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1. Introduction

Powerful insights arise from linking two fields of study p reviously
thought separate. Examples include Descartes’s coordinates, which
links geometry to algebra, Planck’s Quantum Theory, which links
particles to waves, and Shannon’s Information Theory, which links
thermodynamics to communication. Such a synthesis is offered
by the principle of Propositions as Types, which links logic to
computation. At first sight it appears t o be a simple coincidence—
almost a pun—but it turns out to be remarkably robust, inspiring the
design of automated proof assistants and programming languages,
and continuing to influence the forefronts of computing.

Propositions as Types is a notion with many names and many
origins. It is closely related to the BHK Interpretation, a view of
logic developed by the intuitionists Brouwer, Heyting, and Kol-
mogorov in the 1930s. It is often referred to as the Curry-Howard
Isomorphism, r eferring to a correspondence observed b y Curry in
1934 and refined b y Howard in 1969 (though not published until
1980, in a Festschrift dedicated to Curry). Others draw attention
to significant contributions f rom de Bruijn’s Automath and Martin-
L o¨f’s Type Theory in the 1970s. Many variant names appear in the
literature, including Formulae as Types, Curry-Howard-de Bruijn



Correspondence, Brouwer’s Dictum, and others.
Propositions as Types is a notion with depth. It describes a cor-

respondence between a given logic and a given p rogramming lan-
guage, for instance, between Gentzen’s intuitionistic natural deduc-
tion (a logic) and Church’s simply-typed lambda calculus (which
may b e viewed as a programming language). At the surface, it says
that for each p roposition in the logic there is a c orresponding type
in the programming language—and vice versa. Thus we have

propositions as types.

But it goes deeper, in that for each proof of a given p roposition,
there i s a program of the corresponding type—and vice versa. Thus
we also have

proofs as p rograms.

And it goes deeper still, in that for each way to simplify a p roof
there is a corresponding way to evaluate a p rogram—and vice
versa. Thus we further h ave

simplification of proofs as evaluation of programs.

Hence, we have not merely a shallow b ijection between proposi-
tions and types, but a true isomorphism preserving the deep struc-
ture of proofs and p rograms, simplification and evaluation.

Propositions as Types i s a notion with breadth. It applies to a
range of logics including propositional, predicate, second-order,
intuitionistic, classical, modal, and linear. It underpins the foun-
dations of functional programming, explaining features including
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functions, products, sums, parametric p olymorphism, data abstrac-



tion, continuations, linear t ypes, and session types. It has inspired
automated p roof assistants and p rogramming languages including
Agda, Automath, Coq, Epigram, F#, F?, Haskell, LF, ML, NuPRL,
Scala, Singularity, and Trellys. Applications include CompCert, a
certified compiler for the C programming language verified in Coq
(that is, with a p roof of correctness written in and checked by the
Coq system); a computer-checked p roof of the four-colour theorem
also verified in Coq; p arts of the Ensemble distributed system veri-
fied in NuPRL; and ten thousand lines of browser plug-ins verified
in F?.

Propositions as Types is a n otion with mystery. Why should it
be the case that intuitionistic natural deduction, as developed b y
Gentzen in the 1930s, and simply-typed lambda calculus, as devel-
oped by Church around the same time for an unrelated purpose,
should b e discovered forty years later to be essentially identical?
And why should it b e the case that the same c orrespondence arises
again and again? The logician Girard and the computer scientist
Reynolds independently developed the same calculus, now dubbed
Girard-Reynolds. The logician Hindley and the computer scientist
Milner independently developed the same type system, now dubbed
Hindley-Milner. Curry-Howard i s a double-barrelled name that en-
sures the existence of other double-barrelled names. T hose of u s
that design and use p rogramming languages may often feel they
are arbitrary, but Propositions as Types assures us some aspects of
programming are absolute.

This p aper serves as a b rief introduction to Propositions as
Types. For those interested to learn more, textbook treatments are
available [46, 4 4].

2. Church, and the theory of computation

The origins of logic lie with Aristotle and the stoics in classi-



cal Greece, Ockham and the scholastics in the middle ages, and
Leibniz’s vision of a calculus ratiocinator at the dawn of the en-
lightenment. Our interest in the subject lies with formal logic,
which emerged from the contributions of Boole, De Morgan, F rege,
Peirce, Peano, and others in the 19th century.

As the 20th century dawned, the leading proponents of formal
logic were Hilbert and his colleagues at G ¨ottingen. Hilbert’s pro-
gram was to develop a formal logic that could express in symbols
any mathematical statement, a vision that was largely inspired b y
Whitehead and Russell’s P rincipia M athematica [53].

One goal of Hilbert’s Program was to solve the Entschei-
dungsproblem (decision problem), that is, to develop an “effec-
tively calculable” p rocedure to determine the truth or falsity of any
statement. The problem presupposes completeness: that for any
statement, either it or its negation possesses a proof. In his ad-
dress to the 1930 M athematical Congress in K ¨onigsberg, Hilbert
affirmed his b elief in this principle, concluding “Wir m ¨ussen wis-
sen, wir werden wissen” (“We must know, we will know”), words
later engraved on his tombstone. Perhaps a tombstone is an ap-
propriate p lace for those words, given that any basis for Hilbert’s
optimism had b een undermined the day before, when at the self-
same conference G o¨del [21] announced his proof that arithmetic is
incomplete.

While the goal was to satisfy Hilbert’s program, no precise def-
inition of “effectively calculable” was required. It would be clear
whether a given p rocedure was effective or not, like Justice Stew-
art’s characterisation of obscenity, “I know it when Isee it”. But
to show the Entscheidungsproblem undecidable required a formal
definition of “effectively calculable”.

One can find allusions to the concept of algorithm in the work of
Euclid and, eponymously, al-Khwarizmi, but the concept was only
formalised in the 20th century, and then simultaneously received



three independent definitions b y logicians. Like buses: you wait
two thousand years for a definition of “effectively calculable”, and
then three come along at once. The three were lambda calculus,
published May 1935 by A lonzo Church [8], recursive f unctions,
proposed by G o¨del at lectures in Princeton in 1934 and p ublished
July 1935 b y Stephen Kleene [29], and Turing m achines, p ublished
May 1936 by Alan Turing [47].

Lambda calculus was introduced b y Church at Princeton, and
further developed by his students Rosser and Kleene. At this time,
Princeton rivalled G ¨ottingen as a centre for the study of logic. The
Institute for Advanced Study was co-located with the mathematics
department inFine Hall. In 1933, Einstein and von Neumannjoined
the Institute, and G o¨del arrived for a visit.

