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Abstract

This p aper has something new and positive to say about propo-
sitional equality i n p rogramming and p roof systems based on the
Curry-Howard correspondence between propositions and types. We
have found a way to present a propositional equality type

• which is substitutive, allowing us to reason by r eplacing equal
for equal in p ropositions;

• which reflects the observable b ehaviour of values rather than
their construction: in p articular, we h ave extensionality—
functions are equal if they take equal inputs to equal outputs;

• which retains strong normalisation, decidable typechecking and
canonicity—the property that closed normal forms inhabiting
datatypes have canonical constructors;

• which allows inductive data structures to be expressed in terms
of a standard characterisation of well-founded trees;

• which is presented syntactically—you can implement it di-
rectly, and we are doing so—this approach stands at the core
of Epigram 2;

• which you can play with now: we have simulated our system by
a shallow embedding in Agda 2, shipping as p art of the standard



examples package for that system [21].

Until now, it has always been necessary to sacrifice some
of these aspects. The closest attempt in the literature is Al-
tenkirch’s construction of a setoid-model for a system with canon-
icity and extensionality on top of an intensional type t heory with
proof-irrelevant propositions [4]. Our new proposal simplifies Al-
tenkirch’s construction by adopting McBride’s heterogeneous ap-
proach to equality [19].

Categories and S ubjectD escriptors F.4. 1 [Mathematical Logic]:
Lambda calculus and related systems; D.3.1 [Formal D efinitions
and Theory] : Semantics

General Terms Languages,Theory

Keywords Type Theory, Equality

1. Introduction

Equations are u biquitous i n mathematical reasoning, and r easoning
about programs is no exception. Moreover, notions of equality
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play a crucial internal rˆo le in the programs of any language where



datatypes are indexed in some way. Case analysis r elies on solving
the equation between the type of the scrutinee and the possible
types returned b y each constructor, specialising the r eturn type of
each b ranch accordingly. For a standard example, consider length-
indexed lists. W e need to know that a length 4 list cannot b e b e
made by the ‘nil’ constructor because 4 does not equal 0, but can
be made b y ‘cons’, given a head element and a tail of length 3.

Further, computation within types is now commonplace: ap-
pending two length 2 lists yields a length 2 + 2 l ist, which should
somehow be regarded also as a length 4 list. Further still, we some-
times need to exploit algebraic p roperties of type-level expressions
beyond their symbolic evaluation: we may wish to use a length
x + y list where length y + x is expected.

Of course, dependent type theories have always had this is-
sue, but it is becoming increasingly p revalent in programming
languages, whether they have ‘full-blown’ value-dependency, like
Cayenne [5], Epigram [20, 11] and Agda [21], or a separate static
language of indices, as in DML [29], Ωmega [25] and Haskell with
Generalized Algebraic Datatypes [24].

This p aper concerns the strength of equational reasoning avail-
able for b oth behind-the-scenes constraint solving and the explicit
manipulation of type-level expressions in Martin-Lo ¨f type theories,
hence in proof systems and p rogramming languages based on the
“propositions-as-types” principle. These tend to be divided into two
camps:

extensional type theories (ETTs, as implemented in NuPRL [7])
identify the definitional equality (as used in typechecking) with
the propositional equality (expressed as a type and u sed for r ea-
soning), r esulting in powerful systems with u ndecidable type-
checking;



intensional type theories (ITTs, as implemented in Coq, Agda
and Epigram) separate these notions, keeping the definitional
equality (and hence t ypechecking) decidable, but at some cost
to the power of the propositional equality—until now.

In this p aper, we examine an approach which delivers a ‘no
compromise’ candidate: Observational Type T heory (OTT), with
all the good properties of b oth. OTT is an intensional type theory
with all the key computational properties we expect of such sys-
tems, but a notion of propositional equality that identifies values up
to observation, rather than by construction. It is just as powerful for
reasoning as the extensional theories.

This paper also records an attempt to code the p henomena of
dependently typed programming in a simple and closed core type
theory. In p articular, r ecursive data are introduced u niformly via the
so-called ‘W-types’, inhabited b y higher-order encodings of well-
founded trees. T his encoding has always b een feasible in ETTs, but
it has never worked in an ITT—until now. The OTT approach has
allowed us to make the encoding, and to discover its price.

Our adventure has a strong p ractical component. W e show how
to construct an OTT b y a shallow embedding in an existing inten-
sional type theory, defined within the Agda 2 framework. By doing
so, we expose the mechanics of the approach and gain evidence
for key metatheoretical p roperties. In p articular, we obtain at least
a sketch p roof for strong normalisation for expressions in general,
and canonicity for closed expressions—the latter always compute
to canonical values, as p rogrammers might naturally hope. How-
ever, you can also download the OTT construction (now a standard
Agda 2 example) and try out observational equality, now!

1.1 The Equality Dilemma

In traditional type theories, equational propositions are typically



represented as instances of a family of types:

‘ A : Set a, b : A
‘‘A a :  =S Aetb: P rop

where Set is the sort of datatypes and Prop is the sort of propo-
sitional types—sometimes these coincide. Most people agree that
equality should b e reflexive, and provide the introduction r ule:

‘r efl‘Aaa : : A a = Aa
As these theories have nontrivial computations within types, they
come with a notion of d efinitional equality, presented here as a
typed equality judgment (≡). T ypes are identified up to definitional
etyqpueadlie tyq, aasl ietxypj uredsgsmede nbyt ≡the) .cT oynpveesrsa ioreni druenlet:i

‘s : S ‘S ≡ T

The definitional equality is a congruence, so the full effect of the
refl constructor is to embed ≡ into =:

if ‘ a ≡ b : A then ‘ a =A a ≡ a =A b : Prop
and ‘the are≡ fob re: A‘ trheefnlA a‘ ‘: aa =A ba

The two camps diverge when it comes to the way that propo-
sitional equations are used. Extensional type theories adopt the
equality reflection rule, allowing provable equations to impact di-
rectly and silently on typechecking:

‘q : a = Ab

By contrast, intensional type theories require an explicit oper-
ation, coresponding to the ‘Leibniz rule’ for equality, transporting
values between types which are merely p rovably—but perhaps not
definitionally—equal



‘ q :a = Asbubs‘tA;Ta ;b :qA T → t : S T etb ‘t : T a
with the associated computational rule

‘ substA;a;a (reflA a) T t ≡ t : T a

making subst disappear when the proof reflA a guarantees that
initial and final types coincide definitionally. This approach pre-
serves the desirable canonicity property of ITTs—closed expres-
sions have canonical values. In the empty context, the only p os-
sible p roof of an equation is by refl, so all top-level substs are
guaranteed to vanish. Compilers for p rogramming languages based
on strongly-normalising ITTs can thus erase equation proofs and
appeals to subst from run-time code.

Clearly, ITT results in terms which are more b ureaucratic: there
is no need for subst in ETT because the p roof of a =A b gives us
t : T b by the conversion rule and equality r eflection. However, a
high price must be p aid for this benefit.
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Firstly, the equality r eflection r ule is clearly not syntax-directed:

if we want a machine to recover the typing derivations for well-
typed terms, it must be able to invent the proofs of equations
demanded b y appeals to equality r eflection. In an ITT, the proofs
are always explicit.

Secondly, E TTs identify all types in the presence of false hy-
potheses, making it u nsafe to compute under binders. In an ITT,
the machine can check terms and execute them safely if they are
well-typed, regardless of the context. In an ETT, the checkable ob-
jects are the derivations, r ecording not only the appeals to typing
rules but also every equational step. ETT t erms may b e smaller, but
only because the evidence which j ustifies t hem is somewhere else.



Gonthier and Werner’s proof of the Four-Colour Theorem is a r el-
atively small ITT term, but its ETT derivation would be u nfeasibly
large because it relies very heavily on computation.

A big attraction of ETTs is that more desirable equations have
proofs. In p articular, the extensionality law holds for functions, j ust
by congruence, equality reflection and the η-law:

if ∀x. f x = g x then (λx. f x) = (λx. g x) so f = g

This j ust cannot happen in ITTs following the refl and subst
pattern. To see this, consider the functions λx. 0+x and λx. x+0.
One may certainly give a closed inductive proof

plus0 : ∀x. 0+x = x+0

but the two functions are not definitionally equal, hence refl cannot
show that λx. 0+x = λx. x+0 and correspondingly, there can
be no closed p roof of this m athematically intuitive fact. By the
same token, it is difficult to reason equationally about h igher-order
functional programs in ITT-based systems, where laws like

map id = id map (f ◦ g) = map f ◦ map g

cannot b e proven.
The challenge is to combine the computational power (and

decidable typechecking) of intensional theories with the reasoning
power of extensional theories. One cannot j ust add an axiom

q: ∀ x.f x = g x
e:∀ xtx q. f: xf == g

without losing canonicity:

subst (ext plus0) (λ . Nat) 0 : Nat



is a closed expression which cannot compute a number, because
the subst has got stuck! The irony of this example is that λ. Nat
makes no use of its argument. In fact, subst (ext plus0) (λ . Nat)
is a function from Nat to Nat which is provably equal (by ext) to
id. If we only looked at the source and target, we could quite easily
see how to perform the transportation! It is in this irony that we find
some hope of resolution.

