
True Sums of Products

Edsko de Vries
Well-Typed LLP

edsko@well-typed.com

Andres Löh
Well-Typed LLP

andres@well-typed.com

Abstract
We introduce the sum-of-products (SOP) view for datatype-generic
programming (in Haskell). While many of the libraries that are
commonly in use today represent datatypes as arbitrary combi-
nations of binary sums and products, SOP reflects the structure
of datatypes more faithfully: each datatype is a single n-ary sum,
where each component of the sum is a single n-ary product. This
representation turns out to be expressible accurately in GHC with
today’s extensions. The resulting list-like structure of datatypes al-
lows for the definition of powerful high-level traversal combina-
tors, which in turn encourage the definition of generic functions in
a compositional and concise style. A major plus of the SOP view is
that it allows to separate function-specific metadata from the main
structural representation and recombining this information later.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.3 [Language
Constructs and Features]: Data types and structures

Keywords datatype-generic programming; sums of products; uni-
verses; generic views; JSON; lenses; metadata

1. Introduction
The goal of datatype-generic programming is to make use of a
common underlying structure of datatypes in order to define pro-
grams in such a way that they automatically work for a large class
of datatypes. Using datatype-generic programs makes it easier to
evolve and refactor programs, because when datatypes change,
datatype-generic functions adapt. Typical examples of datatype-
generic functions include structural equality, all sorts of conversion
functions such as serialisation and deserialisation, and all kinds of
traversals such as maps and folds.

The exact way in which a common structure of datatypes is
established has a significant effect on which generic functions can
be expressed easily or at all, the programming style they encourage,
how easy they are to understand or adapt, and how efficient the
generated code is.

Not every problem domain has exactly the same requirements.
The combination of the general appeal of datatype-generic pro-
gramming and the diversity of goals and scenarios in which it is
employed make it unsurprising that many different approaches ex-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WGP ’14, August 31 2014, Gothenburg, Sweden.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3042-8/14/08. . . $15.00.
http://dx.doi.org/10.1145/2633628.2633634

ist, even within a single programming language such as Haskell.
These approaches differ in a multitude of different ways, such as
which and how many functions are predefined, which features of
the Haskell language are being used, how portable they are, how
much emphasis on efficiency they place, and so on. Their main
distinguishing feature, however, is how they view the structure of
datatypes.

Not all of these views are completely different from each other.
Many libraries are based on variations of what is typically called a
“sum of products” view. For example, the generic representation of
a binary tree type such as

data Tree a = Leaf | Branch (Tree a) a (Tree a)

using the GHC.Generics library is essentially isomorphic to

Either () (Tree a, (a,Tree a))

where Either is a binary sum type, and pairs (,) are a binary product
type. The actual representation is more complicated, because it
involves metadata such as type and constructor names etc., but let’s
focus on the pure structure for now.

Strictly speaking, the classification as a “sum of products” is not
entirely accurate. Technically, we have not a sum of a product, but
a sum of a product of products; and of course if we represent types
using binary sums and products, then nothing in the types stops
us from having products of sums, or sums of products of sums,
etc. In practice the only nesting that is used is some stacking of
sums of some stacking of products (usually to the right, sometimes
balanced), but this is by implicit assumption only.

For some generic functions, such as equality, this does not mat-
ter. However, many generic functions care about the shape of the
datatype. For instance, a function that constructs a default value
might want to prefer a nullary constructor over other constructors
(cf. Section 5.3). Similarly, when picking a random value for a
datatype with multiple constructors we might want to vary the prob-
ability of picking a constructor depending on how many arguments
it has (cf. Section 5.4). In general, defining operations that are not
completely local, but need information about other constructors, or
several constructor arguments at once, are surprisingly difficult to
define using a binary view.

As an example, let us consider a function garity that counts the
arities of all constructors of a datatype. Using GHC.Generics (Ma-
galhães et al. 2010), a possible implementation is as follows:

class GArities (a ::∗→ ∗) where
garities :: Proxy a→ [Int]

instance GArities f⇒ GArities (M1 i c f) where
garities = garities (Proxy :: Proxy f)

instance GArities V1 where garities = []
instance GArities U1 where garities = [0]
instance GArities (K1 R a) where garities = [1]

instance (GArities f,GArities g)⇒ GArities (f :∗: g) where
garities = let [x] = garities (Proxy :: Proxy f)

[y] = garities (Proxy :: Proxy g)
in [x + y]

instance (GArities f,GArities g)⇒ GArities (f :+: g) where
garities = garities (Proxy :: Proxy f)

++ garities (Proxy :: Proxy g)

Let’s ignore the details and just look at the high-level structure:
The first instance skips over metadata; the next three instances
are the case for empty datatypes, nullary constructors, and unary
constructors, and the final two cases are for products and sums.

Let us focus on the case for binary products: at this point, we
are traversing the structure of a particular constructor, so we can
assume that if we call garities on the left or right component,
exactly one arity will be returned. This function is safe only because
we know how datatypes will in general be represented. If these
implicit assumptions are violated for whatever reason, the code will
break horribly, as the type system does not help us here.

While it is possible to reestablish type safety by using a different
function garitiesProd :: Proxy a→ Int that just traverses the product
structure and returns a single arity, this leads to new problems: call-
ing garitiesProd in the sum-case would not work, as some children
of the binary sum are other sums, whereas others correspond to
single constructors. Instead, we must observe that every individual
constructor is guarded by a certain piece of metadata (another im-
plicit assumption) and use the metadata-case to mitigate between
garitiesProd and garities. All this is possible, but it’s tedious and
error-prone. It’s also in no way specific to GHC.Generics, which
we’ve merely selected as a representative example.

We argue that binary sums and products that can arbitrarily be
combined are simply not a good fit for many generic functions,
because this kind of view does not represent the structure of the
underlying Haskell datatypes very faithfully.

In this paper, we introduce a view (which we call SOP) which is
based on a single, n-ary, sum, where each component of the sum is
a single, n-ary, product. This sum of products is characterised by a
list of list of types, and counting arities is a simple matter:

arities ::∀a.SingI (Code a)⇒ Proxy a→ [Int]
arities = map length◦ collapsePOP

$ (purePOP (K ()) :: POP (K ()) (Code a))

Intuitively, the purePOP creates a () value for every argument of
every constructor in a nested, potentially heterogeneous list. As
every element is in fact of the same type, we can collapsePOP this
structure into a normal homogeneous list of lists (of type [[()]]).
Mapping with length then yields the desired result. The use of
a list-like underlying structure facilitates a generic programming
style based on high-level, powerful traversal combinators such as
purePOP and collapsePOP in this example, encouraging more concise
and more high-level definitions that are based on composing several
steps.

The SOP view also takes a very interesting approach to metadata.
In most generic views, metadata is intertwined with the structural
representation, which means that every generic function has to deal
with it in some way—even if it is just ignored, as in the M1 case
for garities shown above. Furthermore, metadata sometimes leads
to additional implicit assumptions about the shape of the data.

In the SOP view, metadata is completely independent from the
data representation. This means that functions which do not need
it don’t have to deal with it; conversely, it also means that we
can easily define application-specific metadata, i.e., type-directed
additional information that “configures” how a particular generic
function should behave.

Contributions Our paper makes the following contributions:

• We present the SOP view for generic programming, a view
that is more typed and therefore more faithfully represents
the structure of Haskell datatype compared to binary sum-of-
product approaches.

• We argue that a more precise, list-like structure, facilitates tak-
ing a high-level view on generic function definition by admit-
ting a rich interface of powerful and reusable traversal combina-
tors, while still admitting the flexibility of performing explicit
induction on the type structure when needed.

• The separation of metadata from the data representation not
only unclutters all the definitions that don’t need any metadata—
it also facilitates to define generic functions that use application-
specific metadata in an entirely type-safe way.