Logicians have long b een concerned with the idea of function.
Lambda calculus provides a concise notation for defining functions,
including “first-class” f unctions that may appear as arguments or
results ofother functions. It is remarkably compact, containing only
three constructs: variables, function abstraction, and function appli-
cation. Church [7] at first introduced lambda calculus as a way to
define notations for logical formulas (almost like a macro language)
in a new p resentation of logic. All forms of b ound variable could
be subsumed to lambda binding. (For instance, instead of ∃x. A[x],
Cbeh usrucbhs wmreodtet oΣl a(mλxb.d dAa b[xin] n)d.)i Hgo.w( Foevrei nr, tita nwcaes, ilnastetera ddi socfo∃ vxer.eAd[ xb y],
Kleene and Rosser that Church’s system was inconsistent. By this
time, Church and his students had realised that the system was of
independent interest. Church had foreseen this possibility in his
first p aper on the subject, where he wrote “There may, indeed, be
other applications of the system than its use as a logic.”

Church discovered a way of encoding numbers as terms of
lambda calculus. The number n is r epresented by a function that
accepts a function f and a value x, and applies the function to the
value n times. (For instance, three is λf. λx. f(f(f(x))).) With



this representation, it is easy to encode lambda terms that can add or
multiply, but it was not clear how to encode the predecessor func-
tion, which finds the number one less than a given number. One
day in the dentist’s office, Kleene suddenly saw how t o define p re-
decessor [28]. When Kleene brought the r esult to his supervisor,
Church confided that he had nearly convinced himself that repre-
senting predecessor in lambda calculus was impossible. Once this
hurdle was overcome, Church and his students soon b ecame con-
vinced that any “effectively calculable” function of numbers could
be r epresented b y a term in the lambda calculus.

Church proposed λ-definability as the definition of “effec-
tively calculable”, what we now know as Church’s Thesis, and
demonstrated that there was a problem whose solution was not λ-
definable, that of determining whether a given λ-term has a normal
form, what we now k now as the Halting Problem [8]. A year later,
he demonstrated there was no λ-definable solution t o the E ntschei-
dungsproblem.

In 1933, G o¨del arrived for a visit at Princeton. He was un-
convinced b y Church’s contention that every effectively calcula-
ble function was λ-definable. Church r esponded by offering t hat
if G o¨del would propose a different definition, then Church would
“undertake to prove it was included in λ-definability”. In a series
of lectures at Princeton in 1934, based on a suggestion of Her-
brand, G o¨del proposed what came to b e known as “general recur-
sive functions” as his candidate for effective calculability. Church
and his students soon determined that the two definitions are equiv-
alent: every general r ecursive function is λ-definable, and vice-
versa. Rather than mollifying G ¨odel, this result caused him to doubt
that his own definition was correct. Things stood at an impasse.

Meanwhile, at Cambridge, Alan Turing, a student of Max New-
man, independently formulated his own notion of “effectively cal-
culable” in the form of what we now call a Turing Machine, and



used this to show the E ntscheidungsproblem undecidable. Before
the p aper was published, Newman was dismayed to discover that
Turing had been scooped b y Church. However, Turing’s approach
was sufficiently different from Church’s to merit independent pub-
lication. Turing hastily added an appendix sketching the equiva-
lence of λ-definability to his machines, and the paper appeared in
print a year after Church [47], when Turing was 23. Newman ar-
ranged for Turing to travel to Princeton, where he completed a doc-
torate under Church’s supervision.

Turing’s most significant difference from Church was not in
logic or mathematics but in philosophy. Whereas Church merely
presented the definition of λ-definability and b aldly claimed that it
corresponded to effective calculability, Turing undertook an anal-
ysis of the capabilities of a “computer”—at this time, the term re-
ferred t o a human performing a computation assisted by paper and
pencil. T uring argued that the number of symbols must b e finite (for
if infinite, some symbols would be arbitrarily close to each other
and undistinguishable), that the number of states of mind must be
finite (for the same reason), and that the number of symbols under
consideration at one moment must be bounded (“We cannot tell at a
glance whether 9999999999999999 and 999999999999999 are the
same”). Later, Gandy [16] would point out that Turing’s argument
amounts to a theorem asserting that any computation a human with
paper and p encil can perform can also b e p erformed by a Turing
Machine. It was Turing’s argument that finally convinced G ¨odel;
since λ-definability, recursive functions, and Turing machines had
been proved equivalent, he now accepted that all three defined “ef-
fectively calculable”.

As mentioned, Church’s first use of lambda calculus was to en-
code formulas of logic, but t his had to be abandoned because it led
to inconsistency. The failure arose for a reason related to Russel’s
paradox, namely that the system allowed a p redicate to act on itself,



and so Church adapted a solution similar to Russel’s, that of clas-
sifying terms according to types. Church’s simply-typed lambda
calculus r uled out self-application, permitting lambda calculus to
support a consistent logical formulation [9].

Whereas self-application in Russel’s logic leads to paradox,
self-application in Church’s untyped lambda calculus lead to
non-terminating computations. Conversely, Church’s simply-typed
lambda calculus guarantees every t erm has a normal f orm, that is,
represents a computation that halts.

The two applications of lambda calculus, to represent computa-
tion and to represent logic, are in a sense mutually exclusive. If a
notion of computation is powerful enough to represent any effec-
tively calculable p rocedure, then that notion is not powerful enough
to solve its own Halting Problem: there is no effectively calcula-
ble p rocedure to determine whether a given effectively calculable
procedure terminates. However, the consistency of Church’s logic
based on simply-typed lambda calculus depends on every term hav-
ing a normal form.

Untyped lambda calculus or typed lambda calculus with a con-
struct for general r ecursion (sometimes called a fixpoint operator)
permits the definition of any effectively computable function, but
have a Halting Problem that is unsolvable. Typed lambda calculi
without a construct for general r ecursion h ave a Halting Problem
that is trivial—every program h alts!—but cannot define some ef-
fectively computable functions. Both kinds of calculus have their
uses, depending on the intended application.

3. Gentzen, and the theory of proof

A second goal of Hilbert’s program was to establish the consistency
of various logics. If a logic is inconsistent, then it can derive any



formula, r endering it useless.
In 1935, at the age of 25, Gerhard Gentzen p ublished his doc-

toral thesis. It introduced not one but two new formulations oflogic,
natural deduction and sequent calculus, which became established
as the two major systems for formulating a logic, and r emain so to
this day. It showed how to normalise p roofs to ensure they were not
“roundabout”, yielding a new proof of the consistency of Hilbert’s
system. And, to top it off, to match the use of ∃ for the existential
sqyuastnemtif.icA atniodn, oint toropdi utco edff , bt yo Pmeaatncoh,t hGeen utszee onf i∃ nt froord uthceede x∀ is tteon tdiae-l
nqouaten utinfiicvaetriosanl qi nutraondtifuicceadtiob ny. HPeea nwor,otG e ienmtpzelinca itniotrno dasu cAe d⊃∀ ∀Bt o(idf eA-
nhootldesu nthivener sBa lhq ouldans)t,i cicoantijounn.cHt ioenw arso tAe i&m Bpli (cbatoitohn A as a And ⊃ ⊃BB h o(ifldA ),
and disjunction as A ∨ B (at least one of A or B holds).

dGd einsjtuzennc’tiso inn asisgA ht ∨wB as athta let apstroo onfe r oufleA s sohro Buldh lcdosm).e in p airs,
a feature that had not b een present in earlier systems such as
Hilbert’s. In natural deduction, these are introduction and elimina-
tion p airs. An introduction rule specifies under what circumstances
one may assert a formula with a logical connective (for instance, to
prove A ⊃ B, one may assume A and then must prove B), while
tphreo vceor Are ⊃spo Bnd,io nnge em limayina satsiuomn eruA le snhdo wthse nhom wu stot purosev ethB at) l,ow gihcialel
connective (for instance, from a proof of A ⊃ B and a p roof of A
oconen may vdeed (fuocrei Bnst, aan cpre,opf erormty d au pbrboeodf omfoAd u⊃s p onens ian tphreo omfi odfdA le
ages). As Gentzen notes, “The introductions represent, as it were,
the ‘definitions’ of the symbols concerned, and the eliminations are
no more, in the final analysis, than the consequences of these defi-
nitions.”

