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I n t r o d u c t i o n  

In this paper, we present a VLSI design language I~FP, which is a variant of  Backus" FP [Backus 78, gl]. 
I~FP differs from conventional VLSI design languages in that it can describe both the semantics (or 
behaviour) of  a circuit and its layout (or f loorplan) [Sheeran 83]. 

We chose to base our design language on FT for  several reasons Functional programs are easier to write 
and to reason about than imperative ones. We hope to bring some of  these benefits to IC desigr, FP, in 
particular, is designed to allow the programmer to reason about his or her programs by manipulating the 
programs themselves. Likewise, in I~ FT, programs (or circuit descriptions) are just expressions "made" from 
a small number of  primitive functions and combining forms (functionals that map functions into functions). 
These functions and combining forms (CFs) were chosen because they have nice algebraic properties. Thus, 
circuit descriptions are concise and can be easily manipulated using the algebraic laws of  the language- Also, 
each CF has a simple geometric interpretation, so that every laFP expression has an associated floorplan.  
This interpretation exists because I~FP expressions represent functions rather than objects, allowing us to 
associate a function with each section of  the floorplan. Most VLSI design languages are designed either for  
layout description or for  behavioural specification. I~ FF, with its dual interpretation, allows the designer to 
consider the effect on the final layout of  a particular design decision or to manipulate the layout while 
keeping the semantics constant. In the following sections, we show how I~FP is constructed from FP by the 
addition of  a single combining form la, which encapsulates a very simple notion of  "state ". 

A Brief  I n t r o d u c t i o n  to FP 

A program in FP is an expression representing a function that maps objects into objects [Backus 78, 
Williams 81]. For example, ÷ is an FP program representing a function which maps a pair of numbers into 

their sum. The objects on which our programs operate can be undefined (J.), atoms or sequences of objects. 
We shall take the set of atoms to be the integers, with a "don't care" value, '?'. <...> denotes a sequence.. 

Some possible objects are J_~ 42~ <> (the empty sequence) and <I, <I, <I, 0>>>. We will represent "don't 

care" sequences by '?' also, although we should, strictly, have a different symbol for every possible shape, 

Next, we need a set of primitive functions to operate on our 
categories. (: denotes function application.) 
I) Functions for manipulating sequences 

2) 

3) 

objects. These divide into three main 

e.g. selector functions I, 2 .... i : <xl, x2, . . xn> = xi if n ) i, ± otherwise. 
append to the left, apndl e.g. apndl : <3, <4, 5, 6>> -- <3, 4, 5, 6>. 
matrix transposition, zip e.g. zip : <<I, 2, 3>, <4, 5, 6>> " <<I, 4>, <2, 5>, <3, 6>>. 
Arithmetic functions 
e.g. +,-, m + : <I, 2> = 3 + : <42> ffi J. m : <I, 3, 5> ffi J.. 
Predicates (we denote true by I, false by 0) 
e.g. greater than gt : <4, D = I (true) not : I r. 0. 
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Finally, we need a set of combining forms  (CFs). CFs map  functions into functions and so allow us to 
build up the functions (or programs)  that  we require- Appendix 1 contains a list of  the CFs which interest 
us. We can use the CFs and pr imit ive  functions to write new functions. A typical FP program is that 
which computes the length of a sequence :- 

length --" ( / R  ÷) o a 1,. 

This remarkably short program treats each element of  the sequence as a 1 (oD and then (o )  adds them up 
( / R  ÷). It is impor tan t  to note that  o "does" the function on the right "first".  The combining forms  of 
FP obey a series of  algebraic laws, some of  which are listed in Appendix 2~ These identities fol low from 
the definintions of  the CFs and require no p roof  in the algebra. 

The Basic Building Blocks of muFP 

All FP functions take one input and produce one output.  In IJFP, however, functions take a sequence of  
inputs (over time) and produce a sequence of  outputs. (NOte that we describe only synchronous circuits.) 
This switch to the use of  streams for  input  and output  is necessary because we need to deal with the 
concept of  state. I f  we were dealing only with combinatorial  (or stateless) circuits, the original FP would 
be sufficient. However ,  most digital circuits, f rom shift  registers to microprocessors, have some " memo ry "  
and we will introduce a new CF, I~, to deal with these sequential circuit~ I f  we are to describe such 
circuits, we must use streams for  input and output ,  since the output  of  a circuit with state may depend on 
all of  its previous inputs. Thus, the + function in I~FP takes the input stream <<1,2>,<3,4>,<5,6>,<7,8>, . 
and produces the output  stream (3, 7, II, 1 5 , . .  ~. This difference between I~ FP and FP is reflected in our 
first  semantic equatiorL We introduce a "meaning" function, M, which gives the semantics of  i~FP in terms 
of FP. A stateless function is one which does not contain I~, the CF which gives state, that  is, a purely 
combinatorial  functiorL 

f stateless => M{f} --" a f I 
Equation I is our base case. o means "apply to all'. The meaning of a IJFP function f which contains 

none of the combining forms (besides the constant function) is just af (in FP). This gives us functions 
which work in a repetitive manner on a stream of inputs to produce a stream of outputs, as in the ÷ 
example above. The constant function ro is just a source of rs. 