Implementation The SOP view is made possible and feasible by
several, partially quite recent, extensions to the GHC type system,
such as data kinds, kind polymorphism, and GADTs.

The code in this paper itself is executable—the paper sources
have been type-checked. There is also a separate implementation
in the generics-sop library (available on Hackage). The library
shares all the core ideas with this paper, but deviates in some
details which we’ve adapted in this paper for reasons of space or
presentation.

Structure of the paper The rest of the paper is structured as
follows: In Section 2, we discuss some basic concepts and some
GHC extensions that we make use of throughout the paper. In
Section 3, we introduce the SOP view. Based on this view, we then
develop a library of high-level traversal combinators (Section 4).
With the help of these, we discuss several examples (Section 5).
In Section 6, we focus on how metadata is treated using the SOP
view and discuss further examples. In Section 7, we compare our
approach to related work, before we discuss future possibilities and
conclude in Section 8.

2. Preliminaries
In this section we briefly describe some simple datatypes that we
will use throughout the paper, as well as some of the more recent
GHC extensions that we rely on.

Every Haskell programmer is intimately familiar with

id :: a→ a
const :: a→ b→ a

In this paper we will be doing a lot of type-level programming, and
will hence need the type level equivalents of these functions:

newtype I (a ::∗) = I {unI :: a}
newtype K (a ::∗) (b :: k) = K {unK :: a}

These are similar to their definitions in the standard libraries
(called Identity and Constant, respectively), but the definition of K
makes use of GHC’s PolyKinds extension and is kind polymorphic;
we will need this generality.

Polymorphic kinds become particularly important in the pres-
ence of data kinds (Yorgey et al. 2012), another recent GHC feature
that we will use. With the DataKinds extension enabled, datatype
definitions are automatically promoted to kind definitions. This in-
cludes several built-in datatypes such as lists: given a kind k, we
can construct the a type level list of kind ′[k], with ′[] being the
empty list of types and (k ′: ks) denoting type-level “cons”. The
tick marks are used to explicitly indicate that we mean the pro-
moted type or term constructors in situations where the syntax is
otherwise ambiguous. In this paper we will make extensive use of
type-level lists (but no other promoted datatypes).

We furthermore rely on constraint kinds. Constraints, some-
times also known as qualifiers, are things such as Show a in

show :: Show a⇒ a→ String

Under the ConstraintKinds extension, Show is a type like an-
other, albeit of a special kind:

Show ::∗→ Constraint

This means that we can, and will, use constraints in type synonyms,
type families, etc., and indeed we can, and will, quantify over
constraints (i.e., use type variables of kind ∗→ Constraint).

3. The SOP universe
In this section we introduce the basic idea and the implementation
of the sum-of-products (SOP) approach to datatype-generic pro-
gramming.

In dependently typed languages, a universe consists of a type
of codes together with an interpretation function mapping codes to
types (Martin-Löf 1984). The codes serve as an abstract represen-
tation of the types. Functions can be defined inductively over the
codes and are then generic over all types described by the universe.

In Haskell, we cannot map values to types, but in the presence of
DataKinds, we can lift everything up by one level: We use a kind
(rather than a type) of codes. An interpretation function becomes
a type-level function (in general, a type family, data family or a
GADT) parameterised over an argument that has the kind of codes.

3.1 Codes and interpretations
The fundamental idea of the SOP universe is that the kind of codes
is a (promoted) list of list of types, written [[∗]]. The goal of the
universe is to provide descriptions of Haskell datatypes (of kind ∗).
We use a type family to map a datatype to its code:

type family Code (a ::∗) :: [[∗]]

A type of kind [[∗]] has no inhabitants—it is merely an abstract
description that we can operate on. Consider the following simple
datatype of arithmetic expressions with just integer constants and
addition as an example:

data Expr = Num Int | Add { left :: Expr, right :: Expr}
The code for Expr looks as follows:

type instance Code Expr = ′[′[Int], ′[Expr,Expr]]

The outer list has one element per constructor. For each constructor,
the corresponding inner list contains the types of the constructor
arguments.

Based on the SOP codes of kind [[∗]], we can now consider
interpretations.

The most important interpretation is called SOP f (“sum of
products”). It views the outer list as an n-ary sum, representing
the choice between the constructors, and the inner lists as n-ary
products, representing the constructor arguments. In addition, the
functor f is applied to each of the elements. An important property
is that SOP I (Code a) (where I is the identity functor) is isomorphic
to the original datatype a. This isomorphism is captured by the type
class Generic:

type Rep a = SOP I (Code a)

class SingI (Code a)⇒ Generic (a ::∗) where
from :: a→ Rep a
to :: Rep a→ a

The functions from and to witness the isomorphism and are sup-
posed to be mutual inverses. The SingI constraint will be explained
in Section 4.1; for now, it suffices to say that it will always be satis-
fied. The purpose of the class Generic is as follows: if we manage

to define a function that works for all (or a certain, well-specified
subset of) codes, then we can turn that function into a datatype-
generic function by making it work on all suitable instances of class
Generic, applying the isomorphisms to translate as needed between
the original datatype and its structural representation.

We will provide example instances of class Generic as soon as
we have defined SOP in Section 3.3. As we shall see, they are
straight-forward to define, and can easily be derived by Template
Haskell (or by GHC itself, when appropriately extended).

There is another interesting interpretation of our codes, called
POP f (for “product of products”). It views both the outer and the
inner type-level lists as n-ary products, and once again applies f
to all the elements. A POP f represents a table of information that
is available at each component of the original datatype. A POP
structure is excellent for storing information we need or want for
all the components of all constructors. For example, the arities
function from Section 1 made use of POP.

Let us now discuss how to define SOP and POP, before we go
on to provide concrete examples for instances of the Generic class
and then move on to build a library on top of our basic universe.

3.2 Sums and Products
In order to translate Haskell values into the SOP universe, we
need support for n-ary sums and products. As a first attempt, the
following datatype is isomorphic to arbitrary right-nested pairs (or
heterogeneous lists):

data NP :: [∗]→∗ where -- preliminary
Nil :: NP ′[]
(:∗) :: x→ NP xs→ NP (x ′: xs)

For example, the nested pair

(True, (’x’,3)) :: (Bool, (Char, Int))

corresponds to

True :∗ ’x’ :∗ 3 :∗ Nil :: NP ′[Bool,Char, Int]

(assuming that (:∗) is right-associative, just like ordinary (:) for
lists).

We will however often need a product

f T1× f T2×·· ·× f Tn

for some functor f; so we choose to define NP with functor applica-
tion “built-in”:

data NP :: (k→∗)→ [k]→∗ where
Nil :: NP f ′[]
(:∗) :: f x→ NP f xs→ NP f (x ′: xs)

The nested pair from above can still be expressed by choosing the
identity functor I (cf. Section 2) for f:

I True :∗ I ’x’ :∗ I 3 :∗ Nil :: NP I ′[Bool,Char, Int]

We can define n-ary sums in a similar manner:

data NS :: (k→∗)→ [k]→∗ where
Z :: f x→ NS f (x ′: xs)
S :: NS f xs→ NS f (x ′: xs)

The constructor names are reminiscent of Peano naturals. The con-
structor Z injects into the first component of a sum (with a least
one component), S◦Z into the second component of a sum (with at
least two components), and so on:

Z :: f x→ NS f (x ′: xs)
S◦Z :: f y→ NS f (x ′: y ′: xs)
S◦S◦Z :: f z→ NS f (x ′: y ′: z ′: xs)

By nesting NS and NP applications, we can define both SOP
and POP1:

type SOP (f :: k→∗) (xss :: [[k]]) = NS (NP f) xss
type POP (f :: k→∗) (xss :: [[k]]) = NP (NP f) xss

The definition of POP relies on the kind polymorphism of NP: the
first argument of the inner application has kind k → ∗, the first
argument of the outer application has kind [k]→∗.