A consequence of this insight was that any p roof could b e
normalised to one that is not “roundabout”, where “no concepts
enter into the proof other than those contained in the final result”.
For example, in a normalised proof of the formula A & B, the
only formulas that may appear are itself and its subformulas, A
and B, and the subformulas of A and B themselves. N o other
formula, such as (B & A) ⊃ (A & B) or A ∨ B, may appear;



tfhorism isu lac,alls eudc ht hae sS(u Bbfo& rm Aul)a⊃ ⊃Pro( Aper& ty .B BA)n oimrm Ae∨ di Bate, consequence
was consistency. The only way to derive a contradiction (that is,
to p rove false, written f), is to prove, say, both A ⊃ f and A for
tsoom pero vfoerm faulslea, wAr. tBtuent fgiv),ei ns tsoucp hr oav ep r,o soafy,, obnoteh cA ou ⊃ld fnoa rmndaA lisef oitr
to one containing only subformulas of its conclusion, f . But f
has no subformulas! It is like the old saw, “What part of no don’t
you u nderstand?” L ogicians b ecame interested in normalisation of
proofs because of its r ole in establishing consistency.

Gentzen p referred the system of Natural Deduction because it
was, in his view, more natural. He introduced Sequent Calculus as
a technical device for proving the Subformula Property. Sequent
Calculus had two key properties. First, every p roof in Natural De-
duction can b e converted to a p roof in Sequent Calculus, and con-
versely, so the two systems are equivalent. Second, unlike Natural
Deduction, every rule save one has the property that its hypothe-
ses only involve subformulas of those that appear in its conclusion.
The one exception, the Cut rule, can always b e removed b y a p ro-
cess called Cut Elimination. Hence every proof had an equivalent
normal form satisfying the Subformula Property. Gentzen’s main
interest in Sequent Calculus was to p rove the Subformula Prop-
erty, although Sequent Calculus has features of independent inter-
est, such as providing a more symmetric presentation of classical
logic, and today r esearchers often use formulations closer to Se-
quent Calculus than t o Natural Deduction.

It is an irony that Gentzen was required to introduce Sequent
Calculus in order to prove the Subformula Property for Natural
Deduction. He needed a roundabout p roof to show the absence of
roundabout proofs! Later, in 1965, Prawitz showed how to prove
the Subformula Property directly, by introducing a way to simplify
Natural Deduction proofs; and this set the ground for Howard’s
work described in the next section.



4. Propositions as Types

In 1934, Curry observed a curious fact, relating a theory of func-
tions to a theory of implication [12]. Every t ype of a function
(A → B) could be r ead as a p roposition (A ⊃ B), and under this
(reAad →ingB Bth)e c toyupled o bfe any dgia vsean pfurnocptoisonit ownou (Ald ⊃alwB ay),s acnodrr uensdpoenrdt h itos
a provable p roposition. Conversely, for every provable p roposition
there was a function with a corresponding type.

In 1969, Howard circulated a mimeographed manuscript. It was
not published until 1980, where it appeared in a Festschrift ded-
icated to Curry [26]. Motivated b y Curry’s observation, Howard
pointed out that there is a similar correspondence between natural
deduction, on the one hand, and simply-typed lambda calculus on
the other, and (unlike Curry) he made explicit the third and deep-
est level of the correspondence as described in the introduction,
that simplification of proofs corresponds to evaluation of programs.
Howard showed the correspondence extends to the other logical
connectives, c onjunction and disjunction, by extending his lambda
calculus with constructs that represent pairs and disjoint sums. Just
as p roofrules come in introduction and elimination p airs, so do typ-
ing rules: introduction rules correspond to ways to define or con-
struct a value of the given type, and elimination rules correspond to
ways to use or deconstruct values of the given type.

We can describe Howard’s observation as follows:

• Conjunction A & B corresponds to Cartesian product A ×B,
tChaotn jius,n cat iroencoA rd& &wBi th ctworore fsipeoldnsd, sat losoC kanrtoewsina nasp rao pd auicr.t AA p ×ro Bof,
of the proposition A & B consists of a proof of A and a proof of
B. Similarly, a value of type A ×B consists of a value of type
AB .aS ndim ai lavralluy,e a aov fa atylupee oBf .t

• Disjunction A ∨ B corresponds to a disjoint sum A + B, t hat
Dis,i aju nvacrtiiaonnt Aw∨i th Btwc oo rareltserponnatdivset so. aAd i prsjoooifn tos fu tmheA Apr+ op Bos,i ttihoant



A ∨ B consists of either a p roof of A or a p roof of B, including
Aan∨ ∨inBdicc aotnisonis tosf o wf heiicthhe roaf tphreo towf oo fhA as obre aepn rp oroofveo fdB. BS,imi nicllaurldyin, ag
value of type A + B consists of either a value of type A or a
value of type B, including an indication of whether this is a left
or right summand.

• Implication A ⊃ B corresponds to function space A → B. A
Ipmropolfic oatfi othne A Apr ⊃op Bosc itioornre sAp ⊃nd sBt ocof nusnicsttsio onfs paa cpero Aced→ ure B t h.Aa t
pgiroveonf ao f p trhoeofp orofp Aos iytiieolndsA Aa ⊃ prB oofc oofn sBis.t sSi omfia la rplryo,c ae vuareluet h aoft
type A → B consists of a function that when applied to a value
otyfp ptye pAe A→ r  eBtu cronns ais vtsa loufea aof fu tnycpteio Bnt.

This reading of proofs goes back t o the intuitionists, and is often
called the BHK interpretation, n amed for Brouwer, Heyting, and
Kolmogorov. Brouwer founded intuitionism, and Heyting and Kol-
mogorov formalised intuitionistic logic, and developed the inter-
pretation above, in the 1920s and 1930s.

Given the intuitionistic reading of proofs, it hardly seems sur-
prising that intuitionistic natural deduction and l ambda calculus
should correspond so closely. But r ecall that Gentzen invented Se-
quent Calculus because he could not find a direct proof of the Sub-
formula Property for Natural Deduction, and the direct p roof was
not published u ntil three decades later, by Prawitz. As pointed out
to Howard b y Martin L o¨f, Prawitz’s technique for normalising a
proof corresponds exactly to reduction of lambda terms. Gentzen,
Church, and Prawitz never drew these p arallels. Certainly Howard
was proud of the connection he drew, citing it as one of the two
great achievements of his career [43]. While the connection may
be obvious in r etrospect, it was far from obvious in p rospect!