1.2 The Observational Approach

Our approach is designed to ensure the effectiveness of the maps
induced b y equations, transporting values between provably equal
sets. W e start by explicitly introducing a notion of set equality. This
will not be defined inductively, but will r ather compute what you
need to know t o transport canonical values from one set t o another.
Equations between sets induce coercions.

SS= ,TT :  :S P ertop Qs: [ QS := S=T Tis:  :T S

Of course, we still need to talk about equality of values. We
allow the formation of heterogeneous equations, relating values in
arbitrary sets. This is again a computed notion, telling you how to

ensure t hat te qua lv alues support te qua lo bservations

(s: S )s:=  S ( t: tT  :)T : P rop

wouHldetie tro mgeakneeos uesnse eqt uoa lsiatyyt  hmaaty( 0s e: emN ata )l = ittl( eidd i: stN urabtin→ g:N w aht)e?n
On the o ther h and, ,s heo wto ws aoyult hd you 0s : tat Ne at hte) f= ac t( t ihda :t sN oamte → fuNn catito)?n
f p reserves equality o f a rguments i f its t ype i s d ependent—some



Πa a: :A. B [a]?1 With h eterogeneous e quality, w e can w rite

∀x, y. ( x x: A ) = ( y y: A )→(f x x: B [x]) = ( f y y: B [y])

but w ith the t raditional h omogeneous e quality, i t i s r ather c lumsy
to c ope w ith the way the results h ave d efinitionally distinct t ypes.
Using h omogeneous e quality, w ith e xtra d ependency and h eavy use
of s ubst, w e w ould h ave written:

∀x, y. ∀ q :x = A y. s ubst q ( λa. B [a]) ( f x ) = B[y] f y

Our approach s cales u p m uch m ore c onveniently. The crucial p oint
is t hat h eterogeneous e quations are o nly u seful i f w e k now why

theiHret ytpereosga enreeei tqyuaa ll.soa llowsu st of ormulatet hec oherenceo pera-
tor, another OTT p rimitive, w hose d efinition requires u s t o e nsure
that all ofo ur equality-induced c oercions are i n s ome s ense just the
identity:

{s k Q:S=TQ}: :  (S s = :S T ) =s( s: S [ Q:S=Ti: T )

NctyoopeTetrecsh .tieho Wnant ,oe eb ens ydht acy pt loolenns  sitmew repudhclitecic mohonehi ,nentt vrheoec nlocvt eeewrcb oi niinos i onddriednb segeo t.rwf tt eoheins exe sp qleautiasntiw ot hnilelh a ad cvrteivieoe qnt uhao elf
cdoenfinsiditeiornw o hfate e qquuaalliitytyo  onn sv eatlsu.esW m eus shtab lel.t henb ei na p osition to
1.3 A Brief History of Equality

Ttbinhuhteeteiironrensg ioho  iasnoasdt lhb c ta yeotempn oefp t uq hMtueaioattreiortiia ennsal lH ho otb aveo fmhefaaw v wnieonoau,rkrk w.r T a hedoahdseos rehnm soisnwoignsegtdp s rt i ohtghpenaeitrp fi trecioqeausbn,lated lmc iteoysnpt ht irrteaie-t-



flection, in the style of ETT, is conservative over ITT extended by
axioms for ‘extensional concepts’ [14, 13]. The idea of extending
ITT consistently with extensionality axioms goes back at least to
Turner [27], but the problem of losing canonicity was also clear at
that time.

catholeednHoircneyog;f.maA   fua tn nysnepcettoi ao ltinshdoseio p sb riyea otnw ws eeeheteerneer deqs  e uthexitpeotep incdeodssniosf w notirartumlhicttyi ia tosh n oso leo wtdfosns idi enn toow a itdniiothm e nxof o tuedfnnecsle stiqio,uone innavsl--
trleaehqnnaugctievet ah.  vlHeaeonl putfremew d.aIh incneannt’o sret dshm eew aryct ehto aic rkn aeeenarse yf oqou enrnimsb vyauro lees vunsebtt rhsd t aaoittmus te thaitiooisnnid ,iv sw ar  aleeulswepn seaeycet sotdti  e ht toqseu b e cievqaaus slieevu.nar-et

However, Hofmann’s attempt o build a setoid model of a sys-
em with arge elimination—computation of ypes from values—
an nto echnical difficulties. Altenkirch’s etoid model 4] gets

tairoonuanlde q thueaslietyp ,r iodbelentmifsy:inh gisa m llep taro-olofsgi ocfh  tahsea s am moerep rl oibpeorsaitliod nef,ina il--
lowMinegant hwehe xiltee,n sMiocBnro ifdeH ’sof mcoanntnri’bsuw tioornk.o fh eterogeneous equal-
ty 19] educed he bureaucracy of working with equations be-
ween values n dependent ypes, motivated by need o xpress
he unification problems nherent o Coquand’s dependent pattern

W We w writeΠ Πw whenw we r angeo vera aS et a nd ∀ ∀w whenw we r angeo vera aP Prop.

amtal tecahsitnt go [H 8u].e Tt ahnedi S deaa ¨ıbo if’s uf osirnmgah liestaetrioongeo nfe coautsege oqruyat lhityeog ryoei snb t aycpek
tltthheioenenot sot rw oy-ac e [as1xl t6tlo]ee,nd p id‘r toKisnve-glifrdut lae heen’a  e,u h e psxoiupcmars oletgi snrseutniegnneggosl tuieho.sneH s a uulonbwp isqretuiovteepunroti,esosM intsico op Bnfraiir ndildcee ienqp’sutlieatc ,lyoie tnp qytrurow ioivbiftuash.--



The l atter i s a trivial c onsequence o f pattern m atching, but was
shown b y Hofmann and S treicher t o b e u nprovable f rom the u sual

tisnihmeduHp CceltaiitfloyecrunoH lgp uoersfinnmo ecfoai unpCsnloe’esnf qosup rtrra oueloqictfutyi,aowls nitahssoyi wes[ 1mic n5opg]n.lot sheyarevdtaa mtinvoee rex otrveeencrseit nohtnelyai lnbv tyeaOnrisuainorytnato olf
version w ith e xtensional a xioms [ 22]. Our present w ork i s a h et-
erogeneous variant o f the t heory for w hich A ltenkirch c onstructed
a s etoid m odel. The c onsequent s implification a llows u s t o g ive a
direct s yntactic p resentation o f O TT, c alculating all the n ecessary
machinery f rom the s tructure o f the t ypes i nvolved.

In a n exciting parallel d evelopment, the n eed t o m anage e qua-
tional c onstraints for f unctional p rogramming w ith G eneralized Al-

ttgthehermebor suFa aigmc hweiD t thhaf elta aasv n ttyorouuptirce,tosunb ri uno etfoH  t e fyaqsp vuekaaellu dliteleyh sp,e[ ai 2nnsdd6r ue]e.ncsO ciunylugteri nc ds voyi oensrltvca einemosne h msx aw toesrhns eisocim hoinnec tetoo hrmfaincpS tgyuioo tsenf-
between its layers: w e h ave f ewer, m ore general c omponents, but
we n eed a m ore delicate t ouch.

2. A Simple Core T ype T heory

We shall start from a very basic type theory, then show how to equip
it with a notion of observational equality. W e should emphasize t hat
we intend this theory to act as a very simple core language, with

toifneyuwpvreeb  -ssaytleisngviatceatl cet thceoi acnmodrc poyi nulh tlvuaaestsintonir eano.nteLc h et iesheteru a aso rncbd fhisryt ehsro etve fam st uitiaonnnibivlmaeislraha slpetf  hspe,raeoa t uclatocrherhoe.s ue sI gynthnr p ei taqtaxrus ttio iirlcefluds h leaatt rsso,
and terms.