3.3 Examples
Having discussed the definition of SOP, we are finally equipped to
give a concrete example instance of the Generic class.

Let’s return to our example type of arithmetic expressions, for
which we had already defined:

data Expr = Num Int | Add { left :: Expr, right :: Expr}
type instance Code Expr = ′[′[Int], ′[Expr,Expr]]

The class instance looks for Expr as follows:

instance Generic Expr where
from (Num n) = Z (I n :∗ Nil)
from (Add e f) = S (Z (I e :∗ I f :∗ Nil))

to (Z (I n :∗ Nil)) = Num n
to (S (Z (I e :∗ I f :∗ Nil))) = Add e f

The recursive occurrences of Expr are not translated. This shallow
transformation between a datatype and its structural representation
is rather common for datatype-generic programming. It has the
advantage that from and to are not recursive. We will come back
to this point in Section 5.1.

As another example, let us look at a Generic instance for a
parameterised datatype such as lists:

type instance Code [a] = ′[′[], ′[a, [a]]]

instance Generic [a] where
from [] = Z Nil
from (x : xs) = S (Z (I x :∗ I xs :∗ Nil))

to (Z Nil) = []
to (S (Z (I x :∗ I xs :∗ Nil))) = x : xs

Again, we perform a shallow translation, not touching any of the
components. This means that we can define Generic [a] without
having to require Generic a.

As we can see from these two examples, Generic instances are
rather straight-forward to define. Nevertheless, to make generic
functions defined in the SOP view applicable to a datatype, a
Generic instance has to be provided, and this is tedious.

In practice, we therefore prefer to let the compiler generate
the instance for us. The generics-sop library contains Template
Haskell (Sheard and Peyton Jones 2002) code to do so. There, we
can e.g. write

deriveGeneric ′Expr

to have the above Generic instance of Expr derived for us. It’s also
possible to extend GHC (similar to the DeriveGeneric extension
that already exists for GHC.Generics) to have built-in support for
this class, or to use techniques as described by Magalhães and Löh
(2014) to automatically translate between a GHC-internal represen-
tation and the SOP universe.

4. Traversal Combinators
In principle, we have all the ingredients now and could start defin-
ing generic functions, by induction over SOP values. However, the

1 In the generics-sop package, SOP and POP are defined via newtype, so
that type class instances can be defined for them.

list-like structure we have available invites to build higher-level
traversal operators that can be reused in the definition of several
generic functions.

We argue that the very structured SOP view makes it easier
to approach generic programming with higher-order functions: the
product and sum structure are clearly separate from each other,
which encourages to traverse them separately with dedicated com-
binators and compose the different phases.

In this section, we therefore try to reveal a bit more structure in
the four types we mostly deal with: NP, NS, SOP and POP2. With
the combinators we build in this section (the final list is shown
in Figure 2), we can then implement actual application-specific
generic functions in a very concise fashion. We will provide ex-
amples in Sections 5 and 6.

4.1 Constructing products
We will equip NP with what looks like an applicative interface; the
analogy with Applicative is not perfect, but we will use the same
nomenclature as an aid to the reader to make it easier to remember
the names.

The first thing we need is an equivalent of pure for NP. We
might try to define

pureNP :: (∀a. f a)→ NP f xs -- preliminary

which creates an NP by repeating the given element as many times
as there are elements in xs. However, there is a problem: in order
to define this function, we need to perform induction over xs, and
there is no way to perform pattern matching on a parametrically
polymorphic type variable such as xs in Haskell. In a dependently
typed language, xs would be a term-level list we could match on. If
we want to simulate the situation in Haskell, we need to use either
a type class, or a term-level value that reflects the structure of xs on
the term level—so-called singleton types (Eisenberg and Weirich
2012).

In this paper, we will only need singletons for type-level lists
as summarised in Figure 1. We define a data family Sing and a
type class SingI that are mutually recursive. A Sing a is an explicit
representation of type a on the term-level, in such a way that we
can pattern-match on it. Since there is at most one such value for
any given type, we use class SingI to infer that value automatically
whenever possible.3

For type-level lists, we introduce SNil and SCons to distinguish
between the two possible cases. For types of kind ∗, we introduce
a “dummy” singleton SStar that does not actually allow us to
distinguish different types of kind ∗ at run-time. So even in the
presence of a SingI (a :: ∗) constraint, parametricity still holds. We
can use singletons in the definition of pureNP as follows:

pureNP ::∀f xs.SingI xs⇒ (∀a. f a)→ NP f xs
pureNP f = case sing :: Sing xs of

SNil → Nil
SCons→ f :∗ pureNP f

Note that we use the ScopedTypeVariables extension here, so the
call to sing produces a singleton of the same xs that is also the index
of the resulting NP.

2 In the generics-sop library, most of the combinators we define in this
section are defined via type classes, so that names can be reused. As only the
four instances for NP, NS, SOP, and POP are relevant, we do not introduce
the classes here, but rather list the explicit types, and add indices to the
function names to distinguish the different instances.
3 Our singletons deviate slightly from Eisenberg and Weirich (2012), where
Sing and SingI are not mutually recursive. However, using the original
approach, every function defined using singletons needs in principle two
versions, one using Sing and one using SingI. We can avoid that here. The
change is not essential for our development.

We can provide a similar function for products of products:

purePOP ::∀f xss.SingI xss⇒ (∀a. f a)→ POP f xss
purePOP f = case sing :: Sing xss of

SNil → Nil
SCons→ pureNP f :∗ purePOP f

In practice, however, the types of pureNP and purePOP are often too
restrictive. They require a value of type ∀a. f a, i.e., a value that
is parametrically polymorphic in a. Often we want to use a value
that relies on a type class constraint c, of type ∀a.c a⇒ f a. We
therefore define the following variant of pureNP:

cpureNP :: ∀c xs f. (All c xs,SingI xs)
⇒ Proxy c→ (∀a.c a⇒ f a)→ NP f xs

cpureNP p f = case sing :: Sing xs of
SNil → Nil
SCons→ f :∗ cpureNP p f

The constraint All c requires all the types in xs to satisfy c; we can
define it as follows:

type family All (c :: k→ Constraint) (xs :: [k]) :: Constraint

type instance All c ′[] = ()
type instance All c (x ′: xs) = (c x,All c xs)

For example, the application All Eq ′[Bool,Char, Int] expands to the
constraint

(Eq Bool, (Eq Char, (Eq Int, ())))

which is equivalent to

(Eq Bool,Eq Char,Eq Int)

The Proxy c argument is necessary because GHC’s type inferencer
generally refuses to guess the value of constraint variables such as c
unless they appear as an argument to a datatype such as Proxy:

data Proxy (a :: k) = Proxy

As datatypes are by definition injective, phantom arguments such
as that of Proxy are a common technique to provide explicit instan-
tiations of type variables to GHC. For example,

cpureNP (Proxy :: Proxy Eq)
:: (All Eq xs,SingI xs)⇒ (∀a.Eq a⇒ f a)→ NP f xs

Following the ideas developed for cpureNP, we try to generalise
purePOP to cpurePOP in a similar manner. Unfortunately, however,
we cannot use

cpurePOP :: (All (All c) xss,SingI xss) -- preliminary
⇒ Proxy c→ (∀a.c a⇒ f a)→ POP f xss

since type family applications (just like type synonyms) must be
fully saturated (Sulzmann et al. 2007, Section 3.6), and All c is not
(it only partially applies All). Instead we define All2

type family All2 (c :: k→ Constraint) (xs :: [[k]]) :: Constraint

type instance All2 c ′[] = ()
type instance All2 c (x ′: xs) = (All c x,All2 c xs)

and can then define

cpurePOP :: ∀c f xss. (All2 c xss,SingI xss)
⇒ Proxy c→ (∀a.c a⇒ f a)→ POP f xss

We will come back to the problem of a partial application of All in
Section 4.5.

