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Functional programming techniques have been used to describe synchronous digital circuits

since the early 1980s. Here we survey the systems and formal underpinnings that constitute this
tradition. We situate these techniques with respect to other formal methods for hardware design

and discuss the work yet to be done.
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Hardware designs traverse a series of abstraction layers: what might begin as a
high-level behavioural model that addresses architectural issues will, when mature,
typically be manually translated into a register-transfer level (RTL) description that
captures how the high-level computations are performed by the finite-state means
of logic gates and memories. This is typically validated against the original model
using simulation and testing, or more formally with model checking techniques or
a proof assistant. The resulting netlists (circuit schematics represented as graphs)
are semi-automatically mapped to an implementation technology and laid out for
realisation in silicon.

The original motivation for developing domain-specific languages (DSLs) [Mernik
et al. 2005] for the upper reaches of this process was to harness the huge increases in
transistor densities on silicon chips forecast by Moore’s law [Mead and Conway 1980].
It was hoped that productivity would rise with the abstraction level, yielding designs
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2 · Peter Gammie

that were more reusable, scalable and correct. Traditional imperative programming
languages were a poor fit as their implicit sequentiality conflicts with the intrinsic
parallelism of hardware, and a global store is in tension with the ideal of placing
computations physically near the relevant state [Nikhil 2011]. For these reasons
simulation languages – specifically Verilog (based on C syntax) and VHDL (Ada) –
were pressed into service as general-purpose hardware description languages (HDLs).

Despite their widespread use in industry, neither of these languages has been
completely adequate. Their semantics are complex and have resisted useful formal-
isation [Boulton et al. 1992; Gordon 1995]. Only subsets of these languages can
be synthesised to hardware, and these subsets need not be treated coherently by
different tools. Moreover they lack modern semantically well-founded abstractions
such as algebraic data types, higher-order functions (HOFs), overloading, subtyping
and so forth. We contend that this leads to unnecessarily obfuscated descriptions,
and greatly reduces the benefits of formal verification as it must be postponed until
semantically-clear objects have been produced, which are typically low-level netlists.
This decreases the effectiveness of such techniques as the cost of rectifying flaws
is a function of when they are found [Brooks Jr. 1995]. In addition the high-level
structure and intuitions must somehow be rediscovered in these lower-level artifacts.

In the face of these deficiencies, many people have investigated how circuits may
be described as functional programs, with most treating the common special case
of synchronous digital circuits. Such models abstract the propagation delays of
the combinational logic but not the transitions between states; our simulations are
cycle accurate with respect to their realisation in hardware, and we have a global
clock. In contrast an asynchronous model allows different components in a system
to proceed independently [Jantsch and Sander 2005].

The majority of the methods we examine are structural techniques for combining
system elements. These elements have behavioural descriptions and may represent
subsystems at any level of abstraction; we do not require that they be synthesisable,
though in our examples we will take them to be familiar logic gates. We will not go
below the gate level as our synchrony assumption breaks down and resistive and
capacitive effects begin to intrude [Winskel 1986; Kloos 1987; Hanna 2000; Axelsson
et al. 2005]. We take the advantages of a compositional semantics to be self-evident.

As implementers we would like to minimise the effort involved in providing the
ever-increasing set of abstractions that users might like. One approach is to embed
a DSL (to create an EDSL) into a suitably expressive meta language [Landin 1966;
Hudak 1996], which allows the reuse of parsers, type checkers, optimisers, and some
analysis tools while avoiding at least some of the myriad pitfalls of language design.
We adopt Haskell syntax, with an idealised semantics, as an exemplar of the modern
functional programming languages [Hughes 1989; Peyton Jones 2003] that have been
shown to be attractive hosts.

Here we focus on the successful tradition of rendering synchronous digital circuits
and similar systems as more-or-less pure first-order functional programs. The key
features of this approach are the non-standard evaluation order and the use of
higher-order functions to structure the descriptions, which we discuss at length
in later sections. We concentrate in particular on the simulation semantics given
to these circuits, and touch on other interpretations such as circuit layout, energy
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data Signal α = α :> Signal α

head :: Signal α → α

head (x :> xs) = x

tail :: Signal α → Signal α
tail (x :> xs) = xs

repeat :: α → Signal α
repeat x = x :> repeat x

map :: (α → β)

→ Signal α → Signal β
map f xs = f (head xs) :> map f (tail xs)

zip :: (α → β → δ)

→ Signal α → Signal β → Signal δ
zip f xs ys =

f (head xs) (head ys) :> zip f (tail xs) (tail ys)

false, true :: Signal Bool
false = repeat False
true = repeat True

neg :: Signal Bool → Signal Bool
neg sig = map not sig

and2 :: Signal Bool → Signal Bool
→ Signal Bool

and2 sig1 sig2 = zip (&&) sig1 sig2

delay :: α → Signal α → Signal α
delay x sig = x :> sig

Fig. 1. A simple embedded DSL for describing synchronous circuits.

consumption, hazard detection, worst-case timing analysis and technology mapping;
Sheeran [2005] explores these topics in more depth along one of the lines of research
reviewed here. The pragmatics of these description mechanisms are just as important
as the clarity of the semantics: there is little point in algebraic simplicity if the
descriptions are too inconvenient to write and maintain.

We begin our survey by discussing a folklore rendition of synchronous digital
circuits in a non-strict functional programming language before examining the
hardware description projects that have used these techniques. Afterwards we
consider some closely related subjects and topics of future research.

1. CIRCUIT SEMANTICS

One may expect the semantics of gate-level descriptions of synchronous digital
circuits to be straightforward, and indeed the prevailing attitude amongst existing
hardware description languages seems to be that lifting standard propositional logic
to a temporal domain suffices for simulation [Johnson 1983; Camilleri et al. 1986;
O’Donnell 1987; Erkök 2002]. We capture the essence of this approach in the set of
combinators shown in Figure 1, expressed in (semantically idealised) Haskell.

Here the non-strictness of our host language is crucial; the Signal α datatype
models an infinite sequence of values of type α. A proper value of this type has
the form x0 :> ... :> xi :> ... for values xi of type α, where the subscript indexes
progression on an unbounded discrete timescale. In contrast to this non-strictness
in the spine of the Signal α type, it may be desirable for it to be strict in the values
it carries (of type α), to mitigate space leaks.

Circuits are first-order sequence transformers of type Signalα → Signal β, map-
ping sequences of inputs to sequences of outputs. State in sequential circuits is
provided by a finite collection of initialised delay elements (clocked D-type flip flops)
that provide access to values from the previous instant, and the instantaneous value
of any wire is a function of the inputs and the values of the delay elements for that
instant. As we will see this approach supports many useful equational laws that are
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x y z

trc :: (Signal Bool, Signal Bool, Signal Bool)
trc = (x , y, z )

where
x = delay False (and2 (or2 x (neg y)) (neg z ))

y = delay False x

z = delay False y

Fig. 2. A twisted ring counter as a set of first-order recursion equations using the combinators of
Figure 1.

often easier to apply than those for reasoning about arbitrary mutable state.
Our implementation of combinational logic is a pointwise lifting of the instanta-

neous operations to the temporal domain. As we use Haskell’s recursion to model
feedback, “cons” (our :> operator) should not evaluate its arguments [Friedman
and Wise 1976]. In other words evaluation is driven by data dependencies only.

Clearly we can derive other operations such as xor, and as we will explore later in
more detail, write succinct circuit generators as higher-order functions in Haskell.

