinators that will be use-
ful later.

The composition combinator >-> passes the output of the
first circuit as input to the second circuit. We also provide
a version that works on lists (figure 3).

(>->I : : Circuit m
=> (a -> m b) -> (b -> m c) -> (a -> m c)

compose : : Circuit m => Ca -> m al -> (a -> m a)
compose = foldr (>->I return

The combinators one and two build circuits operating on 2n-
lists from circuits operating on n-lists. While one f applies
the circuit f to one half of the wires and leaves the rest
untouched, two f maps it to both halves (see figure 4 and
5).

one :: Circuit m
=> (Cal -> m [al) -> (Cal -> m [al)

two :: Circuit m
=> ([al -> m cbl) -> ([a] -> m [b])

Repeated application of a function is captured by raised:
The expression raised 3 two f results in 8 copies of the f
circuit, each applied to one eighth of the input wires.

Figure 4: one f

Figure 5: two f

raised : : Int -> (a -> a) -> (a -> a)
raised n f = (! ! n) . iterate f

The circuit decmap n f processes an n-list of inputs by ap-
plying f (n-l), f (n-21, . , f 0 consecutively to each ele-
ment (see figure 6).

decmap : : Circuit m
=> Int -> (Int -> a -> m b) -> (Cal -> m Cbl)

decmap n f = zipWithM f Cn-l,n-2 . . 01

The user can define new combinators as needed.

3 Interpretations

In this section, we present some interpretations dealing with
concrete circuit functionality. Standard interpretations cal-
culate outputs of a circuit, given input values. Symbolic in-
terpretations connect Lava to external tools, by generating
suitable circuit descriptions.

3.1 Standard Interpretation

The standard interpretation we present here is one that can
only deal with combinational circuits, which have no notion
of time or internal state. In this case, it suffices to use the
identity monad since no side effects are needed.

data Std a = Std a

simulate : : Std a -> a
simulate (Std a) = a

instance Monad Std where . . .

The resulting Std interpretation is integrated into the sys-
tem by specifying the Circuit operations.

instance Circuit Std where
and2 (Boo1 x, Boo1 y) = return (Boo1 (x && y) 1

instance Arithmetic Std where
plus (Int x, Int y> = return (Int (x + y))

176

Figure 6: decmap 3 f

We can now simulate the example of section 2.1.

Hugs> simulate (halfAdd (high, high))
(high, low)

To deal with time and state, we can lift a combinational
circuit interpretation into a sequential one. How this is done
is beyond the scope of this paper.

3.2 Symbolic Interpretation

Lava provides connection to external tools through the sym-
bolic interpretations. These generate descriptions of cir-
cuits, rather than computing outputs. External tools pro-
cess these descriptions, and in turn give feedback to the
Lava system. The tools we focus on in this paper are theo-
rem provers. We briefly sketch other possibilities in section
3.5.

A circuit description is symbolically evaluated by providing
abstract variables as input. The result of running the circuit
is a symbolic expression representing the circuit. To imple-
ment this idea, we need some extra machinery. First of all,
the signal datatypes are modified by adding a constructor
for a variable, since a signal in this context can be both a
value and a variable:

type Var = String

data Bit data NumSig
= Boo1 Boo1 = Int Int
1 BitVar Var I NumVar Var

It is important to keep the constructors of these datatypes
abstract as the Std interpretation is unable to handle vari-
ables. By introducing the class Symbolic, we ensure that
functions for variable creation are only available in interpre-
tations which recognise variables.

class Circuit m => Symbolic m where
newBitVar :: m Bit
newNumVar :: m NumSig

When a circuit operation is applied to symbolic inputs,
we create a fresh variable, and remember internally in the
monad how this variable is related to the parameters of the
operation.

An implementation for this interpretation is a state monad
in an (infinite) list of unique variables, and a writer monad
in a list of assertions. The type Expression is left abstract
here.

type Sym a = CVarl -> (a, CVarl , [Assertion])

data Assertion = Var := Expression
type Expression = . . .

The instance declaration for Circuit Sym is:

instance Circuit Sym where
and2 (a, b) =

do v <- newSymbol
addAssertion (v := And [a,b])
return (BitVar v)

. . .

