
muFP, a language for VLSI design
Mary Shceran

Oxford University Computing Laboratory
Programming Research Group

8 Keble Road
Oxford OXl 3QD

I n t r o d u c t i o n

In this paper, we present a VLSI design language I~FP, which is a variant of Backus" FP [Backus 78, gl].
I~FP differs from conventional VLSI design languages in that it can describe both the semantics (or
behaviour) of a circuit and its layout (or f loorplan) [Sheeran 83].

We chose to base our design language on FT for several reasons Functional programs are easier to write
and to reason about than imperative ones. We hope to bring some of these benefits to IC desigr, FP, in
particular, is designed to allow the programmer to reason about his or her programs by manipulating the
programs themselves. Likewise, in I~ FT, programs (or circuit descriptions) are just expressions "made" from
a small number of primitive functions and combining forms (functionals that map functions into functions).
These functions and combining forms (CFs) were chosen because they have nice algebraic properties. Thus,
circuit descriptions are concise and can be easily manipulated using the algebraic laws of the language- Also,
each CF has a simple geometric interpretation, so that every laFP expression has an associated floorplan.
This interpretation exists because I~FP expressions represent functions rather than objects, allowing us to
associate a function with each section of the floorplan. Most VLSI design languages are designed either for
layout description or for behavioural specification. I~ FF, with its dual interpretation, allows the designer to
consider the effect on the final layout of a particular design decision or to manipulate the layout while
keeping the semantics constant. In the following sections, we show how I~FP is constructed from FP by the
addition of a single combining form la, which encapsulates a very simple notion of "state ".

A Brief I n t r o d u c t i o n to FP

A program in FP is an expression representing a function that maps objects into objects [Backus 78,
Williams 81]. For example, ÷ is an FP program representing a function which maps a pair of numbers into

their sum. The objects on which our programs operate can be undefined (J.), atoms or sequences of objects.
We shall take the set of atoms to be the integers, with a "don't care" value, '?'. <...> denotes a sequence..

Some possible objects are J_~ 42~ <> (the empty sequence) and <I, <I, <I, 0>>>. We will represent "don't

care" sequences by '?' also, although we should, strictly, have a different symbol for every possible shape,

Next, we need a set of primitive functions to operate on our
categories. (: denotes function application.)
I) Functions for manipulating sequences

2)

3)

objects. These divide into three main

e.g. selector functions I, 2 i : <xl, x2, . . xn> = xi if n) i, ± otherwise.
append to the left, apndl e.g. apndl : <3, <4, 5, 6>> -- <3, 4, 5, 6>.
matrix transposition, zip e.g. zip : <<I, 2, 3>, <4, 5, 6>> " <<I, 4>, <2, 5>, <3, 6>>.
Arithmetic functions
e.g. +,-, m + : <I, 2> = 3 + : <42> ffi J. m : <I, 3, 5> ffi J..
Predicates (we denote true by I, false by 0)
e.g. greater than gt : <4, D = I (true) not : I r. 0.

© 1984 ACM0-89791-142-3/84/008/0104 $00.75

104

Permission to copy without fee all or part of this
material is granted provided that the copies are not
made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the
publication and its date appear, and notice is given
that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

Finally, we need a set of combining forms (CFs). CFs map functions into functions and so allow us to
build up the functions (or programs) that we require- Appendix 1 contains a list of the CFs which interest
us. We can use the CFs and pr imit ive functions to write new functions. A typical FP program is that
which computes the length of a sequence :-

length --" (/ R ÷) o a 1,.

This remarkably short program treats each element of the sequence as a 1 (oD and then (o) adds them up
(/ R ÷). It is impor tan t to note that o "does" the function on the right "first". The combining forms of
FP obey a series of algebraic laws, some of which are listed in Appendix 2~ These identities fol low from
the definintions of the CFs and require no p roof in the algebra.