Howard’s p aper divides into two halves. The first half explains a
correspondence between two well-understood concepts, the propo-
sitional connectives &, ∨, ⊃ on the one hand and the computational
tsyitpioens ×l, +nn, →cti voens &the, ∨ o,t⊃ hero nh athnedo. nTeh hea nsedc aonndd hhael cfo emxpteuntdasti othnaisl



taynpaleosg× y,, ,a+ nd, f→ or wo nellt -huendo etrhsetoroh da cnodn.cT ehpetss sfercoomn dloh giacl proposes nt hewis

concepts for types that c orrespond to them. In particular, Howard
proposes that the predicate quantifiers ∀ and ∃ corresponds to new
ptyropepso stehsatt whaet tnhoewp craedlli d ceatpeeq nudeanntti tfyiepress∀.

With the introduction of dependent types, every proof in predi-
cate logic can be represented b y a term of a suitable typed lambda
calculus. Mathematicians and computer scientists proposed numer-
ous systems b ased on this concept, including de Bruijn’s Automath
[15], Martin-Lo ¨f’s type theory [32], Bates and Constable’s PRL
and n uPRL, [3], and Coquand and Huet’s Calculus of Construc-
tions [10]. The last of these developed into the Coq p roof assistant,
which was later used b y Gonthier to validate the proof of the four-
colour theorem [22], and b y Leroy to verify the correctness of a
C compiler [30].

5. Intuitionistic logic

In Gilbert and Sullivan’s The Gondoliers, Casilda is told that as an
infant she was married to the h eir of the King of Batavia, but that
due to a mix-up no one knows which of two individuals, Marco or
Giuseppe, is the h eir. Alarmed, she wails “Then do you mean to say
that Iam married to one of two gondoliers, but it is impossible to
say which?” To which the response is “Without any doubt of any
kind whatever.”

Logic comes in many varieties, and one distinction is between
classical and intuitionistic. Intuitionists, concerned by cavalier as-
sumptions made b y some logicians about the nature of infinity, in-
sist u pon a constructionist notion of truth. In p articular, they insist
that a p roof of A ∨ B must show which of A or B h olds, and h ence
tthhaeyt aw poruooldf orefj Aec∨t tBhem culastims h tohwat w Chiacshildo af Ais omraB rrhi eodl tso, aMndarh coen core
Giuseppe until one of the two was identified as her husband. Per-
haps Gilbert and Sullivan anticipated intuitionism, for their story’s



outcome is that the heir turns out to b e a third individual, Luiz, with
whom Casilda is, conveniently, already in love.

Intuitionists also r eject the law of the excluded middle, which
asserts A ∨ ¬A for every A, since the law gives no clue as to
washsiecrhts soAf AA∨ ∨o¬r ¬AAf ohro eldvse. yHe Ayt,ins gin cfoerm thaeli sleadw wag vivareisann to oocf lHuielba esrt ’tso
wclahisscihco alf l Aog oicr t¬hAat hcaopldtus.r Hese tyhtein ignt fuoirtmioanilsistiecd n ao vtiaornia noft op fro Hvialbbielirtty’s.
In particular, the law of the excluded middle is provable in Hilbert’s
logic, but not in Heyting’s. Further, if the law of the excluded
middle is added as an axiom to Heyting’s logic, then it becomes
equivalent to Hilbert’s. Kolmogorov showed the two logics were
closely related: he gave a double-negation translation, such that a
formula is provable in classical logic if and only if its translation is
provable in intuitionistic logic.

Propositions as Types was first formulated for intuitionistic
logic. It is a perfect fit, because in the intuitionist interpretation
the formula A ∨ B is provable exactly when one exhibits either a
tphreoof of romf uAl aoAr Aa p∨rB oofi sopf Brov, asob ltehe e xtyacpetl cyo wrrheesnpo onndeine gx thoib bditissj euintchetioran
is a disjoint sum.

6. Other logics, other computation

The p rinciple of Propositions as Types would b e remarkable even
if it applied only to one variant of logic and one variant of compu-
tation. How much more remarkable, then, that it applies to a wide
variety of logics and of computation.

Quantification over p ropositional variables in second-order
logic corresponds to type abstraction in second-order lambda calcu-
lus. For this reason, the second-order lambda calculus was discov-
ered twice, once b y the logician Jean-Yves Girard [19] and once
by the computer scientist John Reynolds [41]. And for the same
reason, a similar system that supports p rinciple type inference was
also discovered twice, once b y the logician Roger Hindley [24] and



once b y the computer scientist Robin Milner [34]. Building on the
correspondence, J ohn Mitchell and Gordon Plotkin [35] observed
that existential quantification in second-order logic corresponds
precisely to data abstraction, an idea that now underpins much re-
search in the semantics of programming languages. The design of
generic types in Java and C# draws directly upon Girard-Reynolds,
while the type systems of functional languages including M L and
Haskell is based u pon Hindley-Milner. Philosophers might argue
as to whether mathematical systems are ‘discovered’ or ‘devised’,
but the same system arising in two different contexts argues that
here the correct word is ‘discovered’ .

Two major variants of logic are intuitionistic and classical.
Howard’s original paper observed a correspondence with intu-
itionistic logic. Not until two decades later was the correspon-
dence extended to also apply to classical logic, when Tim Griffin
[23] observed that Peirce’s Law in classical logic provides a type
for the call/cc operator of Scheme. Chet Murthy [37] went on to
note that Kolmogorov and G ¨odel’s double-negation translation,
widely used to relate intuitionistic and classical logic, corresponds
to the continuation-passing style transformation widely used b oth
by semanticists and implementers of lambda calculus. Parigot [38],
Curien and Herbelin [11], and Wadler [5 1] introduced various com-
putational calculi motivated b y correspondences to classical logic.

Modal logic permits p ropositions to be labelled as ‘necessarily
true’ or ‘possibly true’. Clarence Lewis introduced modal logic in
1910, and his 1938 textbook describes five variants, S 1–S5 [3 1].
Some claim that each of these variants has an interpretation as
a form of computation via Propositions as T ypes, and a down
payment on this claim is given by an interpretation of S4 as staged
computation due to Davies and Pfenning [14], and of S5 as spatially
distributed computation due to Murphy et al [49].

Eugenio Moggi [36] introduced monads as a t echnique to ex-



plain the semantics of important features of p rogramming lan-
guages such as state, exceptions, and input-output. Monads became
widely adopted in the functional language Haskell, and later mi-
grated into other languages, including Clojure, Scala, F#, and C#.
Benton, Bierman, and de Paiva [4] observed that monads corre-
spond to yet another modal logic, differing from all of S1–S5.