4.2 Application
Having defined the analogue of pure, we need to define the ana-
logue of 〈∗〉, which we will call ap. For NP this amounts to ap-

data family Sing (a :: k) ::∗
data instance Sing (a :: [k]) where

SNil :: Sing ′[]
SCons :: (SingI x,SingI xs)⇒ Sing (x ′: xs)

data instance Sing (a ::∗) where
SStar :: Sing (a ::∗)

class SingI (a :: k) where
sing :: Sing a

instance SingI (a ::∗) where
sing = SStar

instance SingI ′[] where
sing = SNil

instance (SingI k,SingI ks)⇒ SingI (k ′: ks) where
sing = SCons

Figure 1. Singletons

plying a product of functions to a product of arguments. The only
complication here is that we need to define a lifted function space:

newtype (f _ g) a = Fn {apFn :: f a→ g a}
For convenience, we define a few auxiliary constructors for lifted
functions with several arguments:

fn2 :: (f a→ f′ a→ f′′ a)→ (f _ f′ _ f′′) a
fn3 :: (f a→ f′ a→ f′′ a→ f′′′ a)→ (f _ f′ _ f′′ _ f′′′) a

Using (_), it is easy to define apNP:

apNP :: NP (f _ g) xs→ NP f xs→ NP g xs
apNP Nil Nil = Nil
apNP (Fn f :∗ fs) (x :∗ xs) = f x :∗ apNP fs xs

While we cannot apply a sum of functions to a sum of arguments,
we can apply a product of functions to a sum of arguments:

apNS :: NP (f _ g) xs→ NS f xs→ NS g xs
apNS (Fn f :∗) (Z x) = Z (f x)
apNS (:∗ fs) (S xs) = S (apNS fs xs)

We provide similar functions for product of products and sums of
products:

apPOP :: POP (f _ g) xs→ POP f xs→ POP g xs
apSOP :: POP (f _ g) xs→ SOP f xs→ SOP g xs

Armed with pure and ap, we can define a host of derived
functions; for example, we can define various variations on liftA
(which is like map), such as

liftANP :: SingI xs⇒ (∀a. f a→ g a)→ NP f xs→ NP g xs
liftANP f xs = pureNP (Fn f) ‘apNP‘ xs

as well as various variations on liftA2 (which is like zipWith), such
as

cliftA2NP :: (All c xs,SingI xs)⇒ Proxy c
→ (∀a.c a⇒ f a→ g a→ h a)
→ NP f xs→ NP g xs→ NP h xs

cliftA2NP p f xs ys = cpureNP p (fn2 f) ‘apNP‘ xs ‘apNP‘ ys

Figure 2 provides an overview.

4.3 Collapsing to homogeneous structures
If we instantiate our n-ary products with the constant functor K
(cf. Section 2) we get a homogeneous product that we can collapse
to a list.

liftANP :: SingI xs ⇒ (∀a. f a→ g a)→ NP f xs → NP g xs
liftANS :: SingI xs ⇒ (∀a. f a→ g a)→ NS f xs → NS g xs
liftAPOP :: SingI xss⇒ (∀a. f a→ g a)→ POP f xss→ POP g xss
liftASOP :: SingI xss⇒ (∀a. f a→ g a)→ SOP f xss→ SOP g xss

cliftANP :: (All c xs, SingI xs) ⇒ Proxy c→ (∀a.c a⇒ f a→ g a)→ NP f xs → NP g xs
cliftANS :: (All c xs, SingI xs) ⇒ Proxy c→ (∀a.c a⇒ f a→ g a)→ NS f xs → NS g xs
cliftAPOP :: (All2 c xss,SingI xss)⇒ Proxy c→ (∀a.c a⇒ f a→ g a)→ POP f xss→ POP g xss
cliftASOP :: (All2 c xss,SingI xss)⇒ Proxy c→ (∀a.c a⇒ f a→ g a)→ SOP f xss→ SOP g xss

liftA2NP :: SingI xs ⇒ (∀a. f a→ g a→ h a)→ NP f xs → NP g xs → NP h xs
liftA2NS :: SingI xs ⇒ (∀a. f a→ g a→ h a)→ NP f xs → NS g xs → NS h xs
liftA2POP :: SingI xss⇒ (∀a. f a→ g a→ h a)→ POP f xss→ POP g xss→ POP h xss
liftA2SOP :: SingI xss⇒ (∀a. f a→ g a→ h a)→ POP f xss→ SOP g xss→ SOP h xss

cliftA2NP :: (All c xs, SingI xs) ⇒ Proxy c→ (∀a.c a⇒ f a→ g a→ h a)→ NP f xs → NP g xs → NP h xs
cliftA2NS :: (All c xs, SingI xs) ⇒ Proxy c→ (∀a.c a⇒ f a→ g a→ h a)→ NP f xs → NS g xs → NS h xs
cliftA2POP :: (All2 c xss,SingI xss)⇒ Proxy c→ (∀a.c a⇒ f a→ g a→ h a)→ POP f xss→ POP g xss→ POP h xss
cliftA2SOP :: (All2 c xss,SingI xss)⇒ Proxy c→ (∀a.c a⇒ f a→ g a→ h a)→ POP f xss→ SOP g xss→ SOP h xss

cliftA2′NP :: (All2 c xss,SingI xss)⇒ Proxy c→ (∀xs.All c xs⇒ f xs→ g xs→ h xs)→ NP f xss→ NP g xss→ NP h xss
cliftA2′NS :: (All2 c xss,SingI xss)⇒ Proxy c→ (∀xs.All c xs⇒ f xs→ g xs→ h xs)→ NP f xss→ NS g xss→ NS h xss

collapseNP :: NP (K a) xs → [a]
collapseNS :: NS (K a) xs → a
collapseSOP :: SingI xss⇒ SOP (K a) xss→ [a]
collapsePOP :: SingI xss⇒ POP (K a) xss→ [[a]]

fromList :: (Alternative f,SingI xs)⇒ [a]→ f (NP (K a) xs)

sequenceNP :: (SingI xs, Applicative f)⇒ NP f xs → f (NP I xs)
sequenceNS :: (SingI xs, Applicative f)⇒ NS f xs → f (NS I xs)
sequenceSOP :: (SingI xss,Applicative f)⇒ SOP f xss→ f (SOP I xss)
sequencePOP :: (SingI xss,Applicative f)⇒ POP f xss→ f (POP I xss)

Figure 2. Useful combinators

collapseNP :: NP (K a) xs→ [a]
collapseNP Nil = []
collapseNP (K x :∗ xs) = x : collapseNP xs

If we do the same for an n-ary sum, we have a homogeneous sum,
from which we can extract a single element:

collapseNS :: NS (K a) xs→ a
collapseNS (Z (K x)) = x
collapseNS (S xs) = collapseNS xs

There are similar functions for POP and SOP that produce a [[a]]
and a [a], respectively.

4.4 Constructing sums
The functions

Left :: a→ Either a b
Right :: b→ Either a b

for Haskell’s binary sum type Either are called injections. For our
n-ary sums, we can define the type of injections as

type Injection (f :: k→∗) (xs :: [k]) = f _ K (NS f xs)

For any n-ary sum we can then construct an n-ary product contain-
ing all injections into the sum4:

injections ::∀xs f.SingI xs⇒ NP (Injection f xs) xs
injections = case sing :: Sing xs of

SNil → Nil
SCons→ Fn (K◦Z) :∗ liftANP shift injections

shift :: Injection f xs a→ Injection f (x ′: xs) a
shift (Fn f) = Fn (K◦S◦unK◦ f)

4 Although it might seem that injections is somewhat ad-hoc, categorically
speaking it in fact corresponds rather precisely with pureNP.