The Basic Building Blocks of muFP

All FP functions take one input and produce one output. In IJFP, however, functions take a sequence of
inputs (over time) and produce a sequence of outputs. (NOte that we describe only synchronous circuits.)
This switch to the use of streams for input and output is necessary because we need to deal with the
concept of state. I f we were dealing only with combinatorial (or stateless) circuits, the original FP would
be sufficient. However , most digital circuits, f rom shift registers to microprocessors, have some " memo ry "
and we will introduce a new CF, I~, to deal with these sequential circuit~ I f we are to describe such
circuits, we must use streams for input and output , since the output of a circuit with state may depend on
all of its previous inputs. Thus, the + function in I~FP takes the input stream <<1,2>,<3,4>,<5,6>,<7,8>, .
and produces the output stream (3, 7, II, 1 5 , . . ~. This difference between I~ FP and FP is reflected in our
first semantic equatiorL We introduce a "meaning" function, M, which gives the semantics of i~FP in terms
of FP. A stateless function is one which does not contain I~, the CF which gives state, that is, a purely
combinatorial functiorL

f stateless => M{f} --" a f I
Equation I is our base case. o means "apply to all'. The meaning of a IJFP function f which contains

none of the combining forms (besides the constant function) is just af (in FP). This gives us functions
which work in a repetitive manner on a stream of inputs to produce a stream of outputs, as in the ÷
example above. The constant function ro is just a source of rs.

M(f o g) = M(f} o Mig} II
Equation II says that the meaning of two composed functions is the composition of the meanings of the
functions, as one might expect. Function composition also has the geometric interpretation illustrated in
FIG l(a).

s F

FIG L (a) composit ion f o g (b) construction If, g] (c) apply to all a h

For the "construction" CF (FIG l(b)), we use zip, the matr ix transpose function, to keep the types right.
Zip is used in this way whenever we wish to convert a stream of tuples to a tuple of streams, or vice
versa. It will be found throughout the semantic equations.

M(In , f 2 , . . fn]) = zip o [M(fl) , M(f2) , . . M(fn)] UI

105

I f the zip wasn' t there., then the output of the r ight hand side, for m successive inputs, would be n
m-demen t sequences, instead of m n-element sequences. For the ~apply to ali a CF (FIG l(c)), we have to
"massage ~ the types on both s i d ~

M { a O = zip o a M (O o zip IV
To spread inputs along a row of identical cells, as shown in FIG 2, we use / L or /R.

FIG2. /R f : (xl, x2, x3, x4, x$> IL f : gxl, x2, x3, x4, x5>

M (/ R f) = / R (M(f) o zip) o zip V
M (/ L f) -- / L (M(f) o zip) o zip VI

For the conditional CF (FIG 3), M{p -~ g ; h} must take a sequence of inputs and produce a sequence of
booleans, which decide whether a particular output is given by M{g) or M(h).

M(p -* g ; h} -- cx(l-~ 2 ; 3) o zip o [M(p}, M{g}, M{h)] VII

FIG 3. conditional p -, g ; h
The switch, represented by a (l -, 2 ; 3) in the equation, chooses between inputs a and c according to the
value of b.

The seven semantic equations given above show how FP can be extended to use streams for input and
output. In the following section, we introduce a new combining form, 1~, to deal with the concept of state.
The addition of I~ has a surprisingly small effect on the algebraic propert ies of the language, as we will
demonstrate in the next section.

Dealing with State

The new combining form
shows its geometric interpretation.

1~ takes a function and produces a "funct ion ~ which has internal state. FIG 4

f f

FIG 4. f l~f
We use a ~latch" to hold the state. Thus, the current state is supplied to the function as its second input
and the second output of the function refreshes the state. The initial value in the latch is assumed to be '?',
the "don't care' state.