When this interpretation is run on the half adder from sec-
tion 2.1, the following internal assertion list is generated:

[“b3” := And [BitVar "bl", BitVar "b2" 1

i
"b4" := Xor [BitVar "bl" , BitVar "b2" 1

The inputs to the circuit are called “bi” and “b2”.

3.3 Using a Symbolic Circuit

How can we now prove properties of circuits? We need to
be able to formulate the circuit properties we want to verify.
To do this, we create an abstract circuit that contains both
the circuit and the property we want to prove.

To show a full adder with its leftmost bit set to False equiv-
alent to a half adder, we write the question:

type Form = Bit

question :: Symbolic m => m Form
question =

do a <- newBitVar -- free variables
b <- newBitVar

out1 <- halfAdd (a, b)
out2 <- fullAdd (low, a, b)

equals (outl. out21

Two fresh variables a and b are given as inputs to both
the half adder and the restricted full adder. The resulting
formula (of type Form) is true if the outputs of these circuits
are the same. The type Form is the same as Bit, so that
we can use the logical operators (and2, or2, etc.) on both
types.

The function question is polymorphic in the underlying
interpretation; any symbolic interpretation is applicable.
Here, we shall instantiate m with Sym.

3.4 Verification

The Sym interpretation is not very interesting on its own; it
needs to be connected to the outside world in some way. The
function verify takes a description of a question (which is
of type m Form) and generates a file containing a (possibly
very large) logical formula. This file is then processed by
one of the automatic theorem provers that is connected to
Lava by means of the IO monad.

177

verify :: Sym Form -> IO ProofResult

data ProofResult
= Valid
I Indeterminate
1 Falsifiable Model

The result from the theorem prover interaction has type
ProofResult and indicates whether the desired formula was
valid or not. If a countermodel (a valuation making the
formulas false) can be found, it is also returned.

Using Hugs, the user of Lava can run proofs from inside the
interpreter.

Hugs> verify question >>= print
Valid

This invocation generates input for a theorem prover, con-
taining the variable definitions and the question, separated
by an implication arrow:

AND(b3 <-> bl & b2, b4 <-> (bl #! b2)
, b5 <-> FALSE & bl, b6 <-> (FALSE t! bl)
, bi’ <-> b6 & b2, b8 <-> (b6 #! b2)
, b9 <-> b5 # b7, b10 <-> (b3 <-> b9)
, bll <-> (b4 <-> b8). b12 <-> b10 % bll
) -> b12

Currently Lava interfaces to the propositional tautology
checker Prover (Sta89] and the first order logic theorem
provers Otter [MW97] and Gandalf [Tam97].

3.5 Other Interpretations

Using the same idea, we can generate input for other tools
as well. An interesting target format is VHDL, which is
one of the standard hardware description languages used in
industry. There are many tools that can process VHDL, for
purposes such as synthesis and efficient simulation.

Running the Vhdl interpretation on the half adder circuit
(section 2.1) produces structural VHDL:

-- Automatically generated by Lava --
library circuit; use circuit.all;
entity halfadd is

port (bl, b2 : in std-logic;
b3, b4 : out std-logic 1;

end halfadd;

library circuit; use circuit.all;
architecture structural of halfadd is
begin

compi : and2 port map (b3, bl, b2);
comp2 : xor2 port map (b4, bl, b2);

end structural;

An extended form of symbolic evaluation generates layout
information. This is done by not only keeping track of how
the components of a circuit are functionally composed, but
also how they can be laid out on a gate array. A >-> B in
this interpretation also indicates that A should be laid out
to the left of B. Similarly, row 5 f a makes 5 full adders and
lays them out horizontally with left to right data-flow.

The layout interpretation can generate VHDL and EDIF
(another standard format) containing layout attributes that
give the location of each primitive component.

Combining layout and behaviour in this way allows us to
give economical and elegant descriptions of circuits, which
in VHDL would require the user to attach complicated arith-
metic expressions to instances.

4 An Example: FFT

This section illustrates how Lava is extended for signal-
processing applications by the introduction of a complex
number datatype and new combinators that allow two FFT
circuits to be described.

The work presented here builds on previous work on de-
riving the FFT within Ruby [JonSO] and specifying signal
processing software in Haskell [Bje97].