This is typically used in generic producers by applying a product
of injections to a product of arguments to produce a value of a sum
type:

apInjsNP :: SingI xs⇒ NP f xs→ [NS f xs]
apInjsNP = collapseNP ◦apNP injections

which has as special case

apInjsPOP :: SingI xss⇒ POP f xss→ [SOP f xss]
apInjsPOP = apInjsNP

We will see examples in Sections 5.4 and 6.2.

4.5 Other combinators
Figure 2 shows a list of combinators for the SOP datatypes. We
discussed the various liftA and liftA2 functions in Section 4.2, and
collapse in Section 4.3.

The function fromList is dual to collapseNP in that it creates
a (homogeneous) product from a list, and fails if the list has the
wrong length. Finally, sequenceNP and co are the analogue of

sequenceA :: Applicative f⇒ t (f a)→ f (t a)

The implementations of all these functions is straight-forward, and
we omit them. There are two functions in the list, however, whose
implementation is non-trivial: cliftA2′

NP and cliftA2′
NS. These func-

tions are useful if we have a sum of products (or product of prod-
ucts), and we want to process each inner product as a whole, rather
than mapping a function individually over all the leaves. (We will
see an example using cliftA2′ as well as fromList and sequence in
Section 6.2).

At first glance it might seem that cliftA2′
NP is simply an alias for

cliftA2NP, instantiating c at All c. However, as we saw earlier, type
family applications must always be fully saturated; hence, that is
not possible.

One solution to this problem is to use defunctionalisation
(Eisenberg 2013), but this affects the entire development and in-
troduces significant complications. Fortunately, there is another
solution. We can reify All c as an explicit dictionary AllDict c5

data AllDict (c :: k→ Constraint) (xs :: [k]) where
AllDict :: All c xs⇒ AllDict c xs

Crucially, we can construct a product of these dictionaries, pro-
vided that we know that the constraint holds at the leaves:

allDictNP :: ∀(c :: k→ Constraint) (xss :: [[k]]).
(All2 c xss,SingI xss)

⇒ Proxy c→ NP (AllDict c) xss
allDictNP p = case sing :: Sing xss of

SNil → Nil
SCons→ AllDict :∗ allDictNP p

We can then use allDictNP to implement cliftA2′
NP

cliftA2′
NP :: (All2 c xss,SingI xss)⇒ Proxy c
→ (∀xs.All c xs⇒ f xs→ g xs→ h xs)
→ NP f xss→ NP g xss→ NP h xss

cliftA2′
NP p f xs ys =

pureNP (fn3 $ λAllDict→ f)
‘apNP‘ allDictNP p ‘apNP‘ xs ‘apNP‘ ys

We construct the product of dictionaries, and then provide that
dictionary as an additional argument; by opening the dictionary
we bring the original type class constraint back into scope. The
implementation of cliftA2′

NS is analogous.

5. Generic functions in SOP
In this section we discuss some example generic functions. We de-
scribe two consumers (reduction to normal form and comparing for
equality), two producers (constructing a default value and produc-
ing Arbitrary values), and the generic computation of lenses into
a record type. The latter is purely defined in terms of the code of
datatype, and cannot easily be classified as either consumer or pro-
ducer.

The functions in this section do not need any metadata about
the datatypes they are working with. In the SOP universe we have
described so far metadata is not present. The advantage is that
functions that do not require metadata do not have to deal with
metadata at all.

In Section 6 we will consider further examples of generic func-
tions (e.g. (de-)serialization of JSON) that do make use of metadata.

5.1 Reduction to normal form
Haskell’s NFData class captures types that can be fully evaluated:

class NFData a where rnf :: a→ ()

The idea is that x will be evaluated to normal form when rnf x is
demanded (evaluated to weak head normal form). For example,
while

Add⊥⊥ ‘seq‘ True

will happily evaluate to True,

rnf (Add⊥⊥) ‘seq‘ True

evaluates to ⊥. The generic instance for NFData illustrates nicely
that generic functions in the SOP approach can be very concise

5 In the generics-sop library, the AllDict constructor has an additional
SingI xs constraint, which is sometimes useful and doesn’t affect the defini-
tion of allDictNP. We omit it here because we won’t need it in the paper.

grnf :: (Generic a,All2 NFData (Code a))⇒ a→ ()
grnf = rnf◦ collapseSOP ◦ cliftASOP p (K◦ rnf◦unI)◦ from

where
p = Proxy :: Proxy NFData

We can understand this function by tracking the types. First
we use from to translate from a to the generic representation
SOP I (Code a). We then map rnf (modulo newtype wrapping and
unwrapping) across this sum of products to get a value of type
SOP (K ()) (Code a), which we can collapse to a list of type [()].
Finally, we can reduce that list to a single unit value through one
more application of rnf.

We use All2 in the type of grnf to require that the types of the
leaves must all satisfy NFData. Typically grnf will be used to define
class instances:

instance NFData Expr where
rnf = grnf

It is also possible to provide default signatures for type classes to
use a generic definition such as grnf as default implementation for a
type class (this requires the DefaultSignatures extension). Then
you can even provide empty instance declarations.

Using both the generic function and the type class in connection
is standard, and it means that the behaviour of a generic function
can be specialised for specific datatypes, and in particular for ab-
stract datatypes—even if these datatypes are deeply nested. This
is made possible by the fact that the generic conversion functions
from and to are shallow and only translate one layer of the datatype.

5.2 Equality
The definition of grnf showed that the combinators from Section 4
give us powerful means to define functions very succinctly. How-
ever, nothing is stopping us from traversing the sum of products
structure more directly if that is more convenient—or indeed use a
combination of both.

geq :: (Generic a,All2 Eq (Code a))⇒ a→ a→ Bool
geq a b = go sing (from a) (from b)

where
go :: ∀xss. (All2 Eq xss)
⇒ Sing xss→ SOP I xss→ SOP I xss→ Bool

go SCons (Z xs) (Z ys) = and (collapseNP

(cliftA2NP p aux xs ys))
go SCons (S xss) (S yss) = go sing xss yss
go = False

aux :: Eq a⇒ I a→ I a→ K Bool a
aux (I x) (I y) = K (x = = y)

p = Proxy :: Proxy Eq

In this definition of generic equality we pattern match on the con-
structors of the sum directly to check that both values are an appli-
cation of the same constructor, but then compare the products for
equality using the cliftA2NP combinator from Section 4.2. As a mi-
nor complication, we need to pass a singleton in the helper function
go, because it’s required by cliftA2NP.

5.3 Producing default values
The Default type class from the data-default package describes
types that have a default value.

class Default a where def :: a

We can produce default values generically for any type with at least
one constructor, provided that we can provide default values for
each of the arguments of that constructor:

gdef ::∀a xs xss.
(Generic a,Code a∼ (xs ′: xss),All Default xs)⇒ a

gdef = case sing :: Sing (Code a) of
SCons→ to◦Z $ cpureNP p (I def)

where
p = Proxy :: Proxy Default

The pattern match on sing is necessary to bring a SingI xs into
scope. We use cpureNP to create a product of default values for the
arguments of the first constructor, selected by applying Z.

We can use this function to create a Default instance for Expr:

instance Default Expr where def = gdef

so that def :: Expr will evaluate to .
In Section 1, we have claimed that SOP makes it easy to define

functions that operate on the shape of the underlying datatypes
in non-local ways. Let us therefore explore a variant of gdef that
does not simply choose the first constructor, but instead chooses a
constructor with the minimal number of arguments—in particular,
it would choose a nullary constructor if one is present.

To achieve this, we first define an auxiliary function gdef′ that
produces a list of default values, one of each constructor, paired
with the arity of that constructor:

gdef′ :: (Generic a,All2 Default (Code a))⇒ [(Int,a)]
gdef′ = collapseNP $ liftA2NP aux (cpurePOP p (I def)) injections

where
aux np (Fn inj) = K (lengthNP np, to (unK (inj np)))
p = Proxy :: Proxy Default

This function is similar to apInjsNP from Section 4.4. We create a
product of all injections into the target type using injections. We
wish to apply each of the injections to suitable default arguments
generated using cpurePOP p (I def). We combine the two products
using liftA2NP with the function aux that not only performs the
application and converts to the target type to, but also determines
the arity of each constructor, which is the length of the product of
default values.