106

Formally,

M(~ 0 = out M{O
where out g i ffi o

where <o,s> [] zip o g o zip : <i, ? Is> VIII
o, s and i are sequences. [is infix "append to the left ~. The meaning of l~f is defined in terms of the
meaning of f. The functional out "hides" the state so that while M(f} maps a sequence of input-state pairs

to a sequence of output-state pairs, out M(f} just maps a sequence of inputs to a sequence of outputs. For
a given cycle, the next output and the next state depend on the current input and the current state.

A simple example of the use of I~ should make its operat ion more clear. We would like to describe SRI, a
shift register cell whose output is its current state and whose new state is its input. We write

SRI ffi ~[2, l]
The output function is 2, which selects the state. The next state function is I, which selects the input. FIG
5 shows how we have used the internal latch to give us a shift register cell.

FIO 5 [2, l] . [2, 11

For input <0, 1, 0, 0, 1, 0 , . . >, the output f rom I J[2, 1] would be <?, 0, 1, 0, 0, 1, 0 , . . >, as one would
expect f rom a shift register cell.

I f ~FP is to be useful as a design language, we must be able to manipulate our circuit descriptions to
extract f rom them the informat ion that we require. We nee, d to find (and prove) some theorems or
algebraic identities about the language. Appendix 2 lists some algebraic laws of FP [Williams 81]. A
surprisingly large number of the.~ laws remain true in I~FP. For example, to prove that, in 1JFP,

(P ~ f;g) o h=(p o h ~ f o h;g o h),
we check that the meanings of both sides are equal, as follows :-

We abbreviate M(h} to H, M{p} to P etc.
M{(p -~ f ; g) o h) = M{(p -* f ; g)} o H

= o(l-' 2; 3) o zip o [P,F,G] o H

= o(l-, 2; 3) o zip o [Po H, Fo H, Go HI

ffi o(I -* 2 ; 3) o zip o [M{p o h}, M{f o h), M{g o h)]

= M~Do h-, fo h;go h}
In fact, of the II laws listed in
try to prove that, in bFP,

ho (p-* f;g)= p-*
we find that we must have an
function with state depends not

II
VII
A5

II
VII Q.E.D.

Appendix 3, the only one which does not "translate" to IJ FP is AI. I f we

h o f ; h o g,
additional constraint - - h must be stateless. This is because the output of a
only on its current input, but on all of its previous inputs.

In the search for new 1JFP laws, we have found the geometric interpretation of the combining forms very
useful, since two IJFP expressions which have exactly the same "picture" must also have the same semantics.
As well as "reusing" old FP laws, we have derived some new laws concerning IJ. The most impor tan t of
these is that which allows us to collapse the composit ion of two functions with state into one function with
(larger) state. We combine the two old states into a pair, as illustrated in FIG 6.

107

la[f, g] o la[h, j] : la[fo [ho [1, 2o 21, 1o 2], [go [ho [1, 20 21, lo 2], jo [1, 2o 2]]1

ou~p~f
~-[ho f_,, 2-2], 1o2~---] f

@
mf.fe.t ~o[h..E,z-2]) Io Z'~ ~ , 4 2]

FIG 6. Derivation of C~

3]
h. 0, Zo2] I

,I L

"~-----J~ o2.

] .E,, 2,2]
[f, g] o]J [h, j] : I~ [output, [nstatel, nstate2]]

C~

Although the law looks complicated, its application is just a question of mechanical substitution. Sinc~ the
useful laws of laFP are., in general, identities of this form, the language is suitable for use with an
automatic t ransformation system. Finn [Finn 831 has writ ten a simple laFP t ransformat ion system in
LispKit Lisp [Henderson, Jones, Jones 831. The system allows one to transform a laFP expression (into a
semantically equivalent one) by applying tactics, which may !~ axioms or combinations of tactic~

Some Examples

The Tally Circuit [Mead, Conway 801
The tally function has n inputs and n+l outputs
other outputs low, if k of the inputs are high.