set S ::= G | B X : S. S | If T Then S Else S

bgironduenrd BG: : ::== 0Π| | 1  Σ|  |2 W



term T: :=||TT h  i!TS  | t||t   |f  isft ffT  T/| λ X| Xs .Sn:t dShT .e Tn|  |r T  ehce TlT ,sTe/iXT Σ.XS:S w.S it|hT T CWX:S.S T

edwemepelleWn-ntfesdo,uhe a nn1vdte eef laedu nmt f rciexetnieeostdn w hsr ie(hp a oλnes-dretteo 2 nrimoree dls eo)esm,fΣ   esseCn ftto-Wsfrox{  : d rSttm.eT,pefffer}ns ,:cdoa g emnrnodtuprs np iesdaties rb sa ei,nt sa cdhw neodriistchW e Π0  se f f ooo lrr-f
tnfriooodmnse  Tv sha[slaup]eet oc  fosr onumbsttrruS eec stao.nrdsIanw  f‘ hocerrhmiealdt l-hlyefy,uw nm cetais oyhnar ’lelf ad dfr iorloypmb t yer pei encua fnresrniroveedta.tp 2iooWnsi-es
Πsh-a allna dd Σo-pttyp thees,s r teasnpdaercdtia vbelbyr.eW vieata ilosnosw → ritea nλ dx× y.f tof ron roλ nx-d.λepye.ntda enndt

o−hcnwffforoorea, !nsT0 nnCs  sΣ, id,eohte,d a idmem dral f erealnppock t dodre ouinn ratn hoar lbiddg tyneep,sipthtoanrte f s enhtaur,nicn‘ tni mdtsh afici-aelatr tti ph.hnaisgopteeeniniecngr  rnsa’e-etsc eb  e tay luarv selngteierpasnwmeeitf ooee o totn hsenrafteentitf s 2 oosec s , oenrofo t-a trW vrwvsp T e:eaprh.sd llpuef ia eW roecnpodanb emet edoiln foh iuuidnnmaa nnegvcidnf nem tot eaiv ortb ye lainlietΠr mnhisiemgi.,ainbcniI p anaa nl retlcafo,ov aotjore arel rsrelermc,eiasftmuaaivw ol lbliielnniklytnt esgeho,t,
w2Mhiochree  fnosrumraelsl tyh,aw tew c eac nai nnt arlowduaycsed  arob pid tihreecsteioa nnanloa tapptioronasc,hb t uott t yhaptei csha ecs ktoinryg
or a nother t ime.
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in which case the abstraction is readily determined from the type
required. Despite the absence of set-valued functions, we shall still
see computation within types via ‘large’ conditionals on elements
of 2.

The operational semantics of computation is given b y structural



closure of the following schemes:

(λx. t) v t[v]
fst hs,ti s

sfnsdt hhss,,ttii ts
if tt/x.P thens nt deh lsse, tfi tt
if ff/x.P then t else f f

rec sCf/w.P with p p s f (λt. rec f t/w.P with p )

If tt Then T Else F T
If ff Then T Else F F

This system is just a fragment of many standard-issue type theo-
ries (Martin-Lo ¨f’s Intensional T ype Theory, the Calculus of Induc-
tive Constructions, L uo’s UTT, etc) all of which enjoy m etatheo-
retical properties such as confluence and strong normalisation. W e
are therefore entitled to presume the existence of an operator −⇓,
adreefint heedr eofon wee elnlt-ittylpeeddt ote prmressu, mtakei tnhge t ehxeimste ntoc evoa lfuea ns (oipne trhatiso rc−a se,

just the normal forms):

set S¯ ::= G | BX:S¯. S¯ | If¯N Then S¯ Else S¯

tneermutralN¯¯T:  :::==|NN X¯¯|¯| T  N¯h| i!f ¯|S stt t| N¯| i ff  f|N¯ s| /nλ XdX.¯NS¯.t T| ¯hr e| ecnh T¯NT¯¯,T¯/e iXlse| .S¯T¯T¯Cw iT¯thT¯
We say that normal terms are canonical if they are b uilt by

canonical constructors, i.e., hi, tt, ff, λ. ., h, i , C ; other normal
tcearnmosn iacrael c neountsrtarul.c tSoirms,ili a.rel.y,, tih,e t ,caf fn,oλ nic .a, l hse, tsi ,arCe th; e o gthreorunn dor smetasl
and those introduced b y the three set-binders: the neutral sets are
those given by large elimination on neutral elements of 2. As the
base case for neutral terms is the variable case, we can readily see
that there are no neutral terms in the empty context. Hence, in the



empty context, all normal forms are canonical, for b oth sets and
values: we call this property canonicity.

We specify definitional equality (≡) on terms by giving an
equiWvaele snpceec oifyn t hdeeifrin vitailouneasl. eUqnutiall istyecti( o≡n) 6 o, nwt heernm wseb iyntg roidvuincge aann
important modification, α-equivalence on values will suffice.

As usual, we take contexts to assign sets to variables:

Ctxt ::= E | Ctxt; X : S

We can now give the r ules of context validity, set f ormation and
type synthesis.

Ctxt‘

E‘ ΓΓ ;‘x:S Ss  ‘etx∈6 Γ

Ctxt‘  Ss et
Γ ‘G∈  G Γ‘ S s etΓ;x:S ‘T s etB∈ B

Γ‘ b : 2 Γ‘ T  setΓ‘ F s et

60

Ctxt‘  T: S



Γ ‘ s : S S ≡ T
Γ‘ Γ s:  ‘S s : ST ≡ T

Γ ‘ Γ ‘ Γ ‘
Γ‘ Γ‘  hi: 1 Γ‘ Γ‘  tt: 2 Γ‘ Γ‘  ff: 2

Γ;x:S‘ t : T ΓΓ ‘‘  hs s,t :i SΣx S: Γ.T‘ : Σt x ::T S[.sT ]

Γ ‘ sΓ : ‘ Ss CΓW ‘x: S f .T :fT : [W s]x→ :SW .T x:S.T

Γ ‘x:  T∈ Γ Γ‘ f : Γ Π ‘x: fS .sT : T Γ[s]‘ s : S

Γ‘Γ ‘ p : f sΣ tp x:: SS .T ΓΓ‘  ‘s np d :p Σ : xT :[Sfs.T tp ]
Γ ‘ z : 0 Γ ‘ b : 2 Γ ‘ t : P[tt]

Γ‘ P s et ΓΓ; ‘x : if 2b /‘ x.P P st ehtent Γ el‘ sef f : : P P [[ffb]]

Γ ‘ u : Wx :S. T Γ; w : Wx :S. T ‘ P set

Γ‘  p :(Γ ΠΠs‘ t::S Tr.eΠ [cs]u f./: P Tw[[.fPs]t ]→ w )i→ tW hp xP :: [SsP C.[ fuT]].
2.1 Examples, and a Problem

Although this is rather a small theory, lots of familiar constructions
can be expressed in terms of it. For example, the binary sum type,
S+T can b e coded as the pair of a tag choice and a suitable
element, whose type is computed from the tag b y large elimination.

S+T → Σb :2. If b Then S Else T
Si+nlT Ts →→ Σhttb,:s2i



iinnrl ts →→ hhfttf,,tsii

In much the same way, the natural numbers can be defined as
the well-founded structure with two shapes: the ‘successor’ shape
has one recursive position and the ‘zero’ shape has none.

Tr b → If b Then 1Else 0
TNra tb →→ IWf bb :T T2h. eTnr 1b

zNeraot →→ fWfCbλ:z2.. zT!rN bat
suzcer no →→ ftftCCλλz. . nz

To construct elements, we either indicate the ‘zero’ shape and
supply the trivial child-function, or we choose the ‘successor’ shape
and make the child-function return the p redecessor.

Operators such as addition can now be defined via the r ecursor:

plus → λx y. rec x with
λyb.. rife cb xthw enit hλf h. suc (h hi) else λf h. y

Although it is reassuring that we can implement specific famil-
iar operations, we run into trouble when we try to give a general
induction scheme for this coding of Nat. Suppose we have some
n :Nat ‘ P set. We should like to find

indP : P[zero] → (Πn :Nat. P[n] → P[suc n] ) →

ΠP[nz :e Nroa]t→. →P( [nΠ]n

but the ‘obvious’ program, following the same pattern as plus,

indP → λpz p s n. rec n with

λb. if bt henλ fh .p s( fh i)( hh i)e lseλ fh .p z
does not typecheck, and for the most infuriating of reasons.

In the ‘zero’ case, we must p rove P[ffCf], but the proof we
offer is p z : P[ffCλz. z!Nat] . That is, we are obliged to show
that P h olds for any implementation of ‘zero’, but w e only k now
that it holds for a specific implementation of ‘zero’. Similarly, in



the ‘successor’ case, we need a p roof of P[ttCf], but we supply a
proof of P[ttCλ . f hi], which is again a more specific thing.3

oThf iosf iPs [att rCeaλl .p froh bil]e,mw .h i Tchhei res aagrea innf ainm itoerley many cimt hpinlegm.enta-
tions of ‘zero’ . For example,

zero0 → ffCλz. suc (suc zero)

defines ‘zero’ to be ‘the number with no predecessors, all of which
are two’ ! The frustrating thing is that these distinctions cannot be
observed from within the theory. They are all extensionally equal.
In each case of indP, we can prove that the child-functions given
and required coincide on all inputs, so our program is typable in
ETTs. With observational e quality, we shall b e able to b ridge the
typing gaps explicitly, with coercions.