M( f o g) = M(f} o Mig} II 
Equation II says that the meaning of two composed functions is the composition of the meanings of the 
functions, as one might expect. Function composition also has the geometric interpretation illustrated in 
FIG l(a). 

s F  

FIG L (a) composit ion f o g  (b) construction If, g] (c) apply  to all a h  

For the "construction" CF (FIG l(b)), we use zip, the matr ix  transpose function, to keep the types right. 
Zip is used in this way whenever we wish to convert a stream of tuples to a tuple of  streams, or vice 
versa. It  will be found throughout  the semantic equations. 

M( In ,  f 2 , . .  fn])  = zip o [M(fl) ,  M(f2) ,  . .  M(fn)]  UI 
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I f  the zip wasn' t  there., then the output  of  the r ight  hand side, for  m successive inputs, would be n 
m-demen t  sequences, instead of  m n-element sequences. For the ~apply to ali a CF (FIG l(c)), we have to 
"massage ~ the types on both s i d ~  

M { a O  = zip o a M ( O  o zip IV 
To spread inputs along a row of  identical cells, as shown in FIG 2, we use / L  or /R.  

FIG2. /R f : (xl, x2, x3, x4, x$> IL f : gxl, x2, x3, x4, x5> 

M ( / R  f )  = / R  (M( f )  o zip) o zip V 
M ( / L  f )  -- / L  (M( f )  o zip) o zip VI 

For the conditional CF (FIG 3), M{p -~ g ; h} must take a sequence of  inputs and produce a sequence of  
booleans, which decide whether a particular output  is given by M{g) or M(h). 

M(p -* g ; h} -- cx(l-~ 2 ; 3) o zip o [M(p}, M{g}, M{h)] VII 

FIG 3. conditional p -, g ; h 
The switch, represented by a ( l  -, 2 ; 3) in the equation, chooses between inputs a and c according to the 
value of  b. 

The seven semantic equations given above show how FP can be extended to use streams for  input  and 
output.  In the following section, we introduce a new combining form,  1~, to deal with the concept of  state. 
The addition of I~ has a surprisingly small effect on the algebraic propert ies  of  the language, as we will 
demonstrate  in the next section. 

Dealing with State 

The new combining form 
shows its geometric interpretation. 

1~ takes a function and produces a "funct ion ~ which has internal state. FIG 4 

f f 

FIG 4. f l~f 
We use a ~latch" to hold the state. Thus, the current state is supplied to the function as its second input 
and the second output of the function refreshes the state. The initial value in the latch is assumed to be '?', 
the "don't care'  state. 
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Formally, 

M(~ 0 = out M{O 
where out g i ffi o 

where <o,s> [] zip o g o zip : <i, ? Is> VIII 
o, s and i are sequences. [ is infix "append to the left ~. The meaning of l~f is defined in terms of the 
meaning of f. The functional out "hides" the state so that while M(f} maps a sequence of input-state pairs 

to a sequence of output-state pairs, out M(f} just maps a sequence of inputs to a sequence of outputs. For 
a given cycle, the next output and the next state depend on the current input and the current state. 

A simple example of  the use of  I~ should make its operat ion more clear. We would like to describe SRI, a 
shift register cell whose output  is its current state and whose new state is its input. We write 

SRI ffi ~[2, l] 
The output function is 2, which selects the state. The next state function is I, which selects the input. FIG 
5 shows how we have used the internal latch to give us a shift register cell. 

FIO 5 [2, l] . [2, 11 

For input <0, 1, 0, 0, 1, 0 , . .  >, the output  f rom I J[2,  1] would be <?, 0, 1, 0, 0, 1, 0 , . .  >, as one would 
expect f rom a shift register cell. 