By way of an example, consider the twisted ring counter of Stavridou [1993, §3.3.2]
shown in Figure 2. This circuit cycles through the sequence 000→ 100→ 110→
111→ 011→ 001, which intuitively involves complementing the rightmost bit and
moving it to the leftmost position, shuffling the others to the right. It self stabilises :
whatever the state of the delay elements, the circuit will return to this sequence
in a finite number of steps. In our description, each binding defines a wire, and
the meaning of the whole network is the least fixed point of this set of equations.
As such it is a Kahn network [1974]; Claessen [2001, Chapter 5] presents many
examples written in this style.

Note that each syntactic use of a gate in the description is intended to correspond
to an actual gate in the hardware realisation. We will see that this expectation is
in tension with the semantics of the host language in the same way that assuming
that each procedure definition in a program is represented in the compiled object
code is sometimes erroneous.

This encoding is termed a shallow embedding as there is no syntactic representation
of circuits that can be manipulated from within Haskell. Its strength is that we can
easily add new types of circuit elements, and freely reuse Haskell as a metalanguage.
Its weakness is that we cannot manipulate descriptions from within the language,
or reason about them inductively. In contrast a deep embedding would explicitly
represent syntax, which can be challenging to define and use in a typed setting.
Later we will see that Haskell’s type classes provide a third way.

Our näıve semantics has an infelicity, however. Consider the following circuit:

x

f x = out
where

out = neg (and2 out x )

We can see that f x diverges for all x by considering the definition of and2 in Figure 1
and the semantics of (&&) shown in Figure 3. In contrast the symmetric variant
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(&&) ⊥ F T

⊥ ⊥ ⊥ ⊥
F F F F

T ⊥ F T

and ⊥ F T

⊥ ⊥ ⊥ ⊥
F ⊥ F F

T ⊥ F T

pand ⊥ F T

⊥ ⊥ F ⊥
F F F F

T ⊥ F T

Fig. 3. The truth tables of short-circuit and (&&) standard to most programming languages,

bi-strict and and parallel and. Values for the first argument are on the left, and for the second on

the top. The value ⊥ denotes a diverging argument.

f ′ x = out where out = neg (and2 x out) converges to true on the argument false.
This behaviour is termed short-circuit evaluation in strict languages such as ML
and C.

As f and f ′ have isomorphic circuit diagrams, we expect them to have the same
semantics, and therefore and2 should make symmetric use of its inputs. One option
is to make and2 strict in the head of its second argument, causing both f and f ′ to
always diverge. This yields the traditional model where every well-defined loop is
required to contain a delay, and as we will see, this must be the semantics intended
by the champions of the approach sketched above. Here we explore the less trodden
path of making and2 non-strict in both its arguments.

To motivate this choice, consider the classic example due to Malik [1993] shown in
Figure 4. For any circuits f and g, this circuit generator is intended to dynamically
choose between f ◦ g and g ◦ f using only single copies of f and g and three
multiplexers. (A multiplexer chooses between one of its inputs on the basis of an
auxiliary input.) What makes this design work is that the apparent combinational
cycles in the schematic cannot be realised dynamically, i.e., every assignment to the
inputs yields an acyclic path through the circuit, assuming that the multiplexers are
symmetrically non-strict in the inputs they choose between. If we construct such
multiplexers from the basic gates and2 and neg, then and2 must be lazy in at least
one argument for this to obtain. We discuss this example further in §2.3.

Another example is the hardware bus arbiter of R. de Simone that is naturally
rendered as a combinationally-cyclic circuit [Potop-Butucaru et al. 2007, §2.3].
Fairness is enforced by circulating a token around a ring of arbiter cells, and the
token holder can delegate permission to proceed to the succeeding cells in the ring.

f

g

c

c

c

x

x 1

0

1

0

0

1

Fig. 4. A useful cyclic circuit schema that, for arbitrary f and g, computes either (f ◦ g) x or
(g ◦ f) x depending on the input c. Without cycles two copies of f and g would be required.
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6 · Peter Gammie

These cycles also arise naturally when we abstract from the gate to the functional
block level, as observed by Burch et al. [1993]. Their example of a carry-lookahead
adder requires the adders and carry-lookahead generator to instantaneously interact
across an abstraction boundary.

Semantically we can treat cyclic combinational logic in the same way as other
recursive definitions, by using a domain [Winskel 1993]; in this instance we introduce
a third value to our Bool type and impose a (partial) information ordering on these
values:

F T

⊥
@@ ��

This is to say that the undefined value ⊥ is less defined than either of T and F,
and that these two proper values are distinct. Intuitively we take ⊥ to mean that
the wire does not settle to a valid value, with F and T representing the standard
Boolean values. We emphasise that ⊥ is not so much an unknown value as an invalid
one in this semantics.

Using this domain we can give a symmetrically non-strict semantics to our and2
primitive using the pand function shown in Figure 3, which also shows two of its
stricter cousins for comparison. With unfortunate consequences for our simple
embedded DSL of Figure 1, Plotkin [1977] showed that pand is not sequentially
computable; see Gunter [1992, §6.1] and Brookes [1993] for further background on
this point. As most functional languages are intended to have such a deterministic
sequential semantics, we should use the stricter and operation if we rely on the
host language’s recursion. If we wish to support combinational cycles then we need
to adopt an alternative semantics for recursion, such as explicit iteration of some
reified representation, which implies that we can no longer write our circuits as
simple recursion equations directly in the host language. Alternatively one could
add parallel or non-deterministic operations to the host language, but doing so
can severely complicate its implementation and semantic properties [Hughes 1983;
Moran 1998].

We note that the sequential behaviour of circuits is unaffected by this change to
the combinational semantics; we continue to use non-strict sequences. However this
may not be true if we wish to accommodate non-determinism, or ways of observing
the circuit without changing its interface, such as for debugging purposes. How
invasive this is could be taken as a measure of how flexible the methods of the
following sections are.

Circuits that always assign all wires non-⊥ values when always fed non-⊥ inputs
are termed constructive; these can be unfolded into semantically-equivalent acyclic
circuits, which can then be passed to tools that do not directly support combinational
loops. These circuits are termed “constructive” due to their relationship with
intuitionistic propositional logic. Such circuits have been used to give a semantics
to an imperative synchronous language (see §3.1).

Combinational cycles trade time for space, and convergence may require time
exponential in circuit size [Shiple et al. 1996] in the presence of nested loops.
Neiroukh et al. [2008] found references to these types of circuits stretching back
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to switching theory in the 1960s. Shiple et al. [1996] have grounded this parallel
semantics in the physical models of Brzozowski and Seger [1995]. The connection
with constructive logic continues to be explored by Mendler et al. [2012], and Riedel
and Bruck [2003] show that cycles can yield significant space reductions in practice.

The reader should not be seduced into believing this semantics completely reflects
the physical behaviour of cyclic circuits. Consider the classic set-reset latch:

r̄

s̄

q̄

q

srLatch s̄ r̄ = (q , q̄)
where

q = neg (and2 s̄ q̄)
q̄ = neg (and2 r̄ q)

While the structural description on the right is accurate, the semantics we have
ascribed to the primitives does not yield the desired latching behaviour as observed
in practice. This is because the retention of the latch’s value across cycles depends
crucially on the propagation delays that our assumption of synchrony has already
abstracted from, and the semantics presented here does not retain the values of
wires between cycles. Similarly tri-state busses may not be properly treated by this
semantics either.