2.2 An Inductive-Recursive Universe

We can define our core theory as an inductive-recursive universe in
the intensional setting of A gda 2. Firstly, we must declare the type
constructors we shall need: 0 is the datatype with no constructors,

data Empty : Set where

1is the record type with no fields

record Unit : Set where

and 2 is the usual Boolean datatype

data Bool : Set where
tt : 2
ff : 2

Meanwhile, we can re-use the system’s own Π-sets, written

(x : S) → T x

we can define Σ-sets as records,



recfostrd: S  Σ( S: S et)(T: S → S et) : Setw here
snd : T fst

and give W-sets as a datatype.

data W (S : Set) (T : S → Set) : Set where
tCa W: ( (xS S: S S)e →t)( T(T: xS →→ S We tS) T :) S→et W  wh Se rTe

Now we can build the collection of these sets, simultaneously
defining a datatype to ‘name’ them and the function which decodes
names as sets

mutual
data ‘set’ : Set where

‘0’, ‘1’, ‘2’ : ‘set’
‘Π’, ‘Σ’, ‘W’ : (S : ‘set’) → (JSK → ‘set’) → ‘set’

WithJJJJJJJ‘‘‘‘‘‘t  0ΣKW21Πh‘’’Π’ K’KKi’:’s SS ’ ‘S s ,e‘ Te nTΣtT cK’K’oK,→ d‘=== = == iWn SW  gB ’U E Σ (,xe:o nmJ t w( :ioJ  StpSSJel tKSKyc :(  K( aλ‘ )nλsxxe→ r t→7 e’→7 a)J d→ TJ iJ lTyT x( x Jd Kx SKeK)f)Kin→ ea ‘ lsleo tu’)r→ c on‘ sstertu’ctors
and elimJ‘iWna’toS rs T oKf =ouW r co JSreK t( hλexor→7 y a JsT Tfux nKc)tions in Agda 2, either
invoking the coresponding Agda constructors, or implementing the
computational behaviour exactly as we h ave specified it. This gives
us a translation ˆ taking core sets t o elements of ‘set’ and core

3Addingη -laws forΠ a nd1 s olvest his p articular problem, but does not
help the general case.
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elements of a core set S to elements of JSˆK, p reserving both type
aenledm econtmspo uftaa tic oonrael be eth Savt oioue rl.e mTehnists ios t JhSe ,fip rsrte ssetrevpi ntgow baorthds ytphee
einlhemereintatnsco ef foa f csotrroengs e ento Srm toalie slaetmioenn tasn do fca JnSoK,ni pciretys efrrvoming gabn oetxhist tyinpge
intensional theory.

2.3 A Propositional Fragment

We shall shortly construct our p ropositional equality, but b efore
we do so, let us consider what constitutes a p roposition in this
setting. Of course, we could j ust identify p ropositions with sets,
but we p refer to be more precise: we want to k now that p roofs
have no interesting computational content. Correspondingly, we
shall identify a sublanguage of propositions, t hen explain how to
interpret t hem as sets of proofs.

P ::= ⊥ | > | P ∧ P | ∀ X : S. P

Let us b e clear that this is by no means the largest sublanguage of
content-free sets. Rather, it is the smallest such language fit for our
current purpose.

We i ntroduce a judgment form to distinguish the well-formed
propositions, and we show how the latter may be i nterpreted ad-
missibly as sets of proofs,

Ctxt‘  Pp rop ΓΓ ‘‘  dP Pp ers oept
Γ ‘Γ ⊥‘ p rop d⊥e→7  0

Γ ‘Γ >‘ p rop d>e→7  1



Γ‘ ΓP ‘ p ro Pp∧ Q Γ‘  proQ pp rop dP ∧Q e→7 Σ : dPe.d Qe

Γ‘  SΓ s‘ et ∀xΓ:;Sx.:P S p ‘roP pp ropd∀x:S.P e→7 Π x:S.d Pe
Propositional implication, P ⇒ Q, is coded as ∀ : dPe . Q. We

say Pthroatp oas itetiromn aisl aim pproliocfat iifo nit, iP nh ⇒abitQ s ,soi smc oe ddePde .
Tt ho asto amt ee remxt eisnat , tphroiso ifsj i ufsi tt winhinadboitws-s doremsesind Pg.e eW.e couldj ust have

worked with sets which happen to b e p ropositional. However, we
have an ulterior motive. Consider which observations on p roofs can
interfere with the world of non-propositional sets: > has no obser-
ivnatteiorfnesre; ebw oithth hpt rhoejew ctoiorldns ofrfo nmon a- pprrooopfos oifti Pon∧aQls aertse: p >ro hoafss; naopp olbysienrg-
av aptirooonfs; obfo ∀thx p :r Soje. Pcti oyinesldfrso am p arpoorof;o ofo nlfyP f∧roQm ar ecoprnotroafsdi;ca tipopnly cinang

awpe rmooakfoe f d ∀atxa!:
This has at least two useful consequences. Firstly, it allows u s

to erase all proof objects from run-time code: if we never compute
under λ, we shall never find a proof of ⊥, so proofs are j ust
duendade rcλ od,ew. eSecs ohnadlllyn , wveer may e axt epnrdoo tfheo flan⊥ g,uas ogep orfo op frsooa frse wj uitsht
whatever p ropositional laws we like, as long as they are consistent,
and yet r etain canonicity.

We can also express t his propositional fragment as an inductive-
recursive universe in Agda, this time decoding into our ‘set’ u ni-
verse rather than the native Set, exactly following the r ules above.

mutual
data ‘prop’ : Set where

‘⊥’, ‘>’ : ‘prop’
‘‘⊥∧’’ ,: ‘> >p’ro :p‘ p’ →rop ‘’prop’ → ‘ prop’

d e‘∀: ’ ‘ :pr( oSp: ’‘  →set ‘s’)et→ ’( JSK→ ‘ prop’)→ ‘ prop’
·d d· e·‘



3. Equality, Coercion and Laziness
In this section, we shall try to implement the operation which
transports values between equal sets. As we do so, we shall find
out what the necessary consequences of set equality should be, and
that will tell us how set equality should be defined! Let us introduce
new operators for set equality and coercion, by recursion on sets,

Γ ‘ΓS ‘  sS et= T Γ‘  proT p set Γ‘  ΓQ‘  :d  sS [Q= :ST e=TΓi :‘ T s : S

together with their value-level counterparts, which we shall define
in the next section.

Γ ‘ s : S Γ ‘ t : T
Γ‘ Γ ‘ (s s :S  :)S = Γ( t‘ : T t ) :p T rop

Γ ‘ {sk  QΓ:S‘ =Q T: }d : Sd ( =sT:   Se)= Γ( ‘ s[ Qs :: SS =Ti: T )e

As you can see, coercion apparently introduces a new way for
proofs t o interfere with data. However, we shall define coercion re-
cursively in terms of the existing operations on proofs, thus retain-
ing b oth the erasability of p ropositions and, crucially, our freedom
to add consistent laws.

As the sets inhabited by canonical values are themselves canon-
ical, it is sufficient to explain how to compute a coercion between
any two canonical sets, given a prooft hat they are equal. Let us deal
with the easy cases first: at identical ground types, there is nothing
to do!

z [Q: 0=0 i→ z
uz [[QQ:: 10==10 ii →→ uz
ub [[QQ:: 21==21 ii →→ bu

Correspondingly, we may take



0 = 0 → >
10 == 10 →→ >>
21 == 21 →→ >>

The h ard work will come when explaining what to do with types
made with the same binder. Even harder are the off-diagonal cases,
so we shall have to r ule them out.

fp00[[QQ:: Σ Πxx00::SS00.. T T00==ΠΣxx11::SS11..T T 11 ii →→7 7??
(s0Cf0) [Q: Wx0 : S0. T0=Wx1 :S1. T1 ii →→ ??

x [Q: S=T ii →→ ?Q!T otherwise

(Πx0 :S0. T0) = (Πx1 : S1. T1) → ?
(Σx0 :S0. T0) = (Σx1 : S1. T1)) →→ ??

(Wx0 :S0. T0) = (Wx1 : S1. T1)) →→ ??
S = T →→ ⊥? for other canonical sets

We must fill i n those ?s. Let us start with Σ-types, as tuples are
relatively mundane, compared to functions or well-founded trees.
We must solve

. . . ; Q : (Σx0 :S0. T0) = (Σx1 : S1. T1);
p0 : Σx0 : S0. T0

‘ ? : Σx1 : S1. T1

Let us work b y refinement, following the trail left by the types.
Some moves are clear. Let us name the input’s projections for
convenient access, then construct the output componentwise. We
use an informal let notation for ‘definitions’ to b e substituted out
in the final term. This notation is not p art of our theory, but makes
our terms a bit more legible.

let
s0 → fst p 0 : S0
t0 →→ fssntdp p 0 : T0 [s0]
s1 →→ s?n n:d S p1



inh t1s17→,t1?i  :T 1[s1]
62

Now, the only way we can make an output equal to the input
is i f the output components are equal to the input components. We
must make s1 by coercing s0 and t1by coercing t0. We get

let
Fs0 → fst p 0 : S0

FQtS0→7→7? s n :d dSp 00:=T S 01[se0]
s1 →→7 →s0? [Q : dSS:S0 = S1ei : S1
QT→7 →→s ? : dT0[s0] = iT:1 [ sS1] e

inh ts11→7,t1t i0[QT:T0[s0]=T1[s1]i: T 1[s1]
It remains to find p roofs of the equations which justify the

coercions. These concern the components of the Σ-types, and must
surely b e extracted f rom Q. W e shall clearly need Q to tell us that
S0 = S1. However, in the case of QT, we are obliged to show
that the s0 instance of T0 equals the s1 instance of T1, where s0

and s1 are unknown when Q’s type is b eing determined. It is too
much to require that arbitrary instances of T0 and T1 are equal—
that would force us to remove any meaningful dependency. W e
can, however require T0 and T1 to coincide whenever they are
instantiated equally, for s1 is a coercion of Fs0, h ence equal b y
coherence.