We need the trivial additional function

lengthNP :: NP f xs→ Int

to compute the length of an n-ary product.
Finding the desired default value from the list of candidates is

now simply a matter of applying standard list functions:

gdef ::∀a xs xss. (Generic a,
Code a∼ (xs ′: xss),All2 Default (Code a))⇒ a

gdef = snd◦head $ sortBy (comparing fst) gdef′

5.4 Producing arbitrary values
The Arbitrary type class from the QuickCheck package (Claessen
and Hughes 2000) is similar to Default, but captures the production
of a random value instead6:

class Arbitrary a where arbitrary :: Gen a

The monad Gen is defined in the QuickCheck package for produc-
ing random values; one combinator predefined in QuickCheck that
we will need is

elements :: [a]→ Gen a

which picks a random element from a list. We will use elements to
pick a constructor:

garbitrary ::∀a. (Generic a,All2 Arbitrary (Code a))⇒ Gen a
garbitrary = liftM to $ do

6 We ignore shrink for the sake of simplicity.

branch← elements (apInjsPOP (cpurePOP p arbitrary))
sequenceSOP branch

where
p = Proxy :: Proxy Arbitrary

We first use cpurePOP to create a product of product of generators;
i.e., a generator for each argument of each constructor. We then
use apInjsPOP to pairwise apply the injections of the sum to each
inner product; each element in the list corresponds to one of the
constructors of the datatype. We use elements to pick one of these,
which has type SOP Gen (Code a), and finally use sequenceSOP to
run all the generators for this constructor to obtain random values
for each of the constructor arguments.

The naive implementation of garbitrary given above provides
no control over the size of structures that are generated. In fact,
depending on the datatypes it is called, it is quite possible that
it will effectively generate infinite values. As already indicated in
Section 1, for a production-grade implementation of garbitrary, you
want to do a significant amount of additional work, such as making
use of the size parameter provided by Gen and decreasing that
before descending into substructures, ensuring that only “small”
constructors are chosen if the desired size is small, and tweaking
the relative probabilities of the constructors. In fact, even then you
might want to take application-specific knowledge into account
and make garbitrary configurable by providing extra metadata that
tweaks the generation process. Generating high-quality random test
cases is by no means trivial, and beyond the scope of this paper.

5.5 Lenses
A lens (Foster et al. 2007), in its simplest guise, is a combination
of a setter and a getter:

data Lens a b = Lens (a→ b) (b→ a→ a)

Lenses are a useful abstraction because they compose: it is easy to
define

instance Category Lens where

which gives us

id :: Lens a a
(◦) :: Lens b c→ Lens a b→ Lens a c

We can define some simple lenses for our SOP datatypes:

lensRep :: Generic a⇒ Lens a (Rep a)
lensSOP :: SingI xs⇒ Lens (SOP f ′[xs]) (NP f xs)
lenshd :: Lens (NP f (x ′: xs)) (f x)
lenstl :: Lens (NP f (x ′: xs)) (NP f xs)
lensI :: Lens (I a) a

More interestingly, given a product, we can define a product of
projection lenses:

lensNP ::∀xs.SingI xs⇒ NP (Lens (NP I xs)) xs
lensNP = case sing :: Sing xs of

SNil → Nil
SCons→ lensI ◦ lenshd :∗ liftANP (◦lenstl) lensNP

This is useful because we can now define a generic function that
computes a product of lenses for a record type:

glenses ::∀a xs. (Generic a,Code a∼ ′[xs])⇒ NP (Lens a) xs
glenses = case sing :: Sing (Code a) of

SCons→ liftANP (λl→ l◦ lensSOP ◦ lensRep) lensNP

The type equality constraint (Code a ∼ ′[xs]) on glenses states
that we can only compute lenses for single-constructor types.

For example, given the datatype

data Point = Point { x :: Double, y :: Double}

with a Generic instance, we can define lenses into Point using

x,y :: Lens Point Double
(x,y) = extract glenses

where
extract :: NP f ′[x,y]→ (f x, f y)
extract (x :∗ y :∗ Nil) = (x,y)

Lenses are usually computed through Template Haskell, but we can
give a fully typed alternative in the SOP universe.

6. Metadata
Many generic functions, though by no means all, need metadata
about the type they are working with: the name of the type, names
of constructors, names of record fields, etc. Traditionally this in-
formation is included directly in the generic universe, but this has
two disadvantages. The definition of generic functions which are
independent of the metadata is obscured by having to deal with it.
Moreover, it means it is difficult to change the metadata, or extend
the universe with additional, application-specific metadata.

6.1 Traditional metadata in SOP

With GADTs and the availability of the code of a datatype available
as a first-class entity, we can define metadata completely separate
from the universe proper. For instance, we might define metadata
that records the names of types, constructors and record field names
as follows7:

type Name = Text

data TypeInfo :: [[∗]]→∗ where
ADT :: Name→ NP ConInfo xss→ TypeInfo xss
New :: Name→ ConInfo ′[x]→ TypeInfo ′[′[x]]

data ConInfo :: [∗]→∗ where
Con :: SingI xs⇒ Name→ ConInfo xs
Rec :: SingI xs⇒ Name→ NP (K Name) xs→ ConInfo xs

class HasTypeInfo a where
typeInfo :: Proxy a→ TypeInfo (Code a)

For example:

instance HasTypeInfo Expr where
typeInfo = ADT "Expr" $

Con "Num"
:∗ Rec "Add" (K "left" :∗ K "right" :∗ Nil)
:∗ Nil

The TypeInfo datatype is yet another interpretation of SOP codes:
it is indexed over types of kind [[∗]]. The New constructor, used
to indicate that something is a newtype, is only applicable to types
with a single constructor with a single field, since it is only appli-
cable to types whose code is [[x]]. Thus, pattern matching on the
metadata may reveal something about the shape of the datatype.

For constructors, we distinguish between ordinary constructors
and record constructors, and only for the latter do we get a list of
field names, precisely one for each field in the record.

In a universe with an arbitrary nesting of binary sums and prod-
ucts, it is more difficult to give such a clean definition of metadata.
For instance, if we have binary products, where do we attach the
information about record field names? In GHC.Generics, this in-
formation is distributed throughout the generic representation of a
type, with various implicit conventions such as “if one argument

7 In generics-sop, metadata is provided that is very similar to what we
discuss here, but contains slightly more information. When using Template
Haskell to derive a Generic instance for a particular datatype, an instance
for the class corresponding to HasTypeInfo will be generated as well.

to a constructor has a record field name, then they must all have a
record field name”. Not only is that unsatisfactory from a typing
perspective, it also makes it more difficult to write generic func-
tions.

6.2 Generic JSON encoder and decoder
As a somewhat more elaborate example of a generic function (that
happens to make use of the metadata we just described) we will
define a generic JSON encoder and decoder, based on the type
classes defined in the aeson package:

class ToJSON a where toJSON :: a→ Value
class FromJSON a where parseJSON :: Value→ Parser a

The datatype Value is aeson’s representations of JSON values; all
we need to know about Parser is that it satisfies MonadPlus. We
encode a normal constructor as a tag and a list of values, aided by

con :: Text→ [Value]→ Value

and a record constructor as a tag and an object:

rec :: Text→ [(Text,Value)]→ Value

For example, we encode Add (Num 1) (Num 2) as

{"Add" : {"left" : {"Num" : [1]},"right" : {"Num" : [2]}}}
For the decoder we rely on two additional auxiliary functions,
which are essentially inverses to con and rec:

unCon :: Text→ Value→ Parser [Value]
unRec :: Text→ Text→ Value→ Parser Value

The function unCon verifies the tag and that the payload is a list,
and returns that list, whereas unRec verifies the tag and that the
payload is an object, and looks up a field in that object.