Descriptions in this style are quite pleasant as the connection with the circuit’s
netlist is quite clear, and there is no extraneous sequentiality; these recursion
equations encode data dependency amongst the components and nothing more.
Moreover we can easily incorporate subsystems described at more abstract levels
than primitive gates for the purposes of high-level design validation. However giving
these descriptions alternative semantics, such as an explicit representation of a
circuit’s netlist, is difficult in a pure host language. We discuss this issue in §2.3
and later sections.

2. CIRCUITS AND FUNCTIONAL PROGRAMMING

Having sketched the semantics we might expect of an HDL for synchronous digital
circuits, we now review systems that represent circuits using functional program-
ming languages. We begin with the the combinatory approach of µFP, and the
contemporaneous use of recursion equations by Johnson [1983]. Hydra bridges
the two traditions and points the way to the Haskell-hosted Lava systems that
continue to be developed. We discuss the Hawk project that applied these techniques
to microarchectures, the Jazz system, and the Cryptol R© language for describing
implementations of cryptographic primitives. We conclude with some higher-level
behavioural techniques.

2.1 µFP

Sheeran [1984] based her µFP system on the FP language of Backus [1978], who
championed a combinatory style of programming now termed point-free. In essence,
function composition is emphasised over application, and algebraic laws are prized
[Bird 1987; Meijer et al. 1991].
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8 · Peter Gammie

µFP extends FP by lifting instantaneous operations to sequences with the α
combinator, better known as map, and a delay operator µ:

x yf

µ :: ((Signal α, Signal δ) ; (Signal β, Signal δ))
→ Signal α ; Signal β

µ f = λx . let (y , z ) = f (x , delay ? z ) in y

The diagram on the left depicts µf for an arbitrary circuit f , and on the right is a
simulation semantics for µ in Haskell. The latter should not be taken too literally
as both FP and µFP are untyped, and the only constraints on the implementations
of combinators is that they satisfy the associated laws. We again informally identify
the type of wires with the Signal domain. A strength of the combinatory approach
is that the type of circuits α ; β which map inputs of type α to outputs of type β
can be separated from the function space of the meta language α → β. Note that
the register introduced by µ is initialised by the “don’t care” constant ? value.

Circuits are described structurally and given two semantics: simulation, by
translation into the sequence type of FP along the lines of what we sketched in
§1, and layout using the DSL for functional geometry of Henderson [1982]. This
early example of reinterpretation was realised as a custom processor rather than an
embedding in a host language.

Higher-order functions (HOFs) capture the regularity of data-oriented circuits in
an elegant manner. For example, the row combinator1 expresses a common pattern
used, for instance, in a simple ripple-carry adder:

f f fx

y0 yi yn

x′′

z0 zi zn

row :: ((α, β) ; (α, δ))
→ (α, [β]) ; (α, [δ])

row f (x , []) = (x , [])
row f (x , y : ys) =

let (x ′, z ) = f (x , y)
(x ′′, zs) = row f (x ′, ys)

in (x ′′, z : zs)

We note that such structural definitions are much more intuitive and less verbose
than a typical generic definition in VHDL, where the use of array indices introduce
the spurious possibilities of off-by-one errors and so forth.
µFP emphasises composition and not the primitive circuits; the latter are not

further specified by Sheeran [1984]. Instead a fixed set of higher-order combining
forms that have good geometric and algebraic properties are studied. Sheeran
observes that almost all the laws of FP apply to µFP, with the notable exception of
a conditional distribution law. The FP version is as follows:

h ◦ (i −→ t ; e) = (i −→ h ◦ t ; h ◦ e)

where

(− −→ − ; −) :: (α → Bool) → (α → β) → (α → β) → α → β
(i −→ t ; e) = λα. if i α then t α else e α

1The row function is called mapAccumL in the standard Haskell Data.List module.
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Lifting (− −→ − ; −) to µFP is an exercise in tuple spaghetti:

(i −→ t ; e)µFP = map (π3
1 → π3

2 ; π3
3) ◦ zip3 ◦ [i , t , e]

where [i , t , e] is informal notation for the fanout λx . (i x , t x , e x ) and πn
i projects

the ith component of an n-tuple. In µFP, h must be combinational for the putative
equation to hold, for there is always a stateful h that can distinguish t from e if
they are different.

Sheeran also proposed a fixed-point fusion rule for her µ construct:

j

h

g

f

=

h

h g

f

j

µ[f , g ] ◦ µ[h, j ] = µ[f ◦ [h ◦ [π2
1 , π

2
2 ◦ π2

2 ], π2
1 ◦ π2

2 ],
[g ◦ [h ◦ [π2

1 , π
2
2 ◦ π2

2 ], π2
1 ◦ π2

2 ], j ◦ [π2
1 , π

2
2 ◦ π2

2 ]]]

This law is intended to be used as a fission law, in the right-to-left direction: it moves
the independent parts of a state-holding element closer to the relevant computations.
We note that this law does not hold in our Signal α domain due to the presence of
partial sequences; we discuss this issue further in §3.5.

A major source of discomfort in the purely combinatory style of programming is
the need to explicitly route values from definition to use; in the applicative style we
used in §1 the λ-calculus provides this service implicitly by allowing us to give names
to wires in some scope. This plumbing problem is certainly why raw combinators
are generally thought of as compilation targets and not source languages.
µFP has been applied to the design of circuits with regular structure such as

adders, multipliers and a correlator, and more generally to systolic arrays, where
critical path lengths are reduced by pipelining in a hazard-free non-recursive way.
The process begins with purely combinational circuit designs which are transformed
into sequential pipelines by retiming transformations. Through a disciplined use of
the state introduced in this final step, the original and retimed circuits can be very
simply related. All examples are data-oriented, and control-oriented circuits do not
tend to have the geometric regularities that these combinators capture.

Sheeran [2005] reviews this line of research as well as her work on some of the
descendants of this system that we discuss later in this article.

2.2 Hardware synthesis from first-order recursion equations

Johnson and his collaborators have made an extended investigation into the practical
use of derivational reasoning in digital design [Johnson 1983; Johnson and Bose 1997;
Johnson 2001]. Their goal is to provide tools to explore the space of implementations
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of a high-level behavioural specification. Here synchronous digital circuits are
represented as first-order recursion equations over sequences as we discussed in §1.

The first major application of these techniques [Johnson 1983, Chapter 5] was
to the refinement of an interpreter for a higher-order language into a stack-based
virtual machine using the approach developed by Wand [1982]. This process relied
on general results about flowchart schemata [Manna 1974; Greibach 1975], such
as the fact that all tail-recursive functions can be implemented in constant space,
and arbitrary functions can be evaluated using a stack. Given that these schemata
can be captured by higher-order functions, we can see this as a control-oriented
complement to the µFP agenda, but where the original specifications are behavioural
and more abstract.

This process uses the program transformation framework of Burstall and Darling-
ton [1977], with the preservation of total correctness left to the discretion of the
designer [Johnson 1983, §2.4.5]. Circuits represented as recursively-defined sequences
are optimised using equations similar to those in the previous section [Johnson 1983,
Chapter 6]. Suitably oriented, these equations can transform circuits that operate
on their arguments in parallel into sequential ones.

An untyped lazy functional programming system by the name of Daisy was the
vehicle for this research, and circuit descriptions were manipulated by hand. A
strength of this approach is that all refinement artifacts are executable, i.e., can be
experimented with programmactically.