Let us therefore take

(Σx0 : S0. T0) = (Σx1 : S1. T1) →

S0 = S1 ∧



∀x0 : S0 . ∧∀x1 :S1. (x0 : S0) = (x1: S1) ⇒ T0 [x0] = T1[x1]

so that we can h ave

QS → fst Q
QT →→ f(sstnQd Q) s0 s1 {s0 k QS:S0 = S1}

completing the case for Σ-types.
For Π-types, we can expect a little contravariant twist. W e need

to coerce the argument s1 right-to-left, so that we can apply the
function f0, then coerce the result left-to-right. Working in the same
style, we have

. . . ; Q : (Πx0 : S0. T0) = (Πx1 : S1. T1);
f0 : Πx0 :S0. T0

‘ λs1 . let
FQS → ? : dS1 = S0e
s0 → s→1 [? Q :Sd :SS1 =S0i : S0
t0 →→ fs0 s0 : T0 [s0]
QT→7 →→f ? : dT0[s0] = T1[s1] e
t1 →→7 →t0? [ Q: dTT:T0[s0] =T1[s1]]e i : T1[s1]

in t1
: Πx1 : S1. T1

Correspondingly, we should take

(Πx0 :S0. T0) = (Πx1 :S1. T1) →

S1 = S0 ∧
∀x1 :S1. ∧∀x0 :S0. (x1: S1) = (x0 : S0) ⇒ T0 [x0] = T1[x1]

QS → fst Q
QT →→ f(sstnQd Q) s1 s0 {s1 k QS:S1 =S0}

In the case of W types, we shall need a recursive coercion,
shifting shapes and child-functions left-to-right: for the latter, we



shall need to shift child-positions right-to-left, and the r esulting
child-trees left-to-right recursively. Perhaps you can already guess
that we shall take

(Wx0 :S0. T0) = (Wx1 : S1. T1) →

S0 = S1 ∧
∀x0 : S0 . ∧∀x1 :S1. (x0 : S0) = (x1: S1) ⇒ T1[x1] = T0 [x0]

The coercion can then b e defined recursively as follows:

(s0Cf0) [Q:Wx0 :S0. T0 =Wx1 : S1. T1i →

let
QS → fst Q : dS0 = S1e
s1 →→7 →sf 0s [tQQ S:: Sd 0S = S1i : Se1

in sQ1TC7λ→t1( .sl inentdf Q  t00)t→07s 0[Qt s1:1W[{QsxT00k:T:SQ 10[.Ss1T :S]0=0==TW0S[x1s}01]:i: Sd : 1TT .10T [[s1s1i0]]= T 0[s0]e
We h ave completed the first stage of ourj ourney. What we have

produced may look complex and detailed, but there was relatively
little choice at any point. The structure of the types determined
the structure of the coercions between them. This delivered in turn
the requirements which determined what set equality should be:
impossible off the diagonal; trivial at ground types; for binders,
equal domains and equal range instances for equal domain values,
twisted according to variance.

3.1 Value Equality

We must now explain when values are equal. The idea is that
values should b e equal when they support equal observations. For
those sets equipped with inductive eliminators (0, 2, W-sets), this
amounts to equality of construction. For those equipped only w ith
projective eliminators (1, Σ, Π), we are free to require only that
projections coincide.



(z0 : 0) = (z1 : 0) → >
(u0 : 1) = (u1 : 1) → >
(tt : 2) = (tt : 2) → >
((tttt :: 22)) == ((tfft :: 22)) →→ ⊥>
((tfft :: 22)) == ((fttf :: 22)) →→ ⊥⊥
((ffff :: 22)) == ((tfft :: 22)) →→ >⊥

(f0 : Πx0 :S0. T0) = (f1 : Πx1 : S1. T1) →
∀x0 : S0. ∀x1 : S1. (x0 : S0) = (x→17 →: S1) ⇒

(f0 x0. ∀: xT0[x0]) = (f1x1 : T1[x1])

(p0 : Σx0 : S0. T0) = (p1 : Σx1 : S1. T1) →

(fst p 0 : S0) = (fst p 1 : S1) ∧
(snd p 0 : T0 [fst p 0]) = (snd) p 1 : T1[fst p 1])

(s0Cf0 : Wx0 :S0. T0) = (s1Cf1 : Wx1 :S1. T1) →

(s0 : S0) = (s1 : S1) ∧
∀y0 :T0[s0] . ∀y1 :T1[)s∧ 1] . (y0 : T0[s0]) = (y1 : T1[s0]) ⇒

(f0 y0 : W]. ∀xy0 : S0.T 0) = (f1y1 : Wx1 : S1.T 1)
(: T0) = (: T1) → ⊥

T0, T1other cano7→nic ⊥al sets

As you can see, two functions are equal if they take equal i nputs
to equal outputs; two pairs are equal if they have equal projections.
Meanwhile, as the eliminators for 2 and W allow us to observe
the construction of their contents, equality for elements of these
types is equality of construction. Note that this definition of value
equality p reserves set equality: if we k now that the values on the
left inhabit equal sets, then we know that e very equation on the
right relates values in equal sets.

What can impede the computation of = for values? Only the
presence of a neutral set, or of a neutral value in 2 or a W-set.

We have shown how to construct equations between sets and
how these equations, if provable, yield coercions. We h ave also



shown how to construct observational j ustifications for the equality
of terms. This does not complete our presentation of OTT. We shall
need to add more introduction r ules for equations which are not
directly observational. However, we have now given all of OTT’s
computation schemes. Whatever we add will not change the com-
putational b ehaviour of the system, only enlarge the collection of
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provable equations. Correspondingly, it is a good time to consider
the metatheoretical properties of these computation schemes.

3.2 Modelling Equality and Coercion y ields Normalisation

The definition of equality and coercion, given above, is entirely
representable in our Agda model. We show how our universe can
readily be equipped with equality and coercion by d efinitional ex-
tension. Moreover, we ensure that all the computation schemes are
faithfully simulated. By this means, we shall be able to demonstrate
that OTT is strongly normalising. W e define

mutual
Eq : ‘set’ → ‘set’ → ‘prop’
·E E· q·

eq : (S : ‘set’) → JSK → (T : ‘set’) → JTK → ‘prop’
·e ·q q·

with opeeqra: t( ioSna: l bseeth’)av→ iouJ rS dKe l→ive( rTing : e‘sxeatc’)tly → th JeT aKb→ ove‘ pcroomp’puta-
tion schemes. These functions cover all the canonical sets and val-
ues from our core theory: they introduce no ‘new’ propositions.

Of course, we must be sure that these programs terminate. The
contravariant t wists we used to keep coercion simple mean that our
recursion is not directly structural: although we appeal to recursion



on smaller elements of ‘set’, we swap the argument positions in
which they appear. We shall address this issue shortly.

Once we know what equality is, we may introduce coercion and
coherence as a mutual definition:

mutual
coe : (S : ‘set’) (T : ‘set’) → JdEq S TeK → JSK → JTK
ccooee ‘:0( ’ S‘0: ’ Q‘se tz’ (=T :z
ccooee ‘:0( ’ S‘ S1: ’ Q‘se tz’ (=T Q:  ‘!s Uent’i)t
.....
coe (‘W’ S0 T0) (‘W’ S1 T1) Q (s0Cf0) = · · ·

coh : (S : ‘set’)(T : ‘set’) (Q : JdEq S Te K)(s : JSK) →

(eqS S: ss eTt’ )((cToe: S ‘s eTt ’Q)( sQ)
ccoohh S: ( TS Q : ‘ sse ’=) T?

The definition of coercion follows the same twisted recursion
scheme on the names of t ypes, combined lexicographically with
structural r ecursion on trees in W-types, when required. Corre-
spondingly, the computation schemes for coercion are faithfully
simulated by the embedding. We shall keep you in suspense about
the definition of coherence a little while longer.

LEMMA 1 (Strong N ormalisation). OTT is strongly normalising.

PROOF SKETCH Our approach to strong normalisation is to simu-
late the reduction b ehaviour of OTT within a strongly normalising
intensional type theory. We proceed i n two steps.