0 0 0 I 0 0

n ÷ l m n - , • . • I~. • • . I 0]

I

t
TT

-w: n

The kth output (starting from 0) is to be high, and all

FIG 7. an n bit tally

From FIG 7, we can see that the 1 in the output divides the rest of the output into two groups of 0s. The
number of 0s in the left hand group is the number of low inputs to the tally and the number in the right
hand group is the number of high inputs. This view of the circuit allows us to give a recursive definition
of its operation. To create a tally for n bits from one for n-l bits, we look at the nth output, and
depend~.ng on whether it is high or low, we add a 0 either to the right or to the left of the output of the
n-I bit tally. We can do this by creating both the possible outputs and selecting between them using the
final input. We use TA, a basic c~ll which selects between two bits depending on whether a third bit is
high. This is the basic c~ll used in the Mead and Conway circuit. FIG 8(b) shows how the selection is
performed using two pass transistors controlled by the selecting input and its inverse. Only one pass
transistor is on (or conducting) at any time and the selector input determines which of the other inputs
passes through to the output.

108

. . . TA = f----~31 1

- " r-- il "-%, I ~ .

o° T°T °o
- L , : "

i3 ~ C

TI . . . i n . , ~3

FIG 8. (a) An n input tally (b) The basic cell

We construct the two possible outputs and spread the first along the left hand inputs of the n+l TA cells,
and the second along the right hand inputs. Each tally has the nth input as its middle (or selecting) input
and the result is an n input tally.

Tal(n) = o TA o zip o [apndl o [0_, Tal(n- l)omst] , In, n , . . n], apndr o [Tal(n- l)omst , 0_.]]
where mst = reverse o tl o reverse

The basis of this recursive definition is Tal(0) = [I]. The list has no 0s since there are no inputs. FIG 9
shows our tally circuit for 3 inputs (i.e. Tal(3)) and the tally circuit f rom [Mead, Conway 80]. It is clear
that we have described the circuit exactly. O,lr constant 0 (0_) inputs correspond to Ground and our call of
Tal(0) corresponds to VDD.

0

z T A T A I / / / i /< '_ ' i

-I " ^ ' "

~'~.'. ' . , < " - ' . ' , / _ - " _- I

. - - , I ---_ , ' ~ •

I - ~ " ' L ~ O i ~
- - I ' I , I

' TA ~o o

FIG 9. (a) Tal(3) (b) The original tally circuit

Other examples which we have tackled range f rom the construction of inverters f rom pullup and pulldown
transistors to a formal derivation of a systolic correlator circuit which has been designed and fabricated at
GEC Hirst Research Laboratories, LondorL Because the form of IaFP described here implies a simple ~right
to left ~ f low of data, we have added some new CFs to give vertical as well as horizontal data flow. These
CFs are part icularly suitable for describing regular arrays such as the correlator. A full derivation of the
correlator is beyond the scope of this paper but we can give an informal description of the process. We
wish to calculate

N-I

c(k+N) ffi Z r(i) . d(k+i).
ifO

Our first description is at the word level and is illustrated in FIG I0. (Cells shown as circles are "statelcss".)

109

FIG 10. Our first a t t empt at the corrclator
The row of Xcells shifts the data d across the circuit and does the necessary multiplications. The row of
adders sums the N results of these multiplications. The reference data r are constantly fed in at the top, as
shown. Using the algebraic laws of 14 FP, we t ransform this circuit f irst into a linear systolic a r ray at the
word level. This forces us to accept the existence of "don ' t cares ~ in the input and output streams. Next,
we decompose our word-level processing elements into vertical bit-level systolic arrays to give the final
or thogonal ly connected grid (FIG 11). Each basic cell (F) is just a gated full adder with latches on all of
the outputs. The full derivation appears in [Shceran 83].

I

_o F

o F

r

o

!
I

o

_~ rtsuIt

FIG 11. The final correlator circuit
We have used exactly the same technique to develop a systolic pipelined binary multiplier. Our approach
seems part icularly suited to the design of regular array architectures and we intend to develop a fo rmal
methodology and some tools for this purpose.