Building on this work, Johnson and Bose [1997] developed the DDD tool. Here
the refinement process begins with a first-order specification expressed as a pure
iterative (tail recursive) function in the strict untyped functional language Scheme,
extended with a facility for recursively defining sequences. These are structurally
decomposed into putative hardware blocks, again using the Burstall and Darlington
[1977] rules. From these DDD mechanically generates architectural descriptions
consisting of control and datapath circuitry, which are further optimised using
laws about recursive sequence transformers like those we have seen before. Finally
representations of abstract types such as numbers are chosen and shown sufficient
using data refinement.

Some of these steps have side conditions, such as that a fixed-width binary
representation of a number is adequate. P. Miner [Johnson 2001, §3.3] experimented
with using the PVS proof assistant to demonstrate these conditions and the soundness
of “ingenious” circuit optimisations but was stymied by the lack of support for
infinite sequences in proof assistants at the time.

Johnson and his colleagues have used this approach to derive implementations of
the FM8501 and FM9001 processors due to Hunt [Bose and Johnson 1993], a PCI
bus interface and a Java byte code generation core. They claim that this is a useful
technique for circuits with high algorithmic complexity. Similarly to µFP, it does
not address the specification of interfaces, power supplies or clock trees.

2.3 Hydra

Hydra [O’Donnell 1987; 1992; 1995; 2003] is a long-running experiment in represent-
ing circuits in various pure functional programming languages following Johnson’s
tradition of circuit transformation. It holds fast to the idea of directly expressing
circuits in the host programming language and reasoning equationally in that lan-
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Synchronous Digital Circuits as Functional Programs · 11

guage. This allows the end user to easily define new combining forms, which is not
possible in µFP without modifying its implementation.

The central problem with this approach is of identifying shared subcircuits.
Consider this rendition of the fgORgf circuit in Figure 4 in the style of Hydra (and
Lava 2000 which we meet later in this article):

fgORgf :: (Signal α ; Signal α) → (Signal α ; Signal α)
→ (Signal Bool, Signal α) ; Signal α

fgORgf f g (c, x ) = out
where

fOut = f (mux (c, x , gOut))
gOut = g (mux (c, fOut , x ))
out = mux (c, gOut , fOut)

where the mux combinator is defined as:

mux :: (Signal Bool, Signal α, Signal α) ; Signal α
mux (c :> cs, x :> xs, y :> ys) = (if c then x else y) :> mux cs xs ys

If we think of fgORgf as a standard Haskell definition then we can apply the
unrestricted β-rule to unfold the definition of gOut in the definition of fOut :

fOut = f (mux c x (g (mux c fOut x))︸ ︷︷ ︸
gOut

)

This new circuit is extensionally equal to the previous one, and so these should not be
distinguished by any Haskell context. However they are clearly structurally distinct
as the new version uses two copies of g . In other words, β-reduction invalidates
our identification of function definitions with hardware gates. Therefore we seek
a way to make these circuits observably different while retaining enough of the
host language’s semantics to support the kind of equational reasoning that circuit
transformations depend upon.

O’Donnell has proposed several ways of resolving this reification problem (see
also Claessen [2001, Chapter 3]):

—In more pragmatic times, O’Donnell [1987] suggested the use of pointer equality to
reify the expression graph of the circuit. This is a non-conservative extension to a
pure language, rendering the foundational β-rule potentially unsound everywhere,
thereby destroying equational reasoning.

—O’Donnell [1992] asked the circuit designer to do what the language processor
could not; a combinator is added so that labels can be manually attached to
components. This approach is inconvenient, non-compositional and impedes the
use of higher-order combinators such as row.

—Most recently, O’Donnell [2003] advocated the manipulation of the circuits as
Haskell abstract syntax using Template Haskell [Sheard and Peyton Jones 2002].
This is at best a partial solution as the syntax for circuits and generators are not
clearly separated here; intuitively we expect to run a circuit generator, perhaps
using higher-order combinators as canvassed in §2.1, that yields the abstract
syntax of a particular circuit. As the generators are arbitrary definitions in a
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Turing-complete language, it is difficult to see how this approach is any easier
than writing a traditional standalone language processor.
In any case manipulating the abstract syntax of the host language is fraught with
semantic issues and runs the risk of destroying many of the reasoning principles
valued by functional programmers. We discuss this approach further in §4.

Hydra supports a variety of circuit semantics [O’Donnell 1995], though as we
observed earlier, below the synchronous gate level lurk many subtle issues. O’Donnell
and Rünger [2004] designed a carry lookahead adder using Hydra as a notation for
reasoning in the Squiggol style popularised by Bird [1987] and Meertens [1986].

2.4 Lava

The original Lava system [Bjesse et al. 1998] was an attempt to embed a flexible hard-
ware description language into pure Haskell in such a way that circuit descriptions
could be both generated and manipulated within the host language. Type classes
[Kaes 1988; Wadler and Blott 1989] were used to give a signature for the circuit
primitives. By parametrising these with a monad [Wadler 1997], each interpretation
of a circuit in Lava could encapsulate the effects it requires. For instance, a netlist
interpretation may use a state monad to assign a number to each wire and map each
basic component into a graph node. Effects such as non-determinism or probing
internal signals can be easily modelled using appropriate monads. This is the middle
path between shallow and deep embeddings mentioned in §1, and is now termed a
finally tagless representation [Carette et al. 2009].

The provided loop combinator supports cycles in sequential logic:

loop :: CircuitMonad m ⇒ (α → m α) → m α

where the CircuitMonad class is the signature of this and the other basic circuit
combinators. Intuitively such a recursion operator should perform the effects of its
argument computation only once while providing the computation access to the
value it finally yields. This invalidates an unfolding semantics, and therefore the
application of the β-rule that duplicated circuitry in §2.3, while preserving this law
in the purely functional parts of the language. Erkök [2002] later gave an axiomatic
treatment of these operators, and developed a syntax to reduce the syntactic burden
when defining several values by simultaneous monadic recursion. Here is our fgORgf
example is this style2:

fgORgf :: CircuitMonad m
⇒ (α → m α) → (α → m α) → (Bool, α) → m α

fgORgf f g (c, x ) =
do rec fOut ← mux (c, x , gOut) >>= f

gOut ← mux (c, fOut , x ) >>= g
mux (c, gOut , fOut)

where the bind operator (>>=) is a monadic equivalent to (reverse) function applica-
tion, and mux now has type CircuitMonad m ⇒ (Bool, α, α) → m α; our type of
circuits α ; β is concretely α → m β.

2The do rec syntactic form has displaced the keyword mdo introduced by [Erkök 2002].
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We contend that this description is almost as syntactically appealing as those in
Hydra (§2.3) and Lava 2000 (§2.5). However the monadic structure makes visible
the order in which the components of the circuit are defined [Claessen 2001, §1.8];
in other words, a circuit can be given two semantically distinguishable descriptions
in this notation simply by permuting the monadic commands. We might attempt
to repair this infelicity by requiring that our monad be commutative, i.e., that it is
insensitive to such permutations, but clearly any interpretation that assigns unique
names to the gates will fail to have this property. This lack of full abstraction also
complicates formally reasoning about circuit equivalences.

The original Lava system suffered somewhat from the limitations of using single-
parameter type classes for reinterpretation, and successor systems such as Hawk
(§2.7) experimented with generalisations.

2.5 Lava 2000

Lava was later refined by Claessen [2001] into the Lava 2000 system, which is
an embedded DSL processor that transforms circuit descriptions into input for
myriad tools: simulation and realisation in hardware via the industry-standard
VHDL, model checking of various kinds [Halbwachs et al. 1993; Clarke et al. 1999],
testing with QuickCheck [Claessen 2001, Chapter 4] and so forth. This design-and-
verify approach contrasts sharply with the transformational correct-by-construction
approaches championed by Sheeran (§2.1), Johnson (§2.2) and O’Donnell (§2.3), all
of which rely on equational reasoning in the host language.