Firstly, we must account for the non-structual twisting in con-
travariant positions. There are advanced ways to do this [2], but the
basic, clumsy way is to define the equality in the model without
twists and close the simulating set modelling each OTT equation
under symmetry. If we do this, we must extend the model of co-



ercion to give us b oth directions at once, and switch direction in
contravariant p ositions. By doing so, we acquire a model in the
system of inductive-recursive definitions proposed by Dybjer and
Setzer [9]. Although this system has a set-theoretic model and is
widely suspected to be normalising, we cannot consider the job
done.

Correspondingly, the second step i s to code the induction-
recursion within a standard type theory such as Luo’s UTT [17]
or the Calculus of Inductive Constructions [28]. The u sual coding
trick, discovered independently by Capretta, McBride and doubt-
less others, is to turn the decoding function into an index. Where

Agda allows us

data ‘set’ : Set . . . JK : ‘set’ → Set

we may insteadd arteaso‘ rste tto’ a:n S ientd .ex..ed J-faK m: ‘i slye,t ’g→ ivenS ae tlarger universe

Heat’sC: o Sdete : .S.e tJ → Type

and rearrange our constructions accordingly,

‘set’ = ΣS : Set. HasCode S JK = fst

We may define the operations, all as a packJaKg e= , uf ssitng j ust the
standard eliminator for structural recursion on JHaK s= Cof dste. ?

4. Canonicity from Consistency

We are now in a position to investigate the issue of canonicity for
OTT. By adding coercion, we introduced a new way for proofs of
propositions to interact with calculations on data, so we must check
that coercion never ‘gums up the works’. Our careful separation of
propositions from sets allows us to proceed in two stages: first, we
check that logical contradiction is the only possible source of non-
canonical data; then, we check that our p roof-language is free of
such contradictions.



LEMMA 2 (Canonicity from Consistency). Suppose OTT is con-
sistent, i.e. that there is no s such that E ‘ s : 0 . Then, for all
nsoisrtmenatl, Si.e .ant dha st,

• if E ‘ S set then S is canonical;
• if E ‘‘ s : eSt th theenn eS ith iesrc s niso ncaicnaol;nical, or s is a p roof.

PROOF We proceed by mutual induction on the normal forms S
and s. Clearly we need only consider how to rule out neutral sets
and values. We have three forms of neutral set:

• E ‘ If b Then T Else F set This must follow from some
EE ‘‘ bf b: T2;h heonwT eveE rl,s e2 Fis nseott a p roposition, so inductively, b
mEu‘ st b  be :tt o;rh fof,w heevnecre, 2ou isr snoett ca om propuptoessi ifournt,hes or, icnodnutcrtaidviecltyin,bg
the h ypothesis that it is in normal form.

• E ‘ dS0 = S1e set This must follow from E ‘ S0 set
aEnd‘ ‘E ‘S S1 set.e In sedtuctivTehliys, m S0u sant dfo Sllo1 warf er ocamno Enic‘ al ,S so the
eanqduaE tio‘ n c Somputes further.

• E ‘ d(s0 : S0) = (s1 : S1)e set Inductively, the two sets
mEu‘ st bd(es canonical. Moreover),e eifs eSti is 2 or a W-set, then si is
also canonical. Hence the equation computes further.

Meanwhile, for the values, the result holds for

• canonical term-formers, directly;

• variables, vacuously, because the context is empty;

• z!S, b y our assumption of consistency;

• if b/x.P then t else f, because b : 2 must be canonical,
inductively, hence the conditional computes;

• rec w/x.P with p , because w : Wx : S. T must be canonical,
inductively, hence the recursor computes;

• f a, because, inductively, f must b e either

λx. t, contradicting normality of f a, or



a proof, in which case so is f a;

• fst p and snd p , by the same argument—these must b e proofs
because, inductively, p must be a proof;

• {s k Q:S =T}, because this is a p roof;

• s [Q:S =Ti, because inductively, S and T are canonical which
iss Qen:Sou=ghT ito, bmecaakeus ethi en dcuocetricvieolyn c Som anpdu tTe,a erex cceapnot innic tahle w chaicseh

where they are both W-sets, in which case we also need the
inductive hypothesis that s is canonical. ?
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The impact of this lemma is significant: it tells us that we can
add introduction rules for any p ropositions we like, provided that
they are consistent, without threatening either normalisation (be-
cause they do not compute) or canonicity (because this is ensured
by consistency). Our hard work in designing this coercion mecha-
nism to ensure the t ransportation of canonical values between equal
types has bought us the freedom t o design the propositional frag-
ment of OTT for our convenience, within reason.

4.1 Laws for Equality

Which equational laws shall we have? W e should certainly like to
recover refl and subst, so let us have

Γ ‘ s : S
Γ‘ s :S :Γd ‘( s: s S : )S = ( s: S )e

Γ ‘ S set Γ; x :S ‘ T set
Γ ‘ Rx:S.T Γ‘ : d S∀ ys :eSt. ∀zΓ:;xS:.S ‘T s et

y(y: S: .S∀ ) =:S (.z : S) ⇒ T[y] = T[z] e



The former is j ust reflexivity for values. The latter asserts that
any set abstracting a value must preserve the value equality—any
such abstracted set thus induces a substitution operator for values.

subst[x :S. T] → λy z q t. t [(Rx :S. T) y z q:T[y] =T[z] i
→: λΠyy :z S q. tΠ. zt :[ (SR.

d(y : S) = (z : S)e → T[y] → T[z]

Note that we can now form

subst[x:S. T] s s (s:S) : T[s] → T[s]

but that the computational behaviour of this is not uniformly the
identity: it depends on the structure of T, and the value b eing
transported. In p articular,

subst[x:2. If x Then T Else F] b b (b:2) t

is bound to get stuck if b is neutral, because we can only coerce
between canonical types. Altenkirch’s extensional model construc-
tion [4] also had this issue, losing some computational properties
of I TTs to gain some reasoning properties from ETTs. This is a big
issue: the vanishing of trivial substs is what gives elaborated E pi-
gram programs their expected computational b ehaviour [20, 12].
Fortunately, as you shall see later, we can recover this intensional
behaviour without further adjusting our notion of evaluation.

Of course, coherence is enough to tell us that trivial substs are
provably equal to the identity. We h ave not yet defined coherence,
but as it is a propositional law, we do not need to. Let us leave our
coherence operator without computational behaviour!

We should like our equalities t o be equivalences. We have re-
flexivity for values; for sets, we can take



S → (Rx: 1. S) hi hi hi : S = S

We could derive symmetry and transitivity directly if our theory
was rich enough to support abstraction over sets, but even with
the restricted theory of this paper, it is enough to add t hat equality
respects equality, i.e.

ΓΓ ‘ ‘ PP  : k dA Q=:  d  CdAe =ΓB ‘ e =Q d : Cd B= = D eD ee

and similarly for values, although we must be careful to consider
only equations on values between equal sets

Γ ‘ P : dA = Ce Γ ‘ Q : dB = De
ΓΓ ‘‘ p P: d d(Aa A: =A)C =e (c : C)e ΓΓ ‘‘ q Q: d d(bB B: B=) D=e (d : D)e

Γ ‘Γ ‘ P, pp: k  d Q(a,:qA :)d  =d(a (c::AC))= e (bΓ:B‘ )q e: =  dd ((bc::BC))=  =( ( dd::DD))eee

Now, if Q : X = Y, then we can derive symmetry

Q‘ → X [Q k X : dX = Xe = dY = Xei : dY = Xe

and if, further, Q0 : Y = Z, then we can derive transitivity

Q◦Q0 → Q [X k Q0: dX = Ye = dX = Zei : dX = Ze

with similar constructions serving for equal values in equal sets.
Further, we should like every syntactic construct to respect the

observational equality, m aking equal objects from equal subob-
jects. These laws already hold within OTT for each syntactic con-
struct of our b ase theory, and we have j ust added that equality re-
spects equality. W e can easily use coherence to p rove that coercion
respects equality. This leaves u s only with the need to prove that all
of our propositional laws respect equality. W e can get this in one go
by adding a proof-irrelevance law: “equal propositions have equal



proofs”.

ΓIr ‘rQ  Po :p dr∀op0p:dΓP0‘ e.  P∀p11p:droPp1e.Γ( p‘ 0:Q P0: )d  =P0( pe1= :Pd 1P)e1e

Now, it is the case that many of our laws can b e implemented
by ‘generic p rogramming’ in our A gda embedding, where we have
access to r ecursion over ‘set’. Certainly, Irr holds b y induction on
the structure of propositions. However, it is also clear that not all
such laws can be provable in Agda: we r epresent OTT functions
by Agda functions, but extensionality holds in OTT. To see this,
suppose FG : d∀x : S. (f x : T[x]) = (g x : T[x])e , and observe

λ:x dy (fx y:  Π.F xG:S. x T◦ [xs ]n)d= ( g (:gΠx :Π :Sx.:T S[.xT ][)xx ])y ex y
Extensionality does not hold in Agda, although it is consistent

to assume it. Fortunately for us, our Agda embedding delivers all
the computational b ehaviour of OTT without any need to derive all
these laws. Coercion never looks at the p roof, so why should we
trouble to compute it?