Temporal logic admits distinction between modalities such as
‘holds now’, ‘will hold eventually’, and ‘will hold in the next t ime
step’. Temporal logic was first formalised b y Arthur Prior in his
1957 text [40], and came to play a major r ole in the specification
and verification of computing systems, b eginning with the work of
Amir Pnueli [39]. Interpretations of temporal logics via Proposi-
tions as T ypes include an application to partial evaluation due to
Davies and Pfenning [14], and an application to functional reactive
programming due to Jeffery [27].

In classical, intuitionistic, and modal logic, any hypothesis can
be used an arbitrary number of times—zero, once, or many. Linear
logic, introduced in 1987 by Girard [20], requires that each hypoth-
esis is used exactly once. Linear logic is ‘resource conscious’ in that
facts may be used up and superseded by other facts, suiting it for
reasoning about a world where situations change. From its incep-
tion, linear logic was suspected t o apply to problems of importance
to computer scientists, and its first publication was not in A nnals of
Mathematics but in Theoretical Computer Science. Computational
aspects of linear logic are discussed by Abramsky [1] and W adler
[50], among many others, and applications to quantum computing
are surveyed by Gay [17]. Most r ecently, Caires and Pfenning [5]
have applied Propositions as Types to explain Session Types, a way

of describing communication protocols introduced b y Honda [25],
inspiring a new view of Propositions as Sessions [52].



One key to the correspondence between logic and computation
is the study of category theory. Both simply-typed lambda calculus
and intuitionistic natural deduction correspond to the notion of a
cartesian closed category [42]. M any extensions of this idea arise,
including an exciting strand of work linking categories, computa-
tion, linear logic, and quantum physics [2].

Vladimir Voevodsky, a winner of the Fields Medal, excited
much interest with his recent work on Homotopy Type Theory
(HoTT) and Univalent Foundations, which links topology Propo-
sitions as Types. A Special Year hosted b y the Institute for Ad-
vanced Studies at Princeton, Church’s home, devoted to the subject
led to the p ublication of The HoTT Book last year, which indeed
was h otly awaited, and authored b y over 50 mathematicians and
computer scientists ranging from Aczel to Z eilenberg.

Propositions as Types remains a topic of active r esearch.

7. Natural deduction

We now turn to a more formal development, presenting a fragment
of natural deduction and a fragment of typed lambda calculus in a
style that makes clear the connection between the two.

We begin with the details of natural deduction as defined b y
Gentzen [18]. The proof rules are shown in F igure 1. T o simplify
our discussion, we consider j ust two of the connectives of natural
deduction. W e write A and B as placeholders standing for arbitrary
formulas. Conjunction is written A & B and implication is written
A ⊃ B.

⊃WB e .represent p roofs by trees, where each node of the tree is
an instance of a p roof rule. Each proof rule consists of zero or
more formulas written above a line, called the p remises, and a
single formula written b elow the line, called the conclusion. The
interpretation of a rule is that when all the premises hold, then the



conclusion follows.
The proof r ules come in pairs, with rules to introduce and to

eliminate each connective, labelled -I and -E r espectively. As we
read the rules from top t o bottom, introduction and elimination
rules do what they say on the tin: the first introduces a formula
for the connective, which appears in the conclusion but not in the
premises; the second eliminates a formula for the connective, which
appears in a premise but not in the conclusion. An introduction rule
describes under what conditions we say the connective holds—
how to define the connective. An elimination rule describes what
we may conclude when the connective holds—how to use the
connective.

The introduction r ule for conjunction, &-I, states that if formula
A holds and formula B h olds, then the formula A & B must hold
as well. There are two elimination rules for conjunction. The first,
&-E1, states that if the formula A & B holds, then the formula A
must hold as well. The second, &-E2, concludes B r ather than A.

The introduction rule for implication, ⊃-I, states that if from
the Tashesui mntprtioodnu cthtiaotn nfor rumleul fao rAi hmoplldisc awtieo may -dI,eris tvaet tehse t fhaortmi ful far oBm,
then we may conclude that the formula A ⊃ B holds and discharge
tthhee naw sseum maptyioc no.n Tcolu dinedi tchaattet hthea fot rAm uisl auA sed⊃ aBs a hno ladsssau nmdptd ioiscn zero,
once, or many times in the proof of B, we write A in brackets and
tether it to B via a chain of ellipses. A proof is complete only when
every assumption in it has been discharged b y a corresponding use
of ⊃-I, which is indicated by writing the same name (here x) as
ao fs ⊃up-Ie,rs wcrhipicth hoi ns ienadchic aitnestdanb yce worfi tinheg dt hiescs haarmgeedn aamsseum( hpetrioenx )ana ds
on the discharging r ule. The elimination r ule for implication, ⊃-E,
ostnat tehse th diastc ihfa a forgrminugl rau lAe .⊃T hBe e h loilmdsin aantido inf frourlemf uolrai Am phliocldatsi,o tnh,e n⊃ w-Ee,

may scto hnactl uifdf eo frmorumluaAl a B⊃ Bhoh ldosl dass awndelil f; tfhorism ruullae Aalh soo goes hbeyn w thee
name modusp onens.

Critical readers will observe that we use similar language to de-



scribe rules (‘when-then’) and formulas (‘implies’). The same idea
A B A & B A & B

&-I &-E1 &-E2

A & B A B

[A]x
·· A ⊃ B A

B·⊃-Ix B⊃-E
A ⊃ B

Figure 1. Gerhard Gentzen (1935) — Natural Deduction

[B &A ]z&-E2 [B &A ]z&-E1
A B

&-I

A & B
⊃-Iz

(B & A) ⊃ (A & B)

Figure 2. A p roof

· ·

·· ··

··· ···

A· B·
&-I ·

A & B ···
A&-E1 =⇒ A·

[A]x
· ·

·· ··



B·⊃-Ix ·· A·
A ⊃ B A· ···
A⊃ B ⊃-E =⇒ B·

B

Figure 3. Simplifying p roofs

[B &A ]z&-E2 [B &A ]z&-E1
A B

&-I

A& B ⊃-Iz [B]y[A]x&-I
(B &A )⊃ ( A&  B)B& A ⊃-E

A & B

­w

[B]y[A]x&-I [B]y[A]x&-I
B & A B & A

&-E2 &-E1

A B
&-I

A & B

­w

[A]x­[B]y&-I
A & B

Figure 4. Simplifying a proof



applies at two levels, the meta level (rules) and the object level (for-
mulas), and in two notations, using a line with premises above and
conclusion below for implication at the meta level, and the symbol
⊃ with premise to the left and conclusion to the r ight at the ob-

j⊃ecwt liethvep l.r eItm misi aelm toost ht aesl eiff ttoa undndc eornsctalnudsi iomnp tolict ahtieonr i gohnte amt tuhset fio rbst-
understand implication! This Z eno’s paradox of logic was wryly
observed by L ewis Carroll [6], and the phenomena was deeply in-
vestigated by Martin L o¨f [33]. W e n eed not let it disturb us; every-
one p ossesses a good informal understanding of implication, which
may act as a foundation for its formal description.