Both the encoder and decoder are shown in Figure 3. The en-
coder is relatively straightforward. We translate the value to be en-
coded to its generic representation in gtoJSON and combine this
with the metadata in gtoJSON′. For a regular constructor encCon
calls toJSON on each argument (modulo some wrapping and un-
wrapping of newtypes), translates the resulting product to a list and
then calls con. For record constructors. we pair the field names with
the encoded arguments and then call rec.

The decoder is more interesting. For a normal constructor,
decCon uses unCon to get a list of values, passes that to fromList
to get a product of values, maps parseJSON to get a product of
parsers, and finally uses sequenceNP to get a parser of a product.
For record constructors we do something similar, except that we
look up every value of the record in the JSON object. Since unCon
and unRec fail if the tag does not match, these parsers will fail
if the encoded value does not correspond to this particular con-
structor. Then in gparseJSON′ we use injections to lift the result
of these parsers into the sum of products, and finally choose the
right parser (if any) using msum. Ultimately, gparseJSON lifts the
result of the final parser out of the representation type.

We can use gtoJSON and gparseJSON to give ToJSON and
FromJSON instances:

instance ToJSON Expr where toJSON = gtoJSON
instance FromJSON Expr where parseJSON = gparseJSON

We have kept the decoder and encoder simple for the sake of
presentation; the generics-sop contains a “higher quality” ver-
sion that avoids unnecessary tags, produces better error mes-
sages, checks for unexpected fields in objects, and more. The
generics-sop version also performs a pre-processing step on the
metadata, transforming the generic metadata into a shape that con-
tains precisely what is needed for the JSON encoder and decoder.
Having the metadata available separately makes such a transforma-
tion step very natural to write.

gtoJSON :: ∀a. (Generic a,HasTypeInfo a,All2 ToJSON (Code a))⇒ a→ Value
gtoJSON = gtoJSON′ (typeInfo (Proxy :: Proxy a))◦ from

gtoJSON′ :: (All2 ToJSON xss,SingI xss)⇒ TypeInfo xss→ SOP I xss→ Value
gtoJSON′ (ADT cs) = collapseNS ◦ cliftA2′NS pt encCon cs
gtoJSON′ (New c) = collapseNS ◦ cliftA2′NS pt encCon (c :∗ Nil)

encCon :: All ToJSON xs⇒ ConInfo xs→ NP I xs→ K Value xs
encCon (Con n) = K◦ con n◦ collapseNP ◦ cliftANP pt (λ (I a)→ K (toJSON a))
encCon (Rec n fs) = K◦ rec n◦ collapseNP ◦ cliftA2NP pt (λ(K f) (I a)→ K (f, toJSON a)) fs

pt = Proxy :: Proxy ToJSON

gparseJSON :: ∀a. (Generic a,HasTypeInfo a,All2 FromJSON (Code a))⇒ Value→ Parser a
gparseJSON = liftM to◦gparseJSON′ (typeInfo (Proxy :: Proxy a))

gparseJSON′ ::∀xss. (All2 FromJSON xss,SingI xss)⇒ TypeInfo xss→ Value→ Parser (SOP I xss)
gparseJSON′ (ADT cs) v = let injs = injections :: NP (Injection (NP I) xss) xss

in msum◦ collapseNP $ cliftA2′NP pf (λ(Fn inj)→ K◦ liftM (unK◦ inj)◦decCon v) injs cs
gparseJSON′ (New c) v = Z ‘liftM‘ decCon v c

decCon :: All FromJSON xs⇒ Value→ ConInfo xs→ Parser (NP I xs)
decCon v (Con n) = sequenceNP ◦ cliftANP pf (parseJSON◦unK) =<< fromList =<< unCon n v
decCon v (Rec n fs) = sequenceNP $ cliftANP pf (λ(K n′)→ parseJSON =<< unRec n n′ v) fs

pf = Proxy :: Proxy FromJSON

Figure 3. Generic JSON encoder and decoder

6.3 Application specific metadata
Suppose we have a system with a large number of record types,
such as

data Person = Person {name :: String,age :: Int}

and suppose further that we wanted to write a generic validation
function for all these records. This means that we will need more
metadata, specifying what it means for particular components of
particular datatype to be valid. Since we have set things up so
that we can define metadata independent from the generic universe,
we can also define application-specific metadata. For this concrete
example, we might define

class ValidationRules a where
validationRules :: Proxy a→ POP (I _ K Bool) (Code a)

In words, in order to validate something, we need a validation
function from a→ Bool for each constructor argument of type a,
modulo some newtype wrapping. For Person, we might define

validName :: (I _ K Bool) String
validName = Fn $ λ(I n)→ K (not (null n))

validAge :: (I _ K Bool) Int
validAge = Fn $ λ(I n)→ K (n > 0)

instance ValidationRules Person where
validationRules = (validName :∗ validAge :∗ Nil) :∗ Nil

We can now define a generic validator:

validate ::∀a. (Generic a,ValidationRules a)⇒ a→ Bool
validate = and◦ collapseSOP ◦apSOP rules◦ from

where
rules = validationRules (Proxy :: Proxy a)

The validator is very simple: we use apSOP to apply each validation
function to each argument, collapseSOP the result to a list of Bools,
and finally take their conjunction.

As another example of domain specific metadata, one might
consider a domain specific permission language, perhaps for a
database server, with rules for each of the fields of the records in the
database. Any such example, with metadata associated with each of

the fields of a datatype, is easy to express once we have access to
the codes of the universe.

7. Related work
In the following, we make a selection of a number of generic
programming approaches that we believe to be related to the SOP
view and compare them to our work.

7.1 Sum-of-products approaches
As mentioned in various places throughout this article, there is no
shortage of approaches that makes use of a binary sum-of-products
view where sums and products can be nested without restric-
tion. This includes (for Haskell) the built-in GHC.Generics (Ma-
galhães et al. 2010) and the generic-deriving package that
builds on it, but also instant-generics (Chakravarty et al. 2009),
regular (Van Noort et al. 2010), multirec (Rodriguez Yakushev
et al. 2009), compdata (Bahr and Hvitved 2011), and older pre-
processor or non-Haskell approaches such as PolyP (Jansson and
Jeuring 1997), Generic Haskell (Hinze 2002; Löh 2004), or Generic
Clean (Alimarine and Plasmeijer 2001).

While these approaches differ in many details, most importantly
their treatment of recursion, they all share that the sum and product
layer are not clearly separated on the type-level, encouraging a pro-
gramming style that predominantly makes use of explicit induction
on the structural representation where function make frequent use
of implicit assumptions. Metadata, if handled at all, is mixed into
the representation. On the other hand, some of these approaches
have a good story on handling parameterised datatypes, whereas
this remains future work for SOP (cf. Section 8).

7.2 Traversal-based approaches
There is also a large class of libraries that focus on traversals
over data structures such as Scrap your Boilerplate (syb) (Lämmel
and Peyton Jones 2003), uniplate (Mitchell and Runciman 2007),
multiplate (O’Connor 2011), or kure (Sculthorpe et al. 2014).
They share with SOP the desire to define generic functions by
combining high-level combinators. They are mostly based on a
structural representation of concrete values, often providing a list-
like interface to the value structure known as the Spine view (Hinze

et al. 2006), which reflects the product structure, but omits the sum
structure (as a value has always been created by one particular
constructor application).

These approaches make the definition of consumers very easy
and appealing, but often fail to provide an equally simple way
to deal with producers or functions that are just based on the
structure of the type—without a concrete value to traverse in hand.
Metadata is usually available separately, but without connection
to the structural representation and therefore without type-level
guarantees that it is being used correctly.