4.1 Complex numbers

Two flavours of complex numbers are needed for simulation
and verification: concrete values and variables representing
complex numbers. The implementation datatype CmplxSig
reflects this:

data CmplxSig
= Abstract NumSig
1 Concrete (Complex Double)

A complex datatype has to support operations like addi-
tion and multiplication. The FFT circuits also need twiddle
factors, constants computed by w (see section 4.2). The ap-
propriate operations are grouped together into a class.

class Arithmetic m => CmplxAritbmetic m where
cplus :: (CmplxSig, CmplxSig) -> m CmplxSig
ctimes :: (CmplxSig, CmplxSig) -> m CmplxSig
. . .

W :: (Int,Int) -> m CmplxSig

cplus = clift plus (+I
ctimes = clift times (*>
. . .

instance CmplxAritbmetic Std where . . .
instance CmplxArithmetic Sym where . . .

To extend the existing interpretations with the complex
datatype, we must write appropriate instance implementa-
tions. In this case it is simple, as the complex arithmetic
operations can be implemented by lifting the existing arith-
metic operations on symbolic NumSig variables and concrete
Complex Double values. The twiddle factors have different
meanings for different interpretations: the Std interpreta-
tion will get constant complex values, while Sym expects
symbolic values.

4.2 Discrete Fourier Transform

The Discrete Fourier Transform (DFT) computes a sequence
of complex numbers X, given an initial sequence 2:

N-l

X(k) = c z(n) x wjp, kE {O...N-1)
n=O

178

where the constant WN is defined as e-j2?rlN.

Each signal in the transformed sequence X(k) depends on
every input signal z(n); the DFT operation is therefore ex-
pensive to implement directly.

The Fast Fourier Transforms (FFTs) are efficient algorithms
for computing the DFT that exploit symmetries in the twid-
dle factors wk. The laws that state these symmetries are:

w:: = 1

w,” = 1

w,” x w,” = w;+”

W,” = w,“,“, (n,k I Jo

We will later use the fact that Wj equals -j.

These laws, together with a restriction of sequence length
(for example to powers of two), simplify the computations.
An FFT implementation has fewer gates than the original
direct DFT implementation, which reduces circuit area and
power consumption. FFTs are key building blocks in most
signal processing applications.

We discuss the description of circuits for two different FFT
algorithms: the Radix-2 FFT and the Radix-22 FFT [He95].

4.3 Two FFT circuits

The decimation in time Radix-2 FFT is a standard al-
gorithm, which operates on input sequences of which the
length is a power of two [PM92]. This restriction makes it
possible to divide the input into smaller sequences by re-
peated halving until sequences of length two are reached.
A DFT of length two can be computed by a simple butter-
fly circuit. Then, at each stage, the smaller sequences are
combined to form bigger transformed sequences until the
complete DFT has been produced.

The Radix-2 FFT algorithm can be mapped onto a com-
binational network as in figure 7, which shows a size 16
implementation. In this diagram, digits and twiddle factors
on a wire indicate constant multiplication and the merging
of two arrows means addition. The bounding boxes contain
two FFTs of size 8.

A less well-known algorithm for computation of the DFT is
the decimation in frequency Radix-2 FFT, which assumes
that the input length N is a power of four.

The corresponding circuit implementation (in figure 8) is
also very regular and might be mistaken for a reversed
Radix-2 circuit at a passing glance. However, it differs sub-
stantially in that two different butterfly networks are used in
each stage, the twiddle factor multiplications are modified,
and -j multiplication stages have been inserted.

4.4 Components

We need three main components to implement FFT circuits.
The first is a butterfEy circuit, which takes two inputs x1 and
22 to two outputs ~1 + 52 and x1 - x2 (see figure 9). It is
the heart of FFT implementations since it computes the 2-
point DFT. Systems of such components will be applied to
the in-signals in many stages (figures 7 and 8).