A p roof of the formula

(B & A) ⊃ (A & B) .

is shown in Figure 2. I n other words, if B and A hold then A and B
hold. This may seem so obvious as to b e hardly deserving of proof!
However, the formulas B ⊃ A and A ⊃ B have meanings t hat differ,
aHnodw weev enr,ee thde sof omrme fuloarmsB al⊃ way atnod dcAo n⊃cluBdeh atvheatm mtheea nfoinrgmsut lhasat tBd i &ffe eAr,
and A & B have meanings that are the same. This is what our p roof
shows, and it is reassuring that it can be constructed from the rules
we p osit.

The p roof r eads as follows. F rom B & A we conclude A, by
&-E2, and from B& A we also conclude B, by &-E1. From A and
B we conclude A & B, by &-I. That is, f rom the assumption B&A
(used twice) we conclude A & B. We discharge the assumption
and conclude (B & A) ⊃ (A & B) b y ⊃-I, linking the discharged
aasndsu mcopntciolundse eto( Bthe& &dAi sc)h⊃ ar g(iAng& &r uB le) ) bb yy w⊃ r-itIi,nl gin zk ainsg ga hsuep deirssccrhiaprtg eond

each.
Some p roofs are unnecessarily roundabout. Rules for simpli-

fying p roofs appear in Figure 3, and an example of such a p roof
appears in Figure 4. L et’s focus on the example first.

The top of Figure 4 shows a larger proof built from our smaller



proof. The larger proof makes two assumptions, [B] and [A], and
concludes with the formula A&B. However, rather than concluding
it directly we derive the r esult in a roundabout way, in order to
illustrate an instance of ⊃-E, modus ponens. The p roof r eads as
ifolllulostwraste. Oa nn tihnset alencfte ios fth⊃ e pEr,o omfo dgiuvsenp pnreenvsi.oT ushlye, pcroonocflur deiadnsg ains
(B & A) ⊃ (A & B). On the r ight, from B and A we conclude
(BB B&& &AA b)y ⊃&( -IA. C &om Bb)in. Oingn tt hheeser i gyhietl,df sr oAm m&B BBa nbyd A⊃-w E.e

&WA e may -sIim.C polimfyb tnhien gp rthoeosfe b yyie ladpsplA yi& ngB Bthb ey r⊃ ew-Er.ite r ules of
Figure 3. These r ules specify how to simplify a p roof when an
introduction rule is immediately followed by the corresponding
elimination rule. Each rule shows two p roofs connected b y an
arrow, indicating that the redex (the proof on the left) may b e
rewritten, or simplified, to y ield the reduct (the proof on the right).
Rewrites always t ake a valid proof to another valid p roof.

For &, the redex consists of a proof of A and a proof of B,
which combine to y ield A & B b y &-I, which in turn yields A b y
&-E1. The r educt consists simply of the proof of A, discarding the
unneeded proofo f B. There is a similar r ule, not shown, t o simplify
an occurrence of &-I followed by &-E2.

For ⊃, the redex consists of a proof of B from assumption A,
whiFchor ry⊃ ie,ldt hs eAr ⊃de Bx cboyn s⊃is-tsI, aonf da pa r poroofofo foBf Af r, owmhi acshs ucmompbtiionne Ato,
ywiheildch hBy ibelyd s⊃A -E⊃. TB he ryed⊃ uc-tI, ca onndsai st sp oofo ftho ef As a,mw e hpicrohofc o oomf bBin, e bt uot
ynoiewld wB ith b every .o Tccheurr reenducce toc fo tnhsei tasss oufmt phteios an mAe p  rerpoolafc eodf B by, tbhuet
given p roof of A. The assumption A may b e used zero, once, or
many t imes in the proof of B in the r edex, so the proof of A may
be copied zero, once, or many t imes in the proof of B in the reduct.
For this reason, the reduct may be larger than the redex, but it will
be simpler in the sense that it has removed an unnecessary detour
via the subproof of A ⊃ B.

W thee scuabnp trhoionfko offA Ath⊃ e aBs.sumption of A in ⊃-I as a debt which
is dWisech caarnge dth bi nyk t ohef t phroeoa fs souf mAp ptiroonvio dfeAd Ai ni n n⊃ ⊃-E-I. T a shea p dreobotf w inh ticheh
rised deixsc hacacrguemdu lbaytet hs deep brot aonfd o pays rito oviffd eladt einr; ⊃w-hEil.eT thhee pprrooooff iinn tthhee



reduct p ays directly each time the assumption is used. Proof debt
differs from monetary debt in that there is no interest, and the same
proof may b e duplicated freely as many times as needed to pay off
an assumption, the very property which money, by being hard to
counterfeit, is designed t o avoid!

Figure 4 demonstrates use of these r ules to simplify a p roof.
The first p roof contains an instance of ⊃-I followed b y ⊃-E, and is
sTimhepf liirfisetpd rboyo frc epolnatcaiinngs eaanc ihn sotaf ntchee towf o⊃ a-Iss foulmlopwtioendsb oyf⊃ ⊃B-E E&, And doi ns

the left by a copy of the p roof of B & A on the r ight. The result is
the second proof, which as a r esult of the replacement now contains
an instance of &-I followed by &-E2, and another instance of &-I
followed b y &-E1.Simplifying each of these yields the third p roof,
which derives A & B directly from the assumptions A and B, and
can b e simplified no further.

It is not hard to see that p roofs in normal form satisfy the Sub-
formula Property: every formula of such a proof must b e a sub-
formula of one of its undischarged assumptions or of its conclu-
sion. The p roof in Figure 2 and the final p roof of Figure 4 b oth sat-
isfy this property, while the first proof of Figure 4 does not, since
(B & A) ⊃ (A & B) is not a subformula of A & B.

8. Lambda calculus

We now turn our attention to the simply-typed lambda calculus
of Church [9]. The type rules are shown in Figure 5. To simplify
our discussion, we take b oth products and functions as primitive
types; Church’s original calculus contained only function types,
with products as a derived construction. W e now write A and B
as placeholders for arbitrary types, and L,M, Nas placeholder for
arbitrary terms. Products types are written A ×B and functions
tayrbpeitrs aarrye wterrimttse.n P Aro →duc tBs. yNpoews oruer w wprriettmeinseA s a×nd B Bcoa nncdluf suionncsti oanres
tjuypdegsma ernetws orift ttehen Af or m→



M : A

indicating that term M has type A.
Like proofs, we represent type derivations b y trees, where each

node of the tree is an instance of a type rule. Each type r ule consists
of zero or morej udgments written above a line, c alled thep remises,
and a single judgment written b elow the line, called the conclusion.
The interpretation of a rule is that when all the premises hold, then
the conclusion follows.

Like proof r ules, type r ules come in p airs. A n introduction r ule
describes how to define or construct a term of the given type, while
an elimination r ule describes how to use or deconstruct a term of
the given type.