I f  ~FP  is to be useful as a design language, we must be able to manipulate our circuit descriptions to 
extract f rom them the informat ion  that  we require. We nee, d to find (and prove) some theorems or 
algebraic identities about the language. Appendix 2 lists some algebraic laws of FP [Williams 81]. A 
surprisingly large number of  the.~ laws remain true in I~FP. For example, to prove  that, in 1JFP, 

(P ~ f;g) o h=(p o h ~ f o h;g o h), 
we check that the meanings of both sides are equal, as follows :- 

We abbreviate M(h} to H,  M{p} to P etc. 
M{(p -~ f ; g) o h) = M{(p -* f ; g)} o H 

= o(l-' 2; 3) o zip o [P,F,G] o H 

= o(l-, 2; 3) o zip o [Po H, Fo H, Go HI 

ffi o(I -* 2 ; 3) o zip o [M{p o h}, M{f o h), M{g o h)] 

= M~Do h-, fo h;go h} 
In fact, of the II laws listed in 
try to prove that, in bFP, 

ho (p-* f;g)= p-* 
we find that we must have an 
function with state depends not 

II 
VII 
A5 

II 
VII Q.E.D. 

Appendix  3, the only one which does not "translate" to IJ FP is AI. I f  we 

h o  f ; h o  g, 
additional constraint - -  h must be stateless. This is because the output  of  a 
only on its current input, but on all of  its previous inputs. 

In the search for  new 1JFP laws, we have found the geometric interpretation of  the combining forms  very 
useful, since two IJFP expressions which have exactly the same "picture" must also have the same semantics. 
As well as "reusing" old FP laws, we have derived some new laws concerning IJ. The most impor tan t  of  
these is that which allows us to collapse the composit ion of  two functions with state into one function with 
(larger) state. We combine the two old states into a pair,  as illustrated in FIG 6. 
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la[f, g] o la[h, j] : la[fo [ho [1, 2o 21, 1o 2], [go [ho [1, 20 21, lo 2], jo [1, 2o 2]]1 

ou~p~f 
~-[ho f_,, 2-2], 1o2~---] f 

@ 
mf.fe.t ~o[h..E,z-2]) Io Z'~ ~ , 4  2] 

FIG 6. Derivation of  C~ 

3] 
h. 0, Zo2] I 

,I L 

"~-----J~ o2. 

] .E,, 2,2] 
[f, g] o ]J [h, j] : I~ [output,  [nstatel, nstate2]] 

C~ 

Although the law looks complicated, its application is just a question of  mechanical substitution. Sinc~ the 
useful laws of laFP are., in general, identities of this form,  the language is suitable for  use with an 
automatic t ransformation system. Finn [Finn 831 has writ ten a simple laFP t ransformat ion system in 
LispKit Lisp [Henderson, Jones, Jones 831. The system allows one to transform a laFP expression (into a 
semantically equivalent one) by applying tactics, which may !~ axioms or combinations of  tactic~ 

Some Examples  

The Tally Circuit [Mead, Conway 801 
The tally function has n inputs and n+l outputs  
other outputs  low,  if k of  the inputs are high. 

0 0 0 I 0 0 

n ÷ l  m n - ,  • . • I~. • • . I 0 ] 

I 

t 
TT 

-w: n 

The kth output  (starting from 0) is to be high, and all 

FIG 7. an n bit tally 

From FIG 7, we can see that the 1 in the output  divides the rest of the output  into two groups of 0s. The 
number of 0s in the left hand group is the number of  low inputs to the tally and the number in the right 
hand group is the number of  high inputs. This view of the circuit allows us to give a recursive definition 
of its operation. To create a tally for  n bits from one for n-l bits, we look at the nth output,  and 
depend~.ng on whether it is high or low, we add a 0 either to the right or to the left of the output  of  the 
n-I bit tally. We can do this by creating both the possible outputs and selecting between them using the 
final input. We use TA, a basic c~ll which selects between two bits depending on whether a third bit is 
high. This is the basic c~ll used in the Mead and Conway circuit. FIG 8(b) shows how the selection is 
performed using two pass transistors controlled by the selecting input and its inverse. Only one pass 
transistor is on (or conducting) at any time and the selector input determines which of  the other inputs 
passes through to the output. 
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. . .  TA = f----~31 1 

- " r-- il "-%, I ~ .  

o° T°T  °o 
- L , : "  

i3 ~ C 

TI . . .  i n . ,  ~3 

FIG 8. (a) An n input tally (b) The basic cell 

We construct the two possible outputs  and spread the first along the left hand inputs of  the n+l TA cells, 
and the second along the right hand inputs. Each tally has the nth input as its middle (or selecting) input 
and the result is an n input tally. 