In Lava 2000 circuit generators are standard Haskell expressions as we saw in
§2.3. When run, these expressions generate a description of a concrete circuit which
is reified into a data structure by disciplined pointer-equality testing. This is termed
observable sharing. In contrast to the earlier systems Lava 2000 has no need of
a precise semantics for its host language as it is merely the language of circuit
generators, which are only executed and not analysed.

Claessen [2001, §3.3.4] notes that observable sharing makes visible the difference
between call-by-need (laziness) and call-by-name (non-strictness): circuits without
parameters are shared whereas those with parameters are duplicated, acting like
templates. This loss of the β-rule of the λ-calculus is hardly surprising – we are
trying to identify sharing, which is precisely the distinction between these semantics.
At the source level this problem is ameliorated by the adoption of a particular
style of description that is less likely to trap the unwary. It also relies on defeating
compiler optimisations such as common-subexpression elimination and the full
laziness transformation [Peyton Jones 1987] that introduce sharing.

Lava 2000 additionally marked a departure from using the underlying lazy func-
tional programming language to give a direct semantics for circuits: instead, the
circuit generator builds a monomorphic graph describing the final circuit, which
is then interpreted by traversal. Extra types of circuit elements such as non-
deterministic choice can be modelled as distinct kinds of graph nodes. Circuits
are therefore a subset of Haskell expressions that are treated as abstract syntax,
similarly to O’Donnell [2003] but within a single metalanguage.

This approach allows Claessen [2003] to handle circuits with combinational cycles
by computing explicit (reified) fixed points, but precludes the possibility of polymor-
phic signals: circuits in Lava talk about bits and integers only. Moreover it limits
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the possibility of transmitting some of the structure of the circuit generator to the
backends without extensive surgery to Lava 2000 itself. For instance, it may be
more efficient for a tool consuming these descriptions to generate a single instance
of a circuit and copy that as required instead of receiving the entire description of
a subsystem at each point of use. Also by allowing arbitrary HOFs as combining
forms, circuits in Lava 2000 do not always have reasonable layouts.

Lava 2000 and a variant designed by Satnam Singh at Xilinx (§2.6.1) were applied
to the design and realisation of a sorter core based on Batcher’s butterfly techniques
[Claessen et al. 2003]. They have also been used to analyze many other combinational
circuits such as adders and multipliers [Axelsson 2003], and as a host for a sequential
language much simpler than what we discuss in §3.1 [Claessen 2001, Chapter 6].
More recently Sheeran [2005; 2011] has developed techniques for context-sensitive
circuit generators and optimisers using this system.

2.6 Other Lavas

“Lava” has come to denote the structural description of hardware in Haskell. We
briefly review three of these systems.

2.6.1 Xilinx Lava. As mentioned earlier, Singh developed a variant of Lava while
at Xilinx, Inc. as an experimental vehicle for mapping circuits to the company’s
Virtex line of Field Programmable Gate Arrays (FPGAs, a type of reconfigurable
hardware). In contrast to other Lavas, this system included explicit layout combi-
nators similar to those in µFP (§2.1) [Singh and James-Roxby 2001]. Singh [2011]
shows that user-specified layouts remain useful in some cases.

Circuit descriptions are similar to those in Lava 2000. Primitive gates are specified
in terms of the look-up tables that FPGAs provide. Sharing is accounted for using
a monad internally, which creates a monomorphic graph that is then translated into
VHDL (etc.) for consumption by external tools. There is no support for cycles of
any kind.

In addition to the sorter network mentioned above, Xilinx Lava was used to de-
scribe dynamic (runtime) reconfiguration and specialisation [Singh 2004]. Unusually
for a Lava, clock signals are explicitly mentioned in descriptions, allowing a stateful
circuit to be suspended through clock gating.

2.6.2 York Lava. Naylor and Runciman [2012] use York Lava to describe their
Reduceron graph-reduction processor, which runs on an FPGA. This is a revival of
the idea of programming-language specific processors that avoid the von Neumann
bottleneck of a single global store. Such experiments are far easier to carry out now
as reconfigurable hardware is quite affordable, and more likely to be adopted as the
sequential performance of standard processors flatlines. The processor is described
in a mix of recursion equations and an imperative behavioural language they call
Recipe, which is given a semantics by translation into their Lava.

The semantics of York Lava is standard. The project investigated the use of
explicit fork points to signal sharing [Naylor and Runciman 2009]: the overloaded
fork combinator should be used to indicate that a wire has multiple sinks. This allows
most useful circuits to be reified while retaining the purity of the host language in a
manner ultimately quite similar to the explicit use of recursion combinators. Later
this approach was abandoned in favour of Lava 2000-style pointer comparisons.
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Layout is performed by the FPGA toolset.

2.6.3 Kansas Lava. The Kansas Lava system is a vehicle for investigating circuit
transformation and refinement. Gill and Farmer [2011] report on the “semi-formal”
derivation of an error-correcting code using the worker/wrapper transformation [Gill
and Hutton 2009; Gammie 2011], in concert with applicative functors [McBride
and Paterson 2008] and type functions [Chakravarty et al. 2005]. In contrast to the
structural use of lists we saw in §2.1, the dimensions of vectors and matrices are
encoded in their types, which is both safer and more awkward as present Haskell
systems do not have full support for type-level arithmetic. Layout is not prescribed.

Gill [2009] previously advocated another solution to the reification problem:
instead of polluting the semantics of the pure core of Haskell by making the sharing
of values observable at all types ala Lava 2000 (§2.5), scrutinising the structure of
a circuit is confined to the IO monad, where anything goes. Once again a test for
pointer equality is employed, and this extra discipline makes the approach both
safer – one is less likely to accidentally exploit the observation of sharing – and
more obscure, as the semantics of the IO monad is complex, fluid and yet to be
formally specified. Moreover it suffers from exactly the same problem as Lava 2000:
by allowing call-by-name and call-by-need semantics to be distinguished, the β-law
of the λ-calculus fails, as we previously remarked. This may complicate relating
fully-formal derivations and Kansas Lava circuits and generators.

This system uses the standard Kahn network semantics for circuits (§1), and
maintains both a shallow and deep embedding of the circuit to allow for direct
simulation and VHDL export. As a result the simulation semantics of the circuits is
not isolated from Haskell’s, which precludes a treatment of combinational cycles.
Clock information is explicitly encoded into types in a manner similar to Lucid
Synchrone (see §3.1).

Layout is performed by external tools.

2.7 Hawk

Hawk [Matthews et al. 1998; Launchbury et al. 1999] is a DSL embedded in
Haskell for describing and reasoning about microarchitecture. Semantically it is
very traditional, employing non-strict sequences of values to model synchronous
systems, though it does not require nor guarantee that these systems be finite-state.

The emphasis of this system is on algebraic abstractions of pipelined micropro-
cessor designs using transactions, which record the relevant state of the system
for each instruction as it proceeds through the pipeline. This requires more type
structure than allowed by Lava 2000. Early versions of Hawk attempted to use the
type classes and monads of the original Lava, but this approach was abandoned
due to the difficulty of finding a suitable recursion combinator, and the lack of
methods for resolving ambiguous uses of multi-parameter type classes that represent
relations between types. Many of the issues they identified were soon addressed
[Jones 2000; Erkök 2002; Chakravarty et al. 2005]. Later versions of Hawk provided
only a simulation semantics along the lines of §1.