The introduction rule for p roducts, ×-I, states t hat if t erm M
has Tthyepei nAtr adnudc titoernmr uNle h foasr tpyroped Bcts, ,th× en-I ,ws eta may f aotr mif ttehrem p aMir
term hM, Ni of product type A ×B. T here are two elimination
rtuerlmes hfoMr ,pNroiduo cft ps. oTdhuec tfit rsytp, e×A A-E× 1, sBta.t eTsh etrheata rife te twrmo eLli mhaisn attyipone
rAu e×s Bf o, rtp heron wuec may efofr mirs tth, e× t-eErm π1 L of t ype A, which selects
tAhe× ×fiB rst, tchoemnpw oenem nat oyff otrhem p thaeir. Te rhme πsecond, ×-E2 is similar, save
tthhaet iitr sfto crmoms tphoen etenrtmo πft 2h Le pofa itry.pT eh eBs.

The introduction rule for functions, →-I, states that if given a
varTiahbele xn orofd dtyucptei oAn rwuele ehf aovre ffuonrmctieodn sa, ,t→ erm-I N,s t oatfe styt phea Bti ,f th gievne nwae
may f orm the lambda term λx. N of function type A → B. The
vmaaryiabf loer mx at phepel aamrsf brdeae itenr Nm aλnxd. Nbouo nfdf uinn cλtxio. nNt .y UpenAd is→ char Bge.dT ahs-e

sumptions correspond to free variables, while discharged assump-
tions correspond to bound variables. To indicate that the variable
x may appear zero, once, or many times in the term N, we write
x : A in brackets and tether it to N : B via a chain of ellipses.
A term is c losed only when every variable in i t is bound b y a cor-
responding λ. The elimination r ule for functions, →-E, states that
rgeisvepno ntedirmng Lλ .oT f thyep eel iAm →na iBo nar ndul etef rmor Mfun octfi toynpse, →A -wE,e may sft ohrmat
tghiev eanppt elrimcatiL ono ftet yrmpe eLA AM→ →oBf Btya pned B te.r



For natural deduction, we noted that there m ight b e confusion
between implication at the m eta level and the object level. For
lambda calculus the distinction is clearer, as we have implication
at the meta level (if terms above the line are well typed so are terms

M : A N : B L : A ×B L : A ×B

hM,Ni: A ×  B×-I π1L: A ×-E1 π2L: B ×-E2
[x : A]x

·· L : A → B M : A

N·: B x LM : B→-E
λx. N : A → B

Figure 5. Alonzo Church (1935) — L ambda Calculus

[z: B  ×A ]z×-E2 [z: B  ×A ]z×-E1
π2 z : A π1 z : B

×-I

hπ2z,π1zi: A × B →-Iz
λz. hπ2 z, π1 zi : (B ×A) → (A ×B)

Figure 6. A program

· ·

·· ··

··· ···

M : A N :· B ×-I ·

hM,Ni: A × B ×-E1 =⇒ M··: A

π1 hM, Ni : A

[x : A]x



· ·

·· ··

··· ···

N: B →-Ix ·· M·· : A
λx. N : A → B M : A ···
(λx.N)M: B →-E =⇒ N[M/·x] :B

Figure 7. E valuating programs

[z: B  ×A ]z×-E2 [z: B  ×A ]z×-E1
π2 z : A π1 z : B ×-I

hπ2z,π1zi: A × B →-Iz [y :B ]y[x: A ]x×-I
λz.hπ2z,π1zi:  (B× A )→ ( A× B )hy,xi: B × A →-E

(λz. hπ2 z, π1 zi) hy, xi : A ×B

­w

[y :B ]y[x: A ]x×-I [y :B ]y[x: A ]x×-I
hy,xi: B × A ×-E2 hy,xi: B × A ×-E1

π2hy,xi: A π1hy,xi: B ×-I
hπ2 hy, xi , π1 hy, xii : A ×B

­w

[x:  A]x­[y: B ]y×-I
hx, yi : A ×B

Figure 8. Evaluating a program



below) but functions at the object level (a function has type A → B
bbeelcoawus)e b uift fitu nisc pioansssea dt hae v oablujeec otl fe vtyelp( ea A fu ntchteion nith r aest utyrnpse Aa →valuB e
of type B). W hat previously had been discharge of assumptions
(perhaps a slightly diffuse concept) becomes binding of variables
(a concept u nderstood b y most computer scientists).

The reader will b y now have observed a striking similarity
between Gentzen’s rules from the preceding section and Church’s
rules from this section: ignoring the terms in Church’s rules then
they are identical, if one replaces & b y × and ⊃ b y →. The
tchoeloyura irneg dofe tnhtiec a rul,lei sf ios nceho rseepnl atcoe s hig& hlib gyht ×thea snidmi⊃ larib tyy.

A program of type

(A ×B) → (B ×A)

is shown in Figure 6. Whereas the difference between A & B and
B & A appears a mere formality, the difference between A ×B
aBnd& &BA A× aAp pise aerassia emr toe raep pforremciaaltiety: ,ct ohneved rtiinffger rtehnec lea btteertw wtoe tehne A Afo× rme Br
arenqduB ire×s Asw isape pasiniegr t thoea pelpemreecniattse :oc fo tnhvee prtaiinrg, w thheilc aht eisr tporet cheis efloyrm mtheer
task p erformed b y the program corresponding t o our former proof.

The program reads as follows. From variable z of type B ×A
we Tfohremp rteogrmra πm2 ze aodfs t yaspf eo Allo w bys .×F -rEo2m anv adr iaalbsole te zr mof πty1p ze oBf t×ypA e
B b y ×-E1. Fromz toh fest ye ptweo A w bey fo ×r-mE the p air hπ2 z, π1 zi of type
AB b×y B× - bEy ×F -rIo. mFi nthaellsey, wweo bw ien dfo rthme tfhreeep avairri haπble z toz fio ormft ytphee
Alam× bdB a tbeyrm× λ-Iz.. Fhπin2a z, ,πw1 zei oinfd dtyt phee (frAe e×v aBri)a l→e z(Bt o ×fo rAm) th bye
l→am-Ib, dcaont enermctinλ gz .thheπ bound tzyip ionfgt sy ptoe t (heA b× ind Bin)g r→ule( Bb y w×r Aitin)gb zy
a→s -aI ,su cponenrseccrtiipntg ot hn eeb acohu. Tdht ey pfuinngcstit oont ahecc beipntds an gpr aiurl eab ndy swaps gitz s
elements, exactly as described b y its type.

A program may be evaluated by r ewriting. Rules for e valuating
programs appear in Figure 7, and an example appears in Figure 8.
Let’s focus on the example first.