4.2 Consistency from the E xtensional Theory

There is nothing to stop u s embedding OTT into an extensional
type theory. The obvious way to achieve this is to embed our
existing intensional translation into the corresponding extensional
type theory. The latter may have poor computational properties, but
it is at least consistent, so we can prove consistency of OTTj ust by
finishing our homework: we must derive our propositional laws in
the extensional setting.

Let u s write ≡A for the built-in p ropositional equality of the
exteLnestiou nsa lw trhiteeor≡ y, which coincides with the definitional equality
by the conversion rule in one direction, and the equality r eflection
rule i n the other. The key fact i s this:



LEMMA 3 (Equality Interchange). For all S0, S1 : ‘set’,

JdS0 = S1eK ⇔ S0 ≡‘set’ S1

Moreover, if S0 ≡ ‘sJedtS’ S1, thenef Ko ⇔r ⇔aSl l s0 : S0 and s1 : S1,

Jd(s0 : S0) = (s1 : S1)eK ⇔ s0 ≡JS0K s1

PROOF NoteJd t(hsat we are using equ)aleiKty⇔ ⇔ refs lectioJSn even to state this
fact—the value level equation is only homogeneous because we
have a proof that the sets coincide, hence their interpretations are
definitionally equal.

We proceed b y the usual variance-twisted induction on S0 and
S1. The off-diagonal cases are trivial, as are the cases for equal
ground sets.
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For ‘Π’, we must show

JdS1∀=x1S :0S1∧.∀ x0:S0.( x1:S1)= ( x0:S0)⇒ T 0x0=T 1x1eK
S⇔∀

‘Π’⇔ ⇔S0 T0 ≡‘set’ ‘Π’ S1 T1

Going right-to-left, injectivity of constructors allows us to identify

hSy0po≡th‘seets’isSf o1ran thdeh d oenmcaeinT 0 set≡s,JwS 0eK→ m‘aseyt’d eTd1u.cU esJ idnSg1o =urS i n0deuKc;tf iovre
thhyep ortahngeseis, w foer c thane tdaokme xin1 ≡etsJS,w 0K x→ m0‘ byet’yd tehdeu cined JudcStive hypoetKh;ef soirs
fhoyrp dotohmeasiisn ovarl uthees d(onmotianign ts≡hetaJst,S t whKee d moamyadi nesd uhcaeveJ d bSeen identeiKfi;ef do)r,
hence we h ave T0 x0 ≡‘set’ ST1K x1, so, by the r ange inductive
hypothesis, we have J dT0≡ x0 = T1 x1e K .



Loethfet-stios-,riw gheth , aovuer JindTductive hypotheesKi.s for domain sets immedi-
ahtyeplyo hideesnisti,f iwese thhavemeJ. dTTo deduce that TeK0. ≡JS0K→‘set’ T1, we may
appeal to extensionality and show

(x : S0) → T0 x ≡‘set’ T1 x

our domain value hypothesis tells us that J d(x : S1) = (x : S0)e K,
hoeurncd eo mwaei nmv aayl ede hdyupcoet hJe edsTi0s exl s=u Tt h1 txJe dK,( xr:eaSdy for the ra)negKe,

hhoeyunprocd teohmew seaisin.m
cOen wthee mv aalyue dleedveucl, ewJ itdhT domain and xr aenKg,er ieaddenytif foierd,t hwee amnugset

show

Jd∀x0:S.(∀ fx01x:S0.: T( xx 00:S))= = ( f( x11x:1S:)T ⇒ x 1)eK
∀⇔x

f0 ≡(x:S)→T f1

Right-to-left, introducing the h ypotheses allows us to identify
x0 ≡S x1, yielding f0 x0 ≡T x0 f1x1, ready for the range value
hyp≡othesis to complete the d≡erivation. Left to right, we again appeal
to extensionality, j ust as we did with the range sets.

For ‘Σ’ and ‘W’ the proofs on the set-level go j ust as they do
for ‘Π’. On the value-level, pairs are treated componentwise and
trees require a further induction. The crux remains that whenever
we have a hypothetical equation on two values, we always know
their sets are equal, so our inductive hypotheses allow us to identify
them. ?

THEOREM 4 (Consistency). There is no s such that E ‘ s : 0.

PROOF Inspecting our propositional laws, we have maintained the
property that values are equated only when they inhabit provably



equal sets. We may therefore appeal to the equality interchange
lemma to derive these laws in our extensional model from their
counterparts with = replaced b y ≡. All these laws hold trivially
cino uexntteernpsaiortnsawl ittyhpe= =thr eeoprlya.c eCdo brreys≡ po.nA dilnlgt hlye, every sch looseldd rteivrmia liny
OTT induces a closed term in ETT inhabiting the corresponding
set. As ETT is consistent, no closed OTT term can inhabit 0. ?

COROLLARY 5 (Canonicity). IfE ‘ S set then S is canonical. I f
E ‘ s : S then5 5s( iCs enitohneirc itcyan).oI nfiEc a‘ l ‘oSr Sas s eptrot ohfe.

A more arduous but arguably more satisfying p roof would be
to complete the missing derivations of the p ropositional laws in
an intensional theory, consistently extended with axioms for “ex-
tensional concepts”, as proposed by Hofmann [13]. Such exten-
sions give the strength of the extensional theory, whilst retaining
the checkability of constructions. W . Swierstra has done most of
the work r equired, for a m inor variation of the theory presented
here: his construction leaves only r eflexivity unfinished, and that is
where the appeal t o extensionality is required.

5. Induction for Natural Numbers

Let us now put observational equality to work, implementing the
induction p rinciple for natural numbers defined via W-sets:

indP:PΠ n[ze:Nroa]t→ . P[( nΠ]n:Nat.P [n]→ P [sucn ])→
Recall that the problem was to show that the p roof of P given

for the standard implementation of a number is good for any imple-
mentation of that number. We are now ready to solve this problem.

indP →

λpz p s n. rec n with



λb.i ef lbset h λefn hλ .fp zh .[ p? [s:?P:( P[fz[eh surio)c](  (=hfPh h i[if))f]C=fP][ittCf]i
To fill the holes, we can appeal to Rx :P[x] and then provide the

requisite proofs that the numbers coincide: it is trivial to show that
they have the same shape, but the child-functions are equal only up
to observation:

hhi, λx y q. (f :1→ N at) hi y hii
i:, ( λsxucy ( qf. h(if) : :1 N→ at N) a=t )(t htiCy f h :i iNat)

h hi , λx y q. x! d(x!Nat : Nat) = (f y : Nat)e i
i:, (λ zxery o q: Nx !adt()x =!N (aftfC :fN :a tN)a =t)

So, coercion via proofs based on extensional reasoning repairs
the derivation of the induction principle, without loss of canonicity:
2+2 is certainly a successor. We can play the same game with other
inductive sets: related work on containers [1] shows how to encode
a wide variety of structures as W-sets in an extensional setting. We
may now import all those constructions, wholesale, acquiring at
least the inductive families accepted b y Luo’s schema, as used in
Epigram [10, 17].

This is progress, b ut, of course we want more! We want the
usual computational behaviour as well, on open terms. Unfortu-
nately

indP pz p s zero → p z [ · · · :P[zero] = P[zero] i
indP pz p s (zseruco →n7) p →z

ps znp s(i(n dsuPc pz p s n) [ · · · :P[suc n] = P[suc n] i

If we are lucky, P will have a form which allows these coercions
to compute, but in general, they get stuck, even though the source
and target are d efinitionally equal sets.

Notice, of course, that this is not an inherent problem with the
observational approach, j ust with the computational behaviour of
higher-order encodings of data. If we add first-order presentations
of datatypes to our theory, they b ehave as they always did.



Even with the higher-order encodings, the fact that we lose
the computation rules because of coercions which a computer can
tell are u nnecessary is somewhat ironic. Let us see how to use
computers t o solve this problem!

6. Type-Directed Quotation

So far, our definitional equality has b een the most b asic available—
α-equivalence of β-normal forms. We can do better, b y post-
processing our β-normal values in a type-directed way. In the
literature of normalisation by evaluation, this process is usually
called ‘quotation’, as it is usually the means b y which semantically-

itnreenorpmr armWesk asel naennd os tedweeftd nisrne,e vs c⇓ ae omlΓtnuuNase ttsusruaa  vq lrclateuylionu rtr geeienisfcg, tiuhe ⇓erdn sΓies  vseuyenttnrw o ta qlpahuces oitcreictahtiatsni.t loghlT yne .snhy,eei S usnethr⇑ ao aΓlpbvt eiter,q ram⇑ tuiooΓstnSia snsgp q n euv eroauftloiutnrreamgsl
nηo-ermxpaaln sseiotsn,, ⇓much in style of Abel et al. [3]. Moreover, they detect
the presence of propositional types and mark the corresponding
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proofs with a b ox. W e shall also make ⇓Γeliminate stuck coercions
bperotwoefsen w eithqua abl osext.s.W

Definitional equality, ≡, for sets and for values in a set now
becoDmefeisn tαio?n-aelqu eqivuaalleintyc,e≡ o,f fqouros teedts n anodrmf aolr rfv oramlues,s wi nrita tes ne ≡α? .
Tbhecaot mise,s w αe? id-eeqnutiifvya eqnucoetao tfionq su u p dton o rermnaalmf inogrm osf, wvarriitatebnles≡ and
the equivalence of arbitrary boxed proofs. We now have p roof
irrelevant propositions.