The proposed algebraic laws for manipulating microarchitectures were verified in
Isabelle/HOL [Nipkow et al. 2002], for which the theory of converging equivalence
relations was developed by Matthews [1999] to allow the definition of recursive
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functions in HOL over infinite sequences. Under mild conditions such functions
have unique fixed points, and unlike the domain theoretic approach, uncomputable
functions can be defined. We discuss formal models further in §3.5.

The Hawk group built models of the then state-of-the-art Intel Pentium Pro in
addition to the DLX, a standard example of a pipelined processor. Matthews [2000]
reviews the project and discusses how Hawk relates to other HDLs.

2.8 Cryptol R©
Cryptol R© is a proprietary DSL and toolset developed by Galois, Inc. for compiling
descriptions of cryptographic algorithms into hardware or software [Browning and
Weaver 2010]. The language provides only bits as a primitive type, with sized
sequences and tuple constructors used to aggregate values. Its type system is
very flexible, allowing the definition of size- and type-polymorphic functions, and
constraints allow sizes to be underspecified. Cryptol R© descriptions can be checked
for equivalence using external tools such as SAT and SMT solvers.

Combinational circuits are described applicatively, as in §1, but as instantaneous
functions. These can be lifted to sequences pointwise, as before, or as transition
functions for state machines in the coiterative style using an unfold combinator. The
language restricts the use of higher-order functions to those that can be unfolded at
compile time, which is often sufficient for the sort of circuit combinators discussed
in §2.1. Partial application is not supported, and functions are uncurried.

A construct similar to Haskell’s list comprehensions is used to define sequences
recursively, which is realised as delayed feedback in the generated circuit. It
is also used to traverse finite sequences, and the language goes beyond purely
structural descriptions by providing par, seq and reg combinators that specify how
the comprehension should be scheduled in time and space. Browning and Weaver
[2010, §3.4] show that, by default, mapping a function f across a finite sequence
s yields hardware with as many f s as the width of s, whereas the seq annotation
generates only a single f and the requisite synchronous scheduling logic to process s
sequentially. The reg combinator pipelines a circuit in a standard way.

Layout is once more performed by external tools.

2.9 Jazz

The Jazz system was developed by A. Frey, with contributions from F. Bourdoncle,
G. Berry, P. Bertin and J. Vuillemin, contemporaneously with the original Lava
system [Claessen 2001, §1.11]. It has a syntax inspired by Java but is in fact a
higher-order, lazy, purely-functional language that supports the combination of
subtyping and parametric polymorphism proposed by Bourdoncle and Merz [1997].
Built-in support for the 2-adic integer arithmetic of Vuillemin [1994] is novel to
this system. The elaboration of circuit descriptions into netlists is similar to Lava’s
approach, and the standalone language processor supports other interpretations.

2.10 High-level Hardware Synthesis

At a higher level we might hope to abstract from timing behaviour by compiling
behavioural descriptions into synchronous or asynchronous circuits. Several such
systems are based on ideas closely related to functional programming.

SAFL [Mycroft and Sharp 2003] is a first-order pure functional language with a
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strict semantics where the only program schema on offer is tail recursion. As each
function in a SAFL description is mapped to a hardware block, the key task of its
FLaSH compiler is to schedule the use of these blocks when they are called from
multiple places in the source program.

A similar approach was taken in the design of the SASL first-order stream
processing language [Frankau and Mycroft 2003]. Tail-recursive functions define
streams, where each iteration yields zero or more elements. Unlike Cryptol R© (§2.8),
functions can be defined by recursion over scalar (non-stream/vector) types. Static
allocation is ensured by an affine type scheme that ensures streams are read at most
once. In contrast to our model and that of the synchronous languages we discuss in
§3.1, streams are not clocked: explicit handshaking is used to signal completion and
demand more input. Under the typing constraints this allows arbitrary streams to
be merged in finite space, whereas in the synchronous language Lustre the streams
would need to be on the same clock.

The ongoing “geometry of synthesis” project of Ghica [Ghica 2007; Ghica et al.
2011] interprets a higher-order imperative language – a variant of Reynolds’s Idealised
Algol – into various kinds of logic. It relies on Reynolds’s Syntactic Control of
Interference as realised by an affine type system to eliminate conflicting writes to
shared state. Unlike Johnson’s approach (§2.2) it is fully automatic.

Bluespec [Arvind and Nikhil 2008; Nikhil 2011] schedules sets of guarded com-
mands into time slots where the actions are executed transactionally. It began with
a syntax close to Haskell’s, with many of its structuring facilities, and has since
adapted to the SystemVerilog and SystemC ecosystems while retaining many of its
novel features.

2.11 Concluding remarks

The various Lavas solve the issue of identifying shared subcircuits in different
ways; some use observable sharing, either by asking the user to explicitly name
certain nodes in the graph (Hydra, §2.3), or implicitly (Hydra, §2.3, Lava 2000,
§2.5 and Kansas Lava, §2.6.3). Others use monadic recursion (the original Lava,
§2.4 and Xilinx Lava, §2.6.1). Another suggested marking fanout with explicit fork
combinators (York Lava, §2.6.2). A linear variant of the implicit parameters of
Lewis et al. [2000] was also proposed but was later deemed to be too semantically
complex in practice. We discuss a further alternative of more fully insulating the
language of circuit generators from that of circuits in §4.

3. RELATED WORK

Having reviewed the state-of-the-art in describing digital synchronous circuits as
functional programs, we briefly discuss some areas that lie alongside ours: we point
into the voluminous literature on synchronous programming languages and algebraic
techniques for hardware description, consider the role of relational models, and
sketch some of the issues with formal functional models.

3.1 Synchronous Languages

The synchronous programming languages have deployed similar ideas to those of
sequential digital circuits to achieve deterministic concurrency in software, and
reactive systems more generally. Berry [1999] argues forcefully for determinacy:
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Nondeterministic systems are harder to specify, and it is not even trivial to
define a good notion of behavior and equivalence for them, while execution
traces are perfectly adequate for deterministic systems. Debugging non-
deterministic systems can be a nightmare since transient bugs may not
be reproduced. Analyzing systems is also much more difficult since
the state space tends to explode. Therefore, it is important to reserve
nondeterminism for places where it is really mandatory, i.e., interactive
systems3, and to forget about it for reactive systems. Historically, it was
long thought that concurrency and non-determinism had to go together.
[. . . ] The main merit of synchronous languages is probably to have
reconciled concurrency and determinism.

The DSLs for this class of systems that Berry [1989] called for are thoroughly
surveyed by Benveniste et al. [2003]. Here we content ourselves with but a taste.

A central strand in this tradition is concerned with synchronous dataflow, or what
might loosely be thought of as generalised circuits. The canonical such language is
Lustre [Halbwachs et al. 1991] which extends the simple semantics of §1 with a notion
of sampling: values can be present or absent at each instant. (In a constructive
circuit all values are always present.) Clocks are used to statically guarantee that a
signal is used only when it is present, which ensures that the corresponding Kahn
network can be implemented with finite buffers [Caspi 1992]. Note that these do
not coincide with a hardware designer’s notion of clock as they need not be periodic.
A variant of Lustre that included some constructs for expressing floorplans was
proposed for hardware design [Rocheteau and Halbwachs 1991].