The top of F igure 8 shows a larger program built from our
smaller program. The larger program has two free variables, y of



type B and x of type A, and constructs a value of type A ×B.
tHypoweeB ve ar,n draxt heo rf th tyapne c Aon,sa tnrudctc inogns itrtu cdtisreca tv lya uwee orefa tcyhp ethA e ×r es uBlt.
in a r oundabout way, in order to illustrate an instance of →-E,
fiunna ctir oonu nadpapbloicuattiow na.y T ,i hne program riellaudstsr aatse ef aonlloi wnsst. Oncne t ohef → left- Eis,
the program given previously, forming a function of type (B ×
Athe) →pro g(rAam m× Bive).n O pnr tvhieo urislgyh,tf, ofrrmomin Bg aaf nudn Acti owne ofofr tmyp eth( eB Bpa× ir
Ahy), x →i o (fA Atyp ×e BB) .×O An h bye ×rig g-hI.t ,Af propmlyi Bng tnhde fAun wcteiof no tmo tthhee ppaaiirr
hfoy,rmxsi ao ftet rmyp eofB Btyp ×e AA b×y B× b-Iy. →A p-pE.ly

mWse a may e ovfat luypateeA Ath× is program b.y applying the rewrite r ules
of Figure 7. These r ules specify how to rewrite a term when an
introduction r ule is immediately followed b y the corresponding
elimination rule. Each r ule shows two derivations connected b y
an arrow, indicating that the redex (the term on the left) may be
rewritten, or evaluated, to yield the reduct (the term on the right).
Rewrites always take a valid type derivation to another valid type
derivation, ensuring that rewrites preserve types, a property k nown
as subject reduction or type soundness.

For ×, the redex consists of term M of type A and term N
of tFypoer ×B,, twhehicr ehd ceoxm cboinnseis ttos oyife ltder mterMm hMo f,t Nypei oAf at ynpde tAer m× BN
obyf ×yp-Ie, Bwh, iwchh cinh tu cornm byiineledst otey rmiel πd1t ehrMm, hNMi oNf ityo pfe yAp beyA A×××-EB 1 .
Tbhye × r-eI,duw cth ccohn isnist tus nsi ymipelldy sot fe tremrm π MhM o,fN Ntyip eo At y, deis Acarb ydin ×g- Ethe
unneeded term N of type B. There is a similar r ule, not shown, to
rewrite an occurrence of ×-I followed by ×-E2 .

Froitre →, tchceu rrerednexce c oofns× is-Itsf oolfl oaw wdeedrivb yat i×on-E Eof term N of type B
fromFo vra→ ria,blt hee exr oedfe etyxp ceo Ansi, swtshio cfh a ay dieelrdivs tthieo nlao mfbt deram mteN rmo λfxt .y pNe oBf
type A → B b y →-I, and a derivation of term M of type A, which
ctyopmebA ine → →toB By ibeyld→ th-eI, aapndpl iacd ateiroinva t(iλoxn. oNf t)e rMm oMf o tyfpt ey pBe A by, w→hi-Ech.
Tcohme br eindeuct to cy oinesldis tths eoaf pthplei taetrimon N( λ[Mx.N/x)] Mthaot rfet pylpaece Bs e baych→ fr-eEe.
occurrence of the variable x in term N b y term M. Further, if in
the derivation that Nhas type B we replace each assumption that x
has type A by the derivation that M has type A, we get a derivation
showing that N[M/x] has type B. Since the variable x may appear



zero, once, or many times in the term N, the term M may be copied
zero, once, or many times in the r educt N[M/x] . For this reason,

Figure 9. Plaque on Pioneer Spaceship

the r educt may be larger than the r edex, but it will be simpler in
the sense that is has removed a subterm of type A → B. Thus,
dthisechs eanrgsee othfa atsis suh mapstior enms ocvoerdrea sp osunbdtse rtom ao ppflt yyipneg Aa f→u nct Bion. Ttoh uists,
argument.

Figure 8 demonstrates use of these rules to evaluate a program.
The first program contains an instance of →-I followed by →-E,



aTnhde i fsi rsetw prriotgterna mb yc orenptlaaincsinga n nei ancsht onfc etho ef ft→ wo- Iof ccolulorrwenecdebs yof→ →z Eof,
type B ×A on the left b y a copy of the term hy, xi of type B ×A
otynp tehBe ri ×gh At. oTnh eth r eels uefltt bisy tha e c ospecyoo nfd t program, yw,xhiicho f fat sy ap e reB su× lt oAf
the replacement now contains an instance of ×-Ifollowed by ×-E2,
tahnedr aenploathceerm iennsttan nowce coofn t×a i-In sfo anlloi nwsetadn b cye ×of- ×E1-I . fRoellwowrietindbg ye× ach-E of
athnedsea nyoitehldesr tihnset tahncirde opfro ×of-,I f wohlilocwh edder bivyes× -thEe term hx, yi of type
tAh ×se eBy ,i ealdnds cthane bthei edvp arluoaotfe,dw nhoi cfuhr tdheerri.v

×HBe n,cea n, dsimc apnlb ifiecae tviaolnu aotefd dp r nooof fus tchoerrr.esponds exactly to evalua-
tion of p rograms, in t his instance demonstrating that applying the
function to the p air indeed swaps its elements.

9. Conclusion

Proposition as Types informs our view of the universality of certain
programming languages.

The Pioneer spaceship contains a p laque designed to communi-
cate with aliens, if any should ever intercept i t (see Figure 9). T hey
may find some parts of it easier to interpret than others. A r adial di-
agram shows the distance of fourteen pulsars and the centre of the
galaxy from Sol. Aliens are likely to determine t hat the length of
each line is proportional to the distances to each body. Another dia-
gram shows h umans in front of a silhouette of Pioneer. If Star Trek
gives an accurate conception of alien species, they may respond
“They look j ust like us, except they lack p ubic hair.” However, if
the aliens’s perceptual system differs greatly from our own, they
may b e unable to decipher these squiggles.

What would happen if we tried to communicate with aliens b y
transmitting a computer program? In the movie Independence Day,
the heroes destroy the invading alien mother ship b y infecting it
with a computer virus. Close inspection of the transmitted program
shows it contains curly b races—it is written in a dialect of C! It is
unlikely that alien species would program in C, and doubtful that



aliens could decipher a program written in C if p resented with one.
What about lambda calculus? Propositions as Types tell us that

lambda calculus is i somorphic to natural deduction. It seems diffi-
cult to conceive of alien b eings that do not know the fundamentals
of logic, and we might expect the problem of deciphering a pro-
gram written in lambda calculus to be closer to the problem of un-
derstanding the radial diagram of pulsars than that of understanding
the image of a man and a woman on the Pioneer plaque.

We might be tempted to conclude that lambda calculus is uni-
versal, but first let’s ponder the suitability of the word ‘universal’.
These days the multiple worlds interpretation of quantum physics
is widely accepted. Scientists imagine that in different universes
one might encounter different fundamental constants, such as the
strength of gravity or the Planck constant. Such constants appear
finely-tuned to values conducive to the formation of stars, and
hence life. Some explain this b y saying we must b e in a universe
where the constants are so tuned, else there could b e no living
things to observe the result [13]. But easy as it may be to imag-
ine a universe where gravity differs, it is difficult to conceive of a
universe where fundamental r ules of logic fail to apply. Natural de-
duction, and h ence lambda calculus, should not only b e k nown b y
aliens throughout our universe, but also throughout others. So we
may conclude it would be a mistake to characterise lambda calcu-
lus as a universal language, because calling it universal would be
too limiting.
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