The FFT butterfly stages are constructed by riffling together
two halves of a sequence of length Ic, processing them by a

x \‘/ x+Y

x
Y

/ - \
I X-Y

-1

Figure 9: A butterfly

Figure 10: A butterfly stage of size 8 expressed with riffling

column of k/2 butterfly circuits, and unriffling the result
(see figure 10). Here riffle is the shuffle of a card sharp
who perfectly interleaves the cards of two half decks.

bfly :: CmplxArithmetic m
=> [CmplxSigl -> m [CmplxSigl

bfly [il, i2l =
do 01 <- csubtract (il. i2)

02 <- cplus (ii, i2)
return [ol, 021

bflys :: CmplxArithmetic m
=> Int -> [CmplxSigl -> m [CmplxSigl

bflys n =
riffle >-> raised n two bfly >-> unriffle

Another important component of an FFT algorithm is mul-
tiplication by a complex constant, which can be imple-
mented using a primitive component called a twiddle factor
multiplier. This circuit maps a single complex input z to
x x Wh for some N and k. The circuit w n k computes
Wk.

wMult :: CmplxArithmetic m
=> Int -> Int -> CmplxSig -> m CmplxSig

wMult n k a =
do twd <- w (n, k)

ctimes (twd, a)

The multiplication of complete buses with -j is defined as
follows, using the fact that W,’ equals -j.

minus J :: CmplxArithmetic m
=> [CmplxSigl -> m [CmplxSigl

minusJ = mapM (wMult 4 1)

Another useful component is the bit reversal permutation,
used in the first or last stage of the FFT circuits. A new
wire position is the reversed binary representation of the old
position [PM92]. The permutation can be expressed using
riffle:

bitRev :: Monad m => Int -> [a] -> m [a]
bitRev n =

compose [raised (n-i) two riffle
I i <- Cl. .nl

179

X(0,

X(1)

X(2,

X(3)

X(4,

xu,

X(6)

X(7)

X(8)

WY)

X(10)

X(11)

x(3) I I xw
3 3

x01)

~~)~:’

Figure 7: A size 16 Radix 2 FFT network

180

0.0 0.0 X(O)
WI6 w4

X(l)
0’1 -1 I.0

X(8)
WI6 W4

\w/ 0.2 -1 2.0 X(4’
W.

X(2) X(2)

X(3’ X(3’

x(15’-
-I -j

-I -j -I 3’0
W.

I / /- \
-I 3’3 -I -j -I 3’0

xw

hi W4

Figure 8: A size 16 Radix-2’ FFT network

181

Note that these components are not shown in the diagrams;
either the in-data is permuted from the start, or the out-
sequence needs to be rearranged.

4.5 The Circuit Descriptions in Lava

Inspired by the circuit diagrams we describe the two FFT
circuits in Lava using higher-order combinators.

We begin by defining the type of an FFT parameterised by
the interpretation monad m. A circuit description takes the
exponent of the size of the circuit, and the list of inputs, and
returns the outputs.

type Fft m = Int -> [CmplxSig] -> m [CmplxSigl

The Radix-2 FFT is a bit reversal composed with the dif-
ferent stages.

radix2 :: CmplxAritbmetic m => Fft m
radix2 n =

bitRev n >-> compose C stage i I i <- Cl. .nl 1
where

stage i = raised (n-i) two
$ twid i

>-> bflys (i-1)

twid i = one (decmap (2-(i-1)) (wMult (2-i)))

The Radix-2’ FFT is the sequence of stages composed with
the final bit reversal.

radix22 :: CmplxAritbmetic m => Fft m
radix22 m =

compose C stage i I i <- [m,m-1.. II 1
>-> bitRev (2*m)

where
stage i = raised (m-i) (two.two)

$ bflys (2*i-1)
>-> one (one minusJ)
>-> two (bflys (2*i-2))
>-> twid i

twid i = column
C decmap (4’(i-1))

(wMult (4-i) . (wt *))
I wt <- C3.1.2.01
1

The corresponding VHDL descriptions would be several
times longer.

4.6 Running Interpretations

We can now run some interpretations on our FFT circuits.
Simulation is possible in the standard interpretation, if we
provide an exponent and specific inputs to the circuit.

input :: [CmplxSigl
input = map cmplx [1:+4,2:+(-2) ,3:+2,1:+2]

Hugs> simulate (radix2 2 input)
[1.0:+6.0,(-l.O):+(-6.0),(-3.0):+2.0,7.0:+6.01

The symbolic interpretation can be applied to verify that
two circuit instances are equivalent, using the first order
theorem prover Otter [MW97]. We create an abstract circuit
stating the equivalence:

fftSame :: (Symbolic m, CmplxAritbmetic m)
=> Int -> m Form

fftSame n =
do inp <- newCmplxVector (4-n)

out1 <- radix2 (n*2) inp
out2 <- radix22 n inp

equals (outl, out21

The newCmplxVector function generates a list of complex
symbolic variables. After applying both of the circuits to
these inputs, we ask if the outputs are the same.