D i s c u s s i o n

Circuit descr ipt ions can be run to give a simulator.

The denotational semant i~ of I~FP given earlier can be considered to be a functional program. We can,
therefore, run this p rogram, giving it a I~FP program and some inputs. It will then calculate the
appropr i a t e outputs, giving us a simulator. Such an interpreter for b FP has been writ ten by John Hughes
[Henderson, Jones, Jones 83]. We have also implemented the operat ional semantics of the language in
Pascal, using an almost functional style. The p rogram first constructs the abstract syntax tree of the ~ FP
description. I t then t ransforms this tree, using the informat ion contained in the first input to the ~ F P
program, to eliminate all a s and /s. This is possible because the first input gives us the " type" (i.e. the
size and shape) of the data. To per fo rm the simulation, we use a function, apply, which takes a
t ransformed tree and an input (typed by the user) and works out the corresponding output , making the
necessary state change&

110

~FP can be translated to Functional Geometry to produce layout.

Functional Geometry [Henderson 82, Shecran 81] allows us to describe pictures easily and readably, using a
small set of geometric functions. The available functions are above, beside, rotate, fl ip and overlay, and the
pictures are described in a hierarchical manner, using combinations of these functions. Similarly, in ~FP,
circuits are described in a hierarchical manner using the combining forms. The abstract syntax tree can be
thought of as representing a picture- The leaves of the tree are represented by the pictures corresponding to
the circuit layouts for those basic functions. Selector functions, which are also leaves, correspond to wires in
the circuit. These basic pictures are combined by using functional geometry to implement the geometric
interpretation of the combining forms, to give the final layout. As a first step towards the production of
actual circuit layout, we have writ ten a program which draws a "sized" f loorplan for a given t~FP
expression. The p rogram demonstrates that it would be possible to produce actual layout provided we were
given the a r twork for the basic cells, detailed informat ion about their inputs and outputs, and the design
rules which govern the placement of "wires". However , much work remains to be done in this area. For
instance, we have not yet considered the problems of power and ground distribution. We intend to work
on this area in collaboration with workers who have a strong background in layout techniques. Initially, we
will concentrate on regular array architectures which combine mathematical tractability with ease of layout.

~FP has nice algebraic properties, despite having state.

We have added a very restricted notion of state to FP. Data values can be explicitly "remembered" for one
clock cycle. This amount of state allows us to write circuit descriptions in the form of finite state
machines, where we give a next output and a next state function. Thus, we can describe any circuit which
is suitable for implementat ion on silicon. Surprisingly, we have gained this power without paying a high
price for it. Many of the theorems of FP hold also in I~FP and the new CF, ~, obeys simple laws. In
particular, we can combine two functions with state into one with larger state. It is impor tan t to note that
we can also apply this law in reverse.

In fact, the process of design can be viewed as the repeated application of laws such as this. For sequential
circuits, the most abstract form is one which has a single 1J on the outermost level. This form specifies a
combinatorial block and a register bank through which signals are fed back. The designer must find a more
elegant and efficient implementat ion of this behaviour on silicon. He does this by transforming the ~FP
description of the circuit, and hence its corresponding layout, using the algebraic laws. As the design
proceeds, the combinatorial and the memory elements become more and more "mixed up". The designer
hopes to reach a satisfactory layout in which memory elements are placed as near as possible to where they
are "needed", thus minimising expensive interconnections. So, the process of translating f rom specification to
implementat ion can be viewed as one of pushing the IJs further and further down into the IJFP expression,
until they can go no further.