More recently there has been an effort to lift the features of ML to this synchronous
dataflow paradigm. Higher-order functions have been treated by Caspi and Pouzet
[1998] and Colaço et al. [2004], and pattern matching by Hamon [2006], resulting in
the language Lucid Synchrone. Here clocks are formalised as types. The language
also supports hierarchical state machines. The compiler can optionally ensure that
a program has a finite-state implementation using a simple test that is sound but
not complete. Caspi and Pouzet observe that this work connects synchrony to the
deforestation techniques of Wadler [1990] for functional programs.

The other main thread of the synchronous language tradition is the imperative
paradigm as exemplified by Esterel [Potop-Butucaru et al. 2007]. Sequential and
parallel composition are provided, and the usual battery of control constructs
including loops and exception handling as well as some specialised ones such as
preemption and suspension. Communication is provided by signals which are
broadcast within a scope; in each instant they are either present or absent. A
semantics of Esterel is given by translation into the constructive circuits that we
discussed in §1, whose theory was developed for just this purpose.

The synchronous languages share many issues with hardware design. For instance,
finite-state machines that are reactive (responding at every instant, also termed input
enabled by process algebraists) or deterministic individually may in combination
lose these properties [Maraninchi and Halbwachs 1996]. This issue is subsumed

3An interactive system is one that takes control of the interaction. Berry cites operating systems,

databases and the internet as examples.
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by the notion of causality, that of determining when a variable contains a valid
value and what that value is. In the traditional circuit semantics of §1, causality is
ensured by the dictum that “all loops must contain a delay”. (Similarly the notion
of guardedness in process algebra is a causal notion [Milner 1989].) The clocks of
the synchronous dataflow languages ensure this kind of safety while Esterel uses a
specific analysis.

In contrast to behavioural synthesis, these languages are more predictable: timing
behaviour is manifest in the source text, and all constructs are deterministic. As
for circuits, the assumption of synchrony allows worst-case timing analysis to be
performed separately from the logical design.

3.2 Algebraic Techniques

We briefly survey some algebraic approaches to describing circuits: the first two are
in the tradition of process algebra, and the last algebraic specification. Where the
functional programming techniques discussed earlier emphasise higher-level structure,
these languages can be seen as providing alternative notation and semantics for the
circuits themselves.

Cardelli and Plotkin [1981; 1982] adapted (what became) Milner’s SCCS [1983;
1989] into a “high level chip assembly language” – a notation for describing circuits
and layouts purely structurally. This language is deeply embedded into ML, which
serves as a metalanguage for composition and parametrisation. A continuous-time
behavioural semantics for circuits is given at a much lower level than our synchronous
one. Park and Im [2011] have developed a linearly-typed higher-order functional
notation for a similar purpose.

Milne [1985] developed the process algebra CIRCAL in the same tradition. It
can describe both synchronous and asynchronous systems through the judicious
introduction of non-deterministic choice. Due to its semantic neutrality it can be
used at all levels of abstraction, which can be connected by refinement relations. It
has been extended to reconfigurable hardware [Milne 2006].

The FUNNEL compiler of Stavridou [1993] translates circuits expressed as re-
cursion equations into the algebraic specification language OBJ, with the goal of
specifying, simulating and verifying them. One could consider OBJ to be a first-
order purely functional programming language which admits very powerful reasoning
principles, such as equational rewriting and fully-automatic proofs by induction.
The ACL2 theorem prover used by Hunt Jr. and his collaborators to verify various
microprocessors occupies a similar space [Hunt Jr. et al. 2010].

As OBJ itself is first-order, sequential behaviour was initially modelled as a global
history, with sets of tuples of the form (w , value, time) where w is some enumeration
of wires, time is a natural number and value is a Boolean [Stavridou 1993, §4.3.3].
Later a mild extension to OBJ allowed the use of pseudo-second order functions,
yielding “a powerful first-order calculus for reasoning about first-order functions”
that could represent sequential behaviour directly. We note that both approaches
preclude the use of circuit combinators (§2.1) as these are even higher-order.

Stavridou [1994] applied these techniques to “Gordon’s computer”, a standard
example for mechanical verification of hardware, and also reviews other equational
approaches to describing circuits.
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3.3 Relational models

A reason to shift away from functions is to avail the designer of the traditional
top-down program development methodology based on refinement [de Roever and
Engelhardt 1998], where a specification is transformed into a more deterministic
and detailed artifact expressed in the same language. Sheeran [1990] followed this
train of thought when proposing a relational calculus of circuits called Ruby. Here
combinational circuits and their specifications are taken to be strongly-typed relations
on instantaneous values, with sequences of such values used for sequential networks.
As in µFP, higher-order circuit combinators are given geometric interpretations.

The ultimate result of refinement in Ruby is a causal relation, which are those
that are functionally determined in a way familiar from database theory and logic
programming: there must exist a partitioning of the fields of all relations into
inputs and outputs where the latter is determined by the former. This excludes
the bidirectional dataflow of busses and MOS circuits which are naturally modelled
relationally. The T-Ruby system of Sharp and Rasmussen [1997] can simulate and
generate synthesisable VHDL for this subset.

Ruby has been applied to similar systems as µFP – regular and arithmetic circuits
[Jones and Sheeran 1993], and innovatively, butterflies such as FFTs. However as
we saw with µFP, the purely combinatory style can make for awkward descriptions.
Indeed the Lava approach, with its extensive battery of testing and verification
tools and ad hoc combining forms, has shown that supporting exploration with
instant feedback trumps formal dexterity during the design process. The Wired
project [Axelsson et al. 2005] combines these themes in a language for capturing
very low-level properties of chip design.

We note the extensive literature on modelling circuits in a higher-order logic
[Camilleri et al. 1986] (etc.) but it takes us too far afield to review it here.

3.4 Other models of “boxes and wires”

Another mode of generalisation is to focus on general ways of composing “boxes
and wires” diagrams, and investigate their equational properties. Category theorists
claim that these find their natural expression as some kind of monoidal category, and
indeed these structures and their “string diagrams” have been surveyed at length
by Selinger [2011].

These models are constructed using combinators, and therefore suffer from the
plumbing problem. Braibant [2011] models circuits in the Coq proof assistant
using such an approach and it is clear that while the algebra is pleasant one
would struggle to comprehend the syntactic expression of a circuit without an
accompanying diagram. This tension has been substantially resolved for a particular
set of combinators – the Arrows of Hughes [2000] – by the notation of Paterson
[2001], which allows us to write pointwise or point-free definitions at our discretion.
Megacz [2011] presents an approach to flattening two-level programs with first-order
object expressions into single-level programs which represent object language terms
using a generalization of Arrows, with application to hardware description.

The Hume project has developed a “box calculus” [Grov and Michaelson 2010]
that supports the refinement of computational boxes connected by wiring described
in a finite-state coordination language.

ACM Computing Surveys, Vol. V, No. N, 20YY.



Synchronous Digital Circuits as Functional Programs · 21

3.5 On formal functional models for synchronous digital circuits

To reason about our circuits using a proof assistant, we need an accurate formal
model for them. Here we discuss a few of the traditional models.

In general we wish to reason in two ways. Firstly we would like to transform our
circuits using equational reasoning, and as we saw above the domain models support
this mode very well; such techniques scale easily as they are largely independent of
the size of the state space. Secondly we wish to show that particular circuits have
specific properties, for which temporal logic in general [Manna and Pnueli 1992], and
its automation in the form of model checking [Clarke et al. 1999], has proven very
successful. However as observed by Matthews [2000, §7.6], by encapsulating state
our sequence models sometimes make assertions more difficult to write than their
equivalents expressed over a single global state. Day et al. [2000] discuss moving
between these representations for a shallowly-embedded HDL.