Before we can verify this equation, we have to add some
knowledge to Otter: laws about complex arithmetic, and in
particular the laws about twiddle factors. This information
is added in the form of theories, which are defined by the
user in Lava, and given to the prover as a proof option.
Otter now shows circuit equivalence for size 4 FFTs (we
have proven circuits of size 16 and 64 equivalent as well).

options : : [Proof Options1
options = C Prover otter

, Theory arithmetic

i
Theory (twiddle 4)

Hugs> verify’ options (fftSame 1) >>= print
Valid

Figure 11 shows the formula that is generated as input to
Otter (notice the arithmetic and twiddle factor theory).

4.7 Related work on FFT description and verifica-
tion

The equivalence of a Radix-2 FFT algorithm and the DFT
has been shown using ACLZ, a descendant of the Boyer-
Moore theorem prover [Gam98]. Our approach in the ex-
ample is slightly different in that we want to show auto-
matically generated logical descriptions of circuits of a fixed
size equivalent, rather than proving mathematical theorems
about the algorithms. The verifications are similar how-
ever, in that both methods use relationships between ab-
stract twiddle factors.

5 Related Work

In this section, we discuss related work on the use of func-
tional languages for hardware description and analysis.

The work described here has its basis in our earlier work on
/IFP, an extension of Backus’ FP language to synchronous
streams, designed particularly for describing and reasoning
about regular circuits [She85]. We continue to use combina-
tors for describing the ways in which circuits are built. What
we have gained through the embedding in Haskell, is the
availability of a full-blown programming language. The syn-
chronous programming languages Lustre, Esterel and Signal

182

%% Automatically generated by Lava %%

%% THEORY Arithmetic %%
list (demodulators).
eq(tim(x, plus(y, z)), plus(tim(x, y), tim(x, 2))).
eq(tim(x. sub(y, z)), sub(tim(x. y). tim(x. z>)).
eq(tim(1, x), x).
eq(tim(x, tim(y, 2))) tim(tim(x, y). z)).
end-of-list.

%% THEORY Twiddle Factors size 4 %%
list (demodulators) .
eq(W(x, O), 1).
eq(W(x. x1. I).
$LE(x, 4) -> eq(W(x, y), W($PROD(2,x), $PROD(2,y)))
eq(tim(W(x.y) .W(x,z)> ,W(x,$SUN(y,z))).
end-of-list.

%% SYSTEM + QUESTION %%
list (sos) .
eq(x,x).
-eq(sub(sub(a4, tim(W(2,0), a2)>, tim(W(4.1),

sub(a3,tim(W(2,0), al)))), tim(W(B,O),
sub(sub(a4, a2),tim(W(4, 11, sub(a3, al))))) 1

-eq(sub(plus(a4, tim(W(P,O), a2)), tim(W(4.0))
plus(a3, tim(W(2.01, al)))), tim(W(4, 01,
sub(plus(a4,a2), plus(a3, al)))) I

-eq(plus(sub(a4, tim(W(P,O), a2)>, tim(W(4,1),
sub(a3,tim(W(2,0), al>))), tim(W(4,0),
plus(sub(a4, al) ,tim(W(4,1), sub(a3, al))))) 1

-eq(plus(plus(a4, tim(W(2,O). a21). tim(W(4.01,
plus(a3, tim(W(2.01, al)))), tim(W(4. 01,
plus(plus(a4,a2), plus(a3. al)))).

end-of-list.

Figure 11: Otter input for size 4 FFT comparison

can all be used to describe hardware in much the style used
here. Further experiments in this direction are being carried
out in the EU project SYRF.

A source of inspiration has been John O’Donnell’s Hydra
system [O’DSS]. In Hydra, circuit descriptions are more di-
rect because they are written in ‘ordinary’ Haskell. There
are no monads cluttering up the types, and this must be an
advantage. It is our use of monads, however, that makes
Lava easily extensible, while Hydra is less SO. The Hydra
system has not, as far as we know, been used to gener-
ate formulas from circuit descriptions, for input to theorem
provers, although the idea of having multiple interpretations
has been a recurring theme in O’Donnell’s work.