C o n c l u s i o n

We have shown that IaFP, an extension of FP, is suitable for use as a VLSI design language. Reasoning in
IJFP is at the function level, which allows us to associate a f loorplan with each 1JFP expression by giving
a simple geometric interpretat ion for each of the CFs. We have added a notion of state to FP, but have
retained many of the algebraic propert ies of the language. IJFP can describe both combinatorial circuits and
those which can be represented as finite state machines. Because IJFP combines semantic and geometric
information, the process of design can be seen as the application of program transformation to an initial
"abstract" specification, to produce the final "efficient" version of the circuit. The t ransformations which
are applied to the circuit description must correspond to valid algebraic laws of the language, if the final
circuit is to have the same semantics as the original one. Thus, design and verification go hand in hand.
This is very impor tan t if we are to achieve our goal of producing verifiably correct layout f rom high level
circuit descriptions.

111

References

[Backus 78] J. Backus "Can Programming Be Liberated from the yon Neumann Style?" Communications of
the A.C.M., Vol. 21, No. 8, pp 613-641, Aug. 197&
[Backus gl] J. Backus "The Algebra of Functional Programs: Function Level Reasoning, Linear Equations,
and Extended Definitions" Proc. Symposium on Functional Languages and Computer Architecture,
Gothenberg, June 19gl.
[Finn 83] S. Finn: "LVIS - A VLSI Transformation System" M. Sc. Dissertation, Programming Research
Group, University of Oxford, Sept. 1983.
[Henderson 82] P. Hendersorc "Functional Geometry" Proc. A.C.M. Symposium on LISP and Functional
Programming, 1982.
[Henderson, Jones, Jones 83] P. Henderson, O. A. Jones, S. B. Jone~ "The LispKit Manual, Volume l"
Tech. Monograph PRO-32(1), Programming Research Group, University of Oxford, June 1983.
[Mead, Conway 80] C. Mead, L. Conway: "~ntroduction to VLS]I Systems" Addison-Wesley, 1980.
[Shccran 81] M. Shccran: "Functional Geometry and Integrated Circuit Layout" M. Sc. Dissertation,
Programming Research Group, University of Oxford, Sept. 19gl.

[Shccran 83] M. She~ran: "I~FP, an Algebraic VLSI Design Language" D. Phil. Thesis, Programming
Research Group, University of Oxford, 1983.
[Williams $I] J. Williams "Notes on the FP Style of Functional Programming" in "Functional
Proerammine pnd its AvDlications', Cambridge University Press, 1981.

Appendix I

The combining forms of FP

Composition
Construction
Apply to all
Conditional
Constant
Insert left
Insert right

(fo g):x = f:(g:x)
[fl, f2, .. fn] : x = (fl:x, f2:x, .. fn:x>

a f : x [] (f:xl, f~x2, .. f:xn> if x = (xl, x2, .. xn>, J. otherwise
(p -~ f ; g) : x = f:x if p:x = I, g:x if p:x [] 0, j_ otherwise

r:y [] r i f y ~ i, J_ o the rwise
(IL f) : (x> = x, (IL f) : (xl, .. xn> = f : <(IL f) : <xl, .. xn-l>, xn>
(IR f) : (x> = x, (IR f) : (xl, .. xn> = f : (xl, (IR f) : (x2, .. xn>>

Appendix 2

Some algebraic laws of FP

(AI) ho (p~ f;g) - p-~ho f;ho g

(A2) (P~ f;g) o h = Po h-, fo h;go h
(A3) (IL f) o [gl,.. gn+l] = f o [(/L f) o [gl,.. gn], gn+l]

(A4) (/ L f) o [g] - g
(AS) [a, b] o c = [a o c, b o c]
(A6) I o [a, b] = a, in the domain of definition of b
(A7) 2 o [a, b] = b, in the domain of definition of a
(A8) a - * (a - * b ; c) ; d = a - * b ; d

(A9) of o a p n d l o [a, b] = a p n d l o [f o a, a f o b]

(A10) / R f o a p n d l o [a, b] = f o [a, / R f o b]
(Al l) r o b = [, in the d o m a i n o f de f in i t i on o f b

112