Tal(n) = o TA o zip o [apndl o [0_, Tal(n- l )omst] ,  In, n , . .  n], apndr o [Tal(n- l )omst ,  0_.]] 
where mst = reverse o tl o reverse 

The basis of  this recursive definition is Tal(0) = [ I ]. The list has no 0s since there are no inputs. FIG 9 
shows our tally circuit for  3 inputs (i.e. Tal(3)) and the tally circuit f rom [Mead, Conway 80]. It  is clear 
that we have described the circuit exactly. O,lr constant 0 (0_) inputs correspond to Ground and our call of  
Tal(0) corresponds to VDD. 

0 

z T A  T A I  / / / i /< '_ '  i 

-I " ^ ' " 

~'~.'. ' . , < " - ' .  ' , / _ - "  _- I 

. - -  , I ---_ , ' ~ • 

I - ~ " ' L ~ O  i ~  
- -  I '  I ,  I 

' TA ~o o 

FIG 9. (a) Tal(3) (b) The original tally circuit 

Other examples which we have tackled range f rom the construction of  inverters f rom pullup and pulldown 
transistors to a formal  derivation of a systolic correlator circuit which has been designed and fabricated at 
GEC Hirst  Research Laboratories,  LondorL Because the form of  IaFP described here implies a simple ~right 
to left ~ f low of data, we have added some new CFs to give vertical as well as horizontal data flow. These 
CFs are part icularly suitable for  describing regular arrays such as the correlator. A full derivation of the 
correlator is beyond the scope of this paper but we can give an informal description of the process. We 
wish to calculate 

N-I 

c(k+N) ffi Z r(i) . d(k+i). 
ifO 

Our first description is at the word level and is illustrated in FIG I0. (Cells shown as circles are "statelcss".) 
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FIG 10. Our first  a t t empt  at the corrclator 
The row of  Xcells shifts the data d across the circuit and does the necessary multiplications. The row of  
adders sums the N results of  these multiplications. The reference data r are constantly fed in at the top,  as 
shown. Using the algebraic laws of  14 FP, we t ransform this circuit f irst  into a linear systolic a r ray  at the 
word  level. This forces us to accept the existence of  "don ' t  cares ~ in the input and output  streams. Next,  
we decompose our word-level  processing elements into vertical bit-level systolic arrays to give the final 
or thogonal ly connected grid (FIG 11). Each basic cell (F) is just a gated full adder with latches on all of  
the outputs.  The full derivation appears  in [Shceran 83]. 

I 

_o F 

o F 

r 

o 

! 
I 

o 

_~ rtsuIt 

FIG 11. The final correlator circuit 
We have used exactly the same technique to develop a systolic pipelined binary multiplier. Our approach  
seems part icularly suited to the design of  regular array architectures and we intend to develop a fo rmal  
methodology and some tools for  this purpose. 

D i s c u s s i o n  

Circuit  descr ipt ions  can be run to give a simulator.  

The denotational semant i~  of  I~FP given earlier can be considered to be a functional program.  We can, 
therefore, run this p rogram,  giving it a I~FP program and some inputs. It  will then calculate the 
appropr i a t e  outputs,  giving us a simulator. Such an interpreter for  b FP has been writ ten by John  Hughes 
[Henderson, Jones, Jones 83]. We have also implemented the operat ional  semantics of  the language in 
Pascal, using an almost  functional style. The p rogram first  constructs the abstract syntax tree of  the ~ FP 
description. I t  then t ransforms this tree, using the informat ion  contained in the first  input  to the ~ F P  
program,  to eliminate all a s  and /s.  This is possible because the first  input  gives us the " type"  (i.e. the 
size and shape) of  the data. To per fo rm the simulation, we use a function, apply,  which takes a 
t ransformed tree and an input ( typed by the user) and works out the corresponding output ,  making the 
necessary state change& 
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~FP can be translated to Functional Geometry to produce layout. 

Functional Geometry  [Henderson 82, Shecran 81] allows us to describe pictures easily and readably, using a 
small set of  geometric functions. The available functions are above, beside, rotate, fl ip and overlay, and the 
pictures are described in a hierarchical manner,  using combinations of these functions. Similarly, in ~FP,  
circuits are described in a hierarchical manner using the combining forms. The abstract syntax tree can be 
thought  of  as representing a picture- The leaves of  the tree are represented by the pictures corresponding to 
the circuit layouts for  those basic functions. Selector functions, which are also leaves, correspond to wires in 
the circuit. These basic pictures are combined by using functional geometry to implement the geometric 
interpretation of the combining forms, to give the final layout. As a first step towards the production of 
actual circuit layout,  we have writ ten a program which draws a "sized" f loorplan for a given t~FP 
expression. The p rogram demonstrates that it would be possible to produce actual layout provided we were 
given the a r twork  for  the basic cells, detailed informat ion about  their inputs and outputs,  and the design 
rules which govern the placement of  "wires". However ,  much work remains to be done in this area. For 
instance, we have not yet considered the problems of power and ground distribution. We intend to work 
on this area in collaboration with workers  who have a strong background in layout techniques. Initially, we 
will concentrate on regular array architectures which combine mathematical  tractability with ease of  layout. 