Launchbury and his group are experimenting with a dif-
ferent approach to using Haskell for hardware descrip-
tion [CLM98]. In Hawk, a type of signals and Lustre-like
functions to manipulate it are provided. Circuits are mod-
elled as functions on signals, and the lazy state monad is
used locally to express sequencing and mutable state. The
main application so far has been to give clear and concise
specifications of superscalar microprocessors. Simulation at
a high level of abstraction has been the main circuit analy-
sis method. Work on using Isabelle to support formal proof
is under way, however. Also, it seems likely that Lava in-

183

put could be generated from Hawk circuit descriptions. We
plan to explore this possibility in a joint project. Hawk
has, at present, no means of producing code for the produc-
tion of real circuits, although work on circuit synthesis is in
progress.

Keith Hanna has long argued for the use of a functional
language with dependent types in hardware description and
verification [HD92]. Hanna’s work inspired much research
on using Higher Order Logic for hardware verification. The
PVS theorem prover, which is increasingly used in hardware
verification [Cyr96], is also based on a functional language
with dependent types. We do not know of work in which cir-
cuit descriptions written in this language are used for any-
thing other than proof in PVS.

HML is a hardware description language based on ML, de-
veloped by Leeser and her group [LL95]. The language ben-
efits from having higher order functions, a strong type sys-
tem and polymorphism, just as ours does. The emphasis
in HML is on simulation and synthesis, and not on formal
verification.

6 Conclusions

The Lava system is an easily extensible tool to assist hard-
ware designers both in the initial stages of a design and in
the final construction of a working circuit. The system al-
lows a single circuit description to be interpreted in many
different ways, so that analyses such as simulation, formal
verification and layout on a Field Programmable Gate Ar-
ray are supported. Furthermore, new interpretations can be
added with relatively little disturbance to the existing sys-
tem, allowing us to use Lava as the main workbench for our
research in hardware verification methods for combinational
and sequential circuits. To be able to provide these features,
we rely heavily on advanced features of Haskell’s type sys-
tem: monads for language embedding, polymorphism and
type classes to support different interpretations, and higher
order functions for capturing regularity.

The system is an interesting practical application of Haskell,
which has proved to be an ideal tool, both as a hardware de-
scription language and as an implementation language. As
demonstrated in the FFT examples, our circuit descriptions
are short and sweet, when one can find a suitable set of
combinators. Our experience with Ruby indicates that each
domain of application (such as signal processing, pipelined
circuits or state machines) gives rise to a small and manage-
able set of combinators.

The largest circuit that has been tackled so far is a 128 bit by
128 bit combinational multiplier. To deal with this circuit,
we needed to us a Haskell compiler (HBC) rather than Hugs.

Writing the Lava system has been an educational exercise
in software engineering. More than once, we have thrown
everything away and started again. The latest version ex-
ploits Haskell’s type system to impose a clear structure on
the entire program, in a way that we find appealing. We
have all been taught to think about types very early in the
design of a system. Lava demonstrates the advantages of
doing so.

7 Future Work

We are continuing to develop the Lava system; this paper
is a report of work in progress rather than a description of
a finished project. Until recently, we had several specialised
versions of Lava, each concentrating on a particular aspect
of design such as verification or the production of VHDL.
The work of merging these versions has only just begun; it
was really the need for fusion that pushed us towards the
current system design. Incorporating the interpretation that
takes care of layout production is a non-trivial task, as this
code is necessarily large and complicated. This may lead to
further changes to the top level design of Lava.

To make the system more usable, we need to add many
new interpretations. For example, we would like to work on
test pattern generation and testability analysis, using earlier
work by Singh as a basis [SinSl]. All of these interpretations
must be tested on real case studies.

We would be able to generalise our system further if multiple
parameter type classes were provided in Haskell. At present,
all of the interpretations share the same primitive datatypes.
Using multiple parameter type classes, each interpretation
could support its own data types, with the required features.