Most systems we discuss here implicitly appeal to the synchronous isomorphism:

Signal (α, β) ' (Signal α, Signal β)

where Signal α is a type that captures the temporal behaviour of a wire. Intuitively
this characterises systems with non-blocking components that communicate in
globally-synchronised rounds; it requires functions Signal α → Signal β to be length
preserving, which clearly does not hold in asynchronous settings.

This isomorphism underpins laws that allow stateful components to be combined
and decomposed, such as the one shown in §2.1. As we observed there, our Signal α
domain of Figure 1 does not not satisfy this isomorphism as it contains junk in
the form of partial sequences x0 :> ... :> xn :> ⊥, where ⊥ is the least-defined
sequence [Winskel 1993, §8.2]. These preclude the definition of an injective zip. We
note that Kahn networks and other domains based on prefix orders have the same
deficiency.

While preferring this model, Caspi [1992] observes we could also take Signal α
to be some set of functions nat → α, which supports the operations of Figure 1
while satisfying the synchronous isomorphism. (This is an environment or reader
monad.) Unfortunately it also admits junk in the form of the non-causal functions
Signal α → Signal β whose behaviour at time n depends on the value of their
arguments at time m > n. Abbott et al. [2005] have studied these containers in
categorical and type-theoretic settings; see also Bertot and Komendantskaya [2008].

This attempt to identify Signal α with the set of causal infinite sequences over α
suggests the use of corecursion [Coquand 1993]. Such an approach was advocated by
Paulin-Mohring [1995] who used it to model a multiplier and its properties in the Coq
proof assistant. Caspi and Pouzet [1998] show how to compose a single corecursive
description of a program written in their higher-order synchronous dataflow language
Lucid Synchrone (see §3.1), but it is unclear that it can be used in proof assistants
where corecursive definitions are typically required to take particular syntactic forms.
Such constraints guarantee productivity of the definition and hence well-definedness
of the sequence, and typically rule out the use of higher-order combinators such as
those in §2.

The literature on models of dataflow and streaming computation is too vast to
review here; we only point to some closely related recent work. Hughes et al. [1996],
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Barthe et al. [2004] and Abel [2010] propose sized types as a compositional way of
ensuring productivity. The “fast and loose reasoning” of Danielsson et al. [2006] does
not apply to unstructured recursion equations, though some may consider a unique
fixed-point property [Hinze and James 2011] to be something of a replacement; see
also the work of Matthews [1999] mentioned in §2.7. Broy and Stølen [2001] use
prefix-ordered domains to specify interactive systems. Möller and Tucker [1998]
provide further pointers to formal stream-based models for hardware.

4. CONCLUDING REMARKS

Here we have focused on surveying how functional programming has been used to
describe, design and validate synchronous hardware. Jantsch and Sander [2005]
situate this model of computation in a spectrum of those relevant to the construction
of embedded systems, including the codesign of hardware and software. The reader
can find surveys of HDLs in other styles in McEvoy and Tucker [1990b], Stavridou
[1993, Chapter 3] and Claessen [2001, §1.11], while Johnson [1983, Chapter 1] and
Sheeran [2005] provide more historical perspective on the early days of this tradition.
Sharing in EDSLs is discussed at length by Kiselyov [2011].

The central goal of all of these systems is to make higher-assurance hardware
easier to design, and to find a good trade-off between formal rigour and ease of use.
This is a problem of increasing interest as FGPAs and other reprogrammable logic
becomes commonplace [Cardoso et al. 2010], and it is not always feasible to fully
verify custom hardware structures for computation kernels, or coprocessors like the
Reduceron (§2.6.2). Hope may lie in automatic state-space traversal techniques
[Clarke et al. 1999], but these too require expertise quite distant from hardware
design. Random testing as epitomised by QuickCheck [Claessen 2001, Chapter 4] is
an alternative that works well when effects can be tamed, as they are in a purely
functional setting.

In contrast proof assistants are essential to the verification of complex designs and
the refinement processes advocated by Johnson [2001], and indeed Intel’s Integrated
Design and Validation (IDV) system appears to have successfully applied this
methodology to their designs [Seger et al. 2005; Grundy et al. 2006], though perhaps
not as ambitiously as Johnson aspired to. Functional programming techniques
underpin all large-scale verification efforts such as the ARM processor models of
Fox et al. [2010] and the x86-compatible models of Hunt Jr. et al. [2010].

The systems presented above are all experimental, both in their methodology and
the artifacts described with them. Sheeran [2011] has used her various platforms
to explore different kinds of circuits, and shown that rapid feedback in the form of
simulation, testing and model checking is most valuable to the designer. Johnson and
Bose [1997] and Seger et al. [2005] make similar observations about their refinement
efforts. This is clear evidence that functional programming techniques are a viable
substrate for this diverse range of tasks.

The algebraic structure of circuits has much in common with other forms of
parallel and distributed programming, which also use parallel prefix (or scan)
networks [Sheeran 2011], and butterflies and other networks that are naturally
rendered using powerlists [Paterson 2003]. These structures link our domain with
the search for higher-level programming abstractions for historically arcane DSP
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and GPU architectures [Sweeney 2009; Axelsson et al. 2010; Chakravarty et al.
2011] and multicore systems [Keller et al. 2010]. Singh [2007] also proposes adopting
concurrency abstractions developed in functional programming settings to hardware.

As we discussed in §2.2 and §2.10, functional programming has been used as a basis
for behavioural synthesis. Recently Harrison et al. [2009] propose to extend Johnson’s
use of Wand’s compiler/virtual machine split (§2.2) to a concurrent language by
using a resumption monad; every element of this agenda poses difficulties for
other programming techniques due to their lack of types, higher-order facilities or
controlled effects.

Another quintessential dimension of this tradition is the development of increas-
ingly fancy type systems [Kaes 1988; Wadler and Blott 1989; Chakravarty et al.
2005; Diatchki et al. 2005; Peyton Jones et al. 2007] (etc.) that are comfortable to
program with. Such techniques have already been shown useful for parametrising
circuit generators by vector widths (§2.6.3). Sheard [2007] proposes his Ωmega
language as a vehicle for exploring the use of this machinery in great generality; one
eventually might hope to write circuit generators as resource-aware active libraries
[Veldhuizen 2004; Sheeran 2011].

Sheard also argues that HDLs should formally recognise the distinction between
circuits and their generators; in other words, the staging of descriptions should
be manifest, which is certainly necessary to resolve the semantic tensions we saw
throughout §2. Kiselyov et al. [2004], Gillenwater et al. [2010] and Megacz [2011]
demonstrate how this idea works in practice.

We also find an argument for meta-programming from the formal reasoning
community, where Grundy et al. [2006] have developed two functional languages for
representing circuits in a higher-order logic. These involve reification of descriptions
into the logic, and not just execution; while this leads to semantic difficulties in a
programming setting [Taha 2000], it is quite desirable in a proof assistant.

The limited domain of circuits and fixed-network stream processors often admits
appealing diagrammatic representations which can be much easier to reason about
than the expressions they visualise, as we saw in §2.1. This is not too surprising as
effective circuits need to be mapped to floorplans. What is surprising is that while
semantically-wellfounded graphical tools for first-order languages abound [Harel
2009; André and Peraldi-Frati 2000; Maraninchi and Rémond 2001] (etc.), there is
little support for the kind of higher-order programming advocated here.

In closing we observe the renewed interest in functional programming techniques
for software due to the increasing use of parallelism and concurrency, and expect to
see a similar resurgence in the context of hardware design.
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