Quotation for normal values performs η-expansion where possi-
ble, pushes through constructors, marks inhabitants of 0 and proofs
of neutral p ropositions (i.e., unexpanded equations). The remaining
terms are necessarily neutral inhabitants of datatypes 2, W-sets or



some If b Then T Else F, so we change direction.

10⇑⇑ΓΓzz →→h zi
12⇑⇑Γtt →→ htti
22⇑⇑Γff → tfft

Πx:S. T2 ⇑⇑Γf →→ fλfx. (T ⇑Γ;x:  Sf x)

WΣxx::dSSN..TTT  e⇑⇑ ⇑  ⇑ΓΓΓΓnppsCf→7777 →→→ hn  (Sp S0⇑  ⇑iΓΓf⇓ fss)ΓtCp n(,T7 T →[[sfn s]t→ 0p :]W , ⇑ o xΓth:sSnedr.wpT  iis⇑ eΓf)
For neutral terms, we follow the typing rules

⇓Γ;x:  S;Γ0 x → x : S

⇓Γif b/x.Pt hent ⇓e Γlsze!f S7 →7 →z ! ⇑ΓS: S
if 2 ⇑Γb/x. ⇑Γ;x⇓ 2 :PΓft  hse→ 7nP iff [0tt⇓ (]ΓS⇑ f⇑ Γ→7 Γtes f l)s0e: :T P Π [[sxff]]:S⇑ .ΓT f: P [b]

⇓Γ fstp → ffst⇓  p0 : 7→S
i ffs t⇓p Γp → p 0 : Σx:S. T

⇓Γsnd p → sfn⇓d p0p : →T[f pstp ]
isf ⇓dΓp p → p 0 : Σx:S. T

⇓Γ rec u/w.P with p → rec u0p/7w →. ⇑pΓ;w :WxS : . TP
r weicthu Π/ w··.· ⇑⇑ Γp

ifw i⇓thΓΠu → u ⇑0 : Wx:S. T

where you can recover the missing type of the r ecursive method
from the typing rule for rec w ith . However, the real excitement is
in the quotation of neutral coercions.



⇓Γ s [Q:S=Ti → T ⇑Γs : T
i→f ⇑ TΓ ⇑S ≡α? ⇑ΓT

→oth (erSw ⇑isΓes)[ Q : (⇑ΓS)=(⇑ΓT)i: T
This procedure eliminates stuck coercions between equal sets,

solving our problem, but does it make sense? The crucial point is
that ifour coercion is stuck and the sets are equal, s must be neutral:
if s were canonical, then S would b e canonical and T would be
equal to it, hence the coercion would reduce.

Quotation for sets is straightforward:

⇑Γ G → G ground sets
⇑Γ Bx:⇑S. TG → GBx: (⇑Γ S). (⇑Γ;x: S T) binder sets

⇑:SΓ. NT →→⇓B Γ xN:

⇓Γ⇓IΓfd b(s Th:Se⇓)nΓ = TdS ( Etl =:sTe T)F ee →7 →7→7  I dd f((( S⇑2Γ⇑ ⇑ SΓΓ)sb= : )⇑( T Γ⇑hSΓe)Tn= )( e⇑( ΓTT⇑ )ΓE tlse: ⇑( Γ⇑TΓ)Fe)
What is r emarkable about this is that we did not have to change

evaluation, j ust our equivalence on values. In particular, our dele-
tion of coercions happens only within the equational theory of neu-
tral terms. Of course, we had better check that

LEMMA 6 (Coercion Elimination).

S ≡ T implies s [Q:S=Ti ≡ s : T

even when the coercion is not stuck.

PROOF By induction on the quoted normal forms of S and T. For
ground sets, this is exactly the computational behaviour of coer-
cion. For neutral sets, quotation erases the coercion. The interest
lies in binder sets.



If Bx : S0. T0 ≡α? Bx : S1. T1 then S0 ≡α? S1 and T0 ≡α?

T1. Recall that in ≡each case, the coercion op≡erates b y coerci≡ng a
domain component s [fst Q:Si = Sji with i,j b eing 0, 1or 1, 0,
according to variance. As SS0 ≡α? iSw1 , twhe i ,hjav bee iinngdu0 c,t1iveo lyr 1th,0at,
s [fst Q:Si = Sj i ≡ s, and h≡ence that Ti [s [fst Q:Si =Sji] ≡

Tj [s] for either twiis≡t ings . ,Ta hned lah tetenrc geut ahraatn Ttees inductively thait] ]th≡ e
coercion of the range component disappears. Hence the action
of coercion between equal sets is at worst η-expansion, which
certainly falls within our new equivalence. ?

The effect of this extension of definitional equality is thus to re-
cover the lost computational behavour of intensional type theories.
Substitution by reflexivity is equal to the identity, and the compu-
tation rules for Nat’s induction principle hold definitionally.

7. Conclusions and Further Work

Where do we stand now, with Observational Type Theory? The ba-
sic system given in this p aper has b een coded in Agda 2, which
gives some evidence for its computational properties and consis-
tency. We have yet to execute our p lan to code the construction in a
less convenient but more standard system.

We hope to follow Oury’s p roof method to show that ETT is a
conservative extension of OTT, and we can certainly validate the
key axioms underpinning his translation of extensional derivations
to intensional terms [22]. His work gives us good reason to con-
jecture that OTT has the full reasoning power of the corresponding
extensional type theory, and hence that we r eally have no need to
suffer the negative computational consequences of the equality re-
flection rule in order to obtain its logical b enefits.

Moreover, as we have shown, we do not need to compromise
any of the computational equalities of intensional type theory to
achieve this result. Substituting b y a r eflexive equation is still the
identity and induction principles compute as they should. Indeed,
we have shown that we can add proof irrelevance to an intensional



type theory without serious modification to its evaluation process.
In particular, we can now elaborate Epigram’s pattern matching to
OTT, retaining all the same computational behaviour, even on open
terms.

For a realistic implementation, it is crucial to erase equality
proofs and coercions from run-time objects. It is perfectly safe to
do so, provided we never compute under a binder. This is nothing
new: E TTs, where coercions are invisible, have always supported
weak normalisation, and program extraction from ITTs has always
supported the erasure of proofs [23].

Three key p ieces of the j igsaw are still missing:

Hierarchical universes. We have illustrated the observational ap-
proach with a minimal type theory, excluding abstraction over
sets. Clearly, we need to introduce a type hierarchy [17] which
allows us to scale up. This certainly does not preclude the ex-
tension of the observational approach.

Coinductive data. As with functions, the useful notion of equality
for coinductive data is observational in character: equal codata
have equal one-step unfoldings. Of course, it is consistent to
add the propositional law that a bisimulation induces equality
on codata: as we have seen, this has no impact on the computa-
tional properties of the system.
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Quotients. We should very much like to internalise setoids—sets

of values up to a programmer-supplied equivalence—as quo-
tient sets. We plan to represent quotients as abstract datatypes,
allowing you access to the element of the underlying set only
if you can p rove that you respect the equivalence. Correspond-
ingly, observational equality on quotient sets should j ust reduce
to the given equivalence.



The potential applications of observational equality are con-
siderable. There are many constructions and developments in the
literature which h ave struggled to cope with the rigidity of inten-
sional equality for functions. McBride’s correctness proof for uni-
fication [18] is burdened throughout by the need to show explicitly
that predicates respect the observational equality for substitutions
represented functionally.

Moreover, we expect formalisations of categorical structure to
be greatly simplified b y the ability to use sets and observational
equality r ather than setoids with a hand-cranked equivalence. We
hope that Buisse and Dybjer will be able to take advantage of OTT
to streamline their recent study of categories-with-families, allow-
ing us to model the mathematical structures underlying dependent
type systems [6].

If we are to integrate r eal p rogramming with p roof, we need
to be able to reason effectively about effects, higher-order objects,
processes, abstract data types and the like. That means we need the
monad laws to hold; that means we need to reason b y observational
congruence for processes; that means we need to exploit the equiva-
lences preserved by encapsulation. This p aper shows that Observa-
tional Type Theory can provide a computational foundation for de-
pendently typed p rogramming, integrated with a logic which steps
up to that challenge.
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