In the area of verification, we are working on interpretations
involving sequential operations, such as delay, and on related
methods to automatically prove properties of sequential cir-
cuits. We are working on a case study of a sequential FFT
implementation provided by Ericsson CadLab. Inspired by
the Hawk group, we find it hard to resist investigating verifi-
cation of the next generation of complex microprocessors. In
particular, we are interested in the question of how to design
processors to enable verification to proceed smoothly.

References

[Bje97] Per Bjesse. Specification of signal processing pro-
grams in a pure functional language and compila-
tion to distributed architectures. Master’s thesis,
Chalmers University of Technology, 1997.

[CLM98] Byron Cook, John Launchbury, and John
Matthews. Specifying superscalar microprocessors
in Hawk. In Formal Techniques for Hardware and
Hardware-like Systems. Marstrand, Sweden, 1998.

[Cyr96] David Cyrluk. Inverting the abstraction mapping:
A methodology for hardware verification. In Formal
Methods for Computer Aided Design of Electronic
Circuits (FMCAD), number 1166 in Lecture Notes
In Computer Science. Springer-Verlag, 1996.

[Gam98] Ruben Gamboa. Mechanically verifying the cor-
rectness of the Fast Fourier Transform in ACLZ. In
Third International Workshop on Formal Methods
for Parallel Programming: Theory and Applications,
1998.

[HDSS]

[He951

Keith Hanna and Neil Daeche. Dependent types
and formal synthesis. Phil. Trans. R. Sot. Lond. A,
(339), 1992.

Shousheng He. Concurrent VLSI Architectures for
DFT Computing and Algorithms for Multi-output

[Jon901

[JS90]

[LL95]

Logic Decomposition. PhD thesis, Lund Institute of
Technology, 1995.

Geraint Jones. A fast flutter by the Fourier trans-
form. In Proceedings ZVth Banff Workshop on
Higher Order. Springer Workshops in Computing,
1990.

Geraint Jones and Mary Sheeran. The study of but-
terflies. In Proceedings IVth Banff Workshop on
Higher Order. Springer Workshops in Computing,
1990.

Yanbing Li and Miriam Leeser. HML: An innova-
tive hardware design language and its translation
to VHDL. In Computer Hardware Description Lan-
guages (CHDL’95), 1995.

[MW97] William W. McCune and L. Wos. Otter: The
CADE-13 competition incarnations. Journal of Au-
tomated Reasoning, 18(2):211-220, 1997.

[O’DSS] John O’Donnell. From transistors to computer ar-
chitecture: Teaching functional circuit specification
in Hydra. In Functional Programming Languagues
in Education, volume 1125 of Lecture Notes In Com-
puter Science, pages 221-234. Springer Verlag, 1996.

[PM921 John Proakis and Dimitris Manolakis. Digital Sig-
nal Processing. Macmillan, 1992.

[SB98] Mary Sheeran and Arne Boralv. How to prove
properties of recursively defined circuits using
Stalmarck’s method. In Formal Techniques for
Hardware and Hardware-like Systems. Marstrand,
Sweden, 1998.

[She851 Mary Sheeran. Designing regular array architec-
tures using higher order functions. In Int. Conf. on
Functional Programming Languages and Computer
Architecture, (Jouannaud ed.), volume 201 of Lec-
ture Notes In Computer Science. Springer Verlag,
1985.

[Sin911

[SR93]

[St&891

Satnam Singh. Analysis of Hardware Description
Languages. PhD thesis, Computing Science Dept.,
Glasgow University, 1991.

Robin Sharp and Ole Rasmussen. Transformational
rewriting with Ruby. In Computer Hardware De-
scription Languages (CHDL’93). Elsevier Science
Publishers, 1993.

Gunnar Stalmarck. A System for Determining
Propositional Logic Theorems by Applying Values
and Rules to Triplets that are Generated from a For-
mula, 1989. Swedish Patent No. 467 076 (approved
1992), U.S. Patent No. 5 276 897 (1994), European
Patent No. 0403 454 (1995).

[Tam971 Tanel Tammet. Gandalf. Journal of Automated
Reasoning, 18(2):199-204, 1997.

[Wad921 Philip Wadler. Monads for Functional Program-
ming. In Lecture notes for Marktoberdorf Summer
School on Program Design Calculi, NATO AS1 Se-
ries F: Computer and systems sciences. Springer
Verlag, August 1992.

184