~FP has nice algebraic properties, despite having state. 

We have added a very restricted notion of state to FP. Data values can be explicitly "remembered" for one 
clock cycle. This amount  of  state allows us to write circuit descriptions in the form of finite state 
machines, where we give a next output  and a next state function. Thus, we can describe any circuit which 
is suitable for  implementat ion on silicon. Surprisingly, we have gained this power without paying a high 
price for  it. Many of the theorems of FP hold also in I~FP and the new CF, ~, obeys simple laws. In 
particular,  we can combine two functions with state into one with larger state. It is impor tan t  to note that 
we can also apply  this law in reverse. 

In fact, the process of  design can be viewed as the repeated application of laws such as this. For sequential 
circuits, the most abstract form is one which has a single 1J on the outermost  level. This form specifies a 
combinatorial  block and a register bank through which signals are fed back. The designer must find a more 
elegant and efficient implementat ion of this behaviour on silicon. He does this by transforming the ~FP 
description of the circuit, and hence its corresponding layout, using the algebraic laws. As the design 
proceeds, the combinatorial  and the memory  elements become more and more "mixed up". The designer 
hopes to reach a satisfactory layout in which memory  elements are placed as near as possible to where they 
are "needed", thus minimising expensive interconnections. So, the process of  translating f rom specification to 
implementat ion can be viewed as one of pushing the IJs further and further down into the IJFP expression, 
until they can go no further. 

C o n c l u s i o n  

We have shown that IaFP, an extension of  FP, is suitable for use as a VLSI design language. Reasoning in 
IJFP is at the function level, which allows us to associate a f loorplan with each 1JFP expression by giving 
a simple geometric interpretat ion for  each of  the CFs. We have added a notion of state to FP, but have 
retained many of  the algebraic propert ies  of  the language. IJFP can describe both combinatorial  circuits and 
those which can be represented as finite state machines. Because IJFP combines semantic and geometric  
information,  the process of  design can be seen as the application of program transformation to an initial 
"abstract" specification, to produce the final "efficient" version of  the circuit. The t ransformations which 
are applied to the circuit description must correspond to valid algebraic laws of the language, if the final 
circuit is to have the same semantics as the original one. Thus, design and verification go hand in hand. 
This is very impor tan t  if we are to achieve our goal of  producing verifiably correct layout f rom high level 
circuit descriptions. 
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Appendix I 

The combining forms of FP 

Composition 
Construction 
Apply to all 
Conditional 
Constant 
Insert left 
Insert right 

(fo g):x = f:(g:x) 
[fl, f2, .. fn] : x = (fl:x, f2:x, .. fn:x> 

a f : x [] (f:xl, f~x2, .. f:xn> if x = (xl, x2, .. xn>, J. otherwise 
(p -~ f ; g) : x = f:x if p:x = I, g:x if p:x [] 0, j_ otherwise 

r:y [] r i f  y ~ i, J_ o the rwise  
(IL f) : (x> = x, (IL f) : (xl, .. xn> = f : <(IL f) : <xl, .. xn-l>, xn> 
(IR f) : (x> = x, (IR f) : (xl, .. xn> = f : (xl, (IR f) : (x2, .. xn>> 

Appendix 2 

Some algebraic laws of FP 

(AI) ho (p~ f;g) - p-~ho f;ho g 

(A2) (P~ f;g) o h = Po h-, fo h;go h 
(A3) (IL f) o [gl,.. gn+l] = f o [(/L f) o [gl,.. gn], gn+l] 

(A4 )  ( / L  f)  o [g] - g 
(AS) [a, b] o c = [a o c, b o c] 
(A6) I o [a, b] = a, in the domain of definition of b 
(A7) 2 o [a, b] = b, in the domain of definition of a 
(A8) a - *  ( a - *  b ; c )  ; d  = a - *  b ; d  

(A9)  of o a p n d l  o [a, b] = a p n d l  o [f  o a, a f  o b] 

(A10) / R f  o a p n d l  o [a, b] = f o [a,  / R f  o b] 
(Al l )  r o b = [, in the  d o m a i n  o f  de f in i t i on  o f  b 
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