7.3 Template Haskell
Template Haskell (TH) (Sheard and Peyton Jones 2002) is a meta-
programming solution for Haskell that gives the programmer ac-
cess to an abstract syntax tree of datatype definitions. This abstract
syntax represents the datatype faithfully. One can define meta-
programs based on this structure and splice them back into Haskell
programs as first-class definitions. The expressive power of TH is
therefore unsurpassed. One has nearly as much information and
possibilities as the compiler itself. But the power comes at a price:
There are no advance checks that meta-programs are guaranteed to
produce valid code; checking is for the most part performed only
when a template is instantiated. Furthermore, access to all the de-
tails means that there is a lot of information in the abstract syntax
that is not directly relevant to the definition of generic functions
and that must be filtered out manually.

But these disadvantages do not prevent TH from being useful
as a basis of other generic programming approaches: many ap-
proaches, including our own SOP, use TH for the generation of the
structural representations of datatypes. Some approaches such as
e.g. uniplate and syb have variants that make use of TH as a back-
end for the generation of efficient code (Augustsson 2011; Adams
and DuBuisson 2012).

7.4 Haskell approaches with a more precise representation
Holdermans et al. (2006) introduce generic views for a language
variant of Haskell called Generic Haskell. One of the views dis-
cussed makes use of lists to represent sums and products, but this
is not explored in much detail. Also, generic functions in Generic
Haskell are not first-class, and using higher-order combinators to
define generic functions would be awkward if not impossible.

The RepLib library (Weirich 2006) makes use of type represen-
tation that separate the sum and the product structure from each
other, use list-like structures to represent each of them, and clearly
nest them. However, the representation is less uniform than in SOP
and has metadata mixed into the representation. Also, the approach
predates several of the more recent GHC extensions. As a result, the
library seems to encourage functions defined by induction rather
than using combinators, and the overall look and feel is somewhat
more complex.

In the gdiff package for datatype-generic diff (Lempsink et al.
2009), an application-specific universe is used that employs a list-
like view of the product structure of the datatype (but pre-dating
data kinds), but only marginally reflects the list-like sum structure.

Magalhães (2012) explores the use of data kinds, kind poly-
morphism, and other recent GHC extensions to refine various ap-
proaches to generic programming, trying to make the underlying
universes more precisely typed. However, he sticks to the basic
choices of the universes he bases his refinements on, which means
arbitrarily nested binary sums for some, and product-only value
representations for others.

Magalhães and Löh (2013) (in an unpublished draft version)
discuss a universe called structured which is supposed to be
very faithful, almost TH-like yet typed representation of Haskell
datatypes. It makes use of a properly nested sum of product struc-

ture, where sums and products can even be type-level trees rather
than lists. However, the universe has metadata mixed in and is in
general very complex. In the article, it is considered only as a base
universe for defining transformations into other, simpler universes.

7.5 Dependently typed programming
In the context of dependently typed programming, types are more
precise, so it is not surprising that more precise and essentially list-
like representations of sums of products have a somewhat longer
history there than in Haskell. Nevertheless, binary sums of products
are common also in the dependently typed setting (Altenkirch et al.
2007, for example).

Benke et al. (2003) discuss various universes that can be used
to define generic programs and proofs in a dependently typed
calculus. Some make use of list-like sums and products. The focus
is on how expressive the universes are, actual programming is not
discussed in any detail. On the other hand, many other universes
presented even there go far beyond the types that SOP can represent.

A more recent example is (Chapman et al. 2010), which aims at
using codes as the primary way to represent and define datatypes.
It is therefore mandatory that their codes are as precise as it gets.
They make use of a type of codes which is itself dependently typed.

7.6 Handling metadata
Most generic programming approaches—if they deal with metadata
at all—mix the metadata into the structural representation. This
sometimes (as in GHC.Generics) leads to extra complexity in all
functions. Sometimes (such as e.g. in Generic Clean (Alimarine
and Plasmeijer 2001)), this complexity is hidden from the user,
by automatically generating good defaults when the cases are not
needed. Another option is to actually use different universes, both
with and without metadata.

The approach of SOP to define metadata separately, but use
the type system to ensure that it aligns with the structure of the
datatype, is—to our knowledge—new. It is the only approach that
makes it easy to define domain-specific metadata. The separation is
similar in style to the idea of ornaments (McBride 2010) that more
generally describe additional structure that can be attached to an
existing datatype.

8. Future work and conclusions
We have presented the SOP library for generic programming with a
precisely typed universe of n-ary sums of products. We believe that
the library is easy to use for a wide range of applications—in partic-
ular those that require more global information about the shape of
the underlying datatype, and those that need additional application-
specific metadata. We are using the library ourselves. In particu-
lar, the difficulty of expressing more advanced versions of the lens
computation and JSON translation functions using GHC.Generics
have driven us to explore this avenue.

The library as we have described it in this paper suits our
current needs perfectly, as indeed we believe it will suit many other
applications. However, there are some areas in which it could be
extended.

Representing higher-kinded types In our version of SOP we can
represent Maybe Int but not Maybe itself. A representation of pa-
rameterised types is helpful if one wants to define generic func-
tions that range over type constructors, such as fmap or traverse.
Some libraries offer separate representations for ∗ → ∗ datatypes,
and some approaches are yet more flexible.

Fixed points Several approaches to generic programming treat
recursion by identifying fixed points and representing the under-
lying functor. We do not. For functions that do not require specific

treatment of recursion, this only makes things simpler. Once again,
there is no fundamental problem in combining a more precise uni-
verse using list-like sums of products with the fixed point approach.

Representing existentials and GADTs Not even all (concrete)
types of kind ∗ can be represented by SOP. We fail for types that
involve existentially quantified type variables, embedded class con-
straints, or for GADTs (which have embedded equality constraints).

None of the ideas above are fundamentally incompatible with SOP.
For some of these there are well-known techniques in other ap-
proaches that can most likely be easily combined with SOP. How-
ever, in doing so, we may have to extend or modify the underlying
representation and may lose some of the simplicity that makes the
SOP view so appealing.

Regardless of the concrete design decisions we made for SOP,
we think that the following lessons are relevant to all generic pro-
grammers: Design a universe that precisely reflects the structure of
the underlying types, not allowing flexibility that is not used and en-
courages making implicit assumptions. Strive for the development
of a library of high-level combinators that can be reused that allow
a compositional approach to defining generic functions. And sepa-
rate metadata, again using the type system to maintain shape con-
straints, so that it becomes easy to work with metadata as needed,
and tweak it to application-specific needs.

Acknowledgements
We thank Francis Nevard and Nicolas Wu. They asked Well-Typed
to work on the project that sparked the development and use of
the generics-sop library. We are also grateful to Paolo Capriotti
for answering several questions about category theory, and to the
anonymous reviewers for their helpful suggestions.

References
Michael D. Adams and Thomas M. DuBuisson. Template your boilerplate:

Using Template Haskell for efficient generic programming. In Haskell
’12, pages 13–24. ACM, 2012.

Artem Alimarine and Rinus Plasmeijer. A generic programming extension
for Clean. In IFL, volume 2312 of LNCS, pages 168–185. Springer,
2001.

Thorsten Altenkirch, Conor McBride, and Peter Morris. Generic program-
ming with dependent types. In SSDGP ’06, pages 209–257. Springer,
2007.

Lennart Augustsson. geniplate: Use Template Haskell to generate Uniplate-
like functions, 2011. URL http://hackage.haskell.org/package/
geniplate.

Patrick Bahr and Tom Hvitved. Compositional data types. In WGP ’11,
pages 83–94. ACM, 2011.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for generic
programs and proofs in dependent type theory. Nordic J. of Computing,
10(4):265–289, December 2003.

Manuel M. T. Chakravarty, Gabriel C. Ditu, and Roman Leshchinskiy.
Instant generics: Fast and easy, 2009. URL http://www.cse.unsw.
edu.au/~chak/papers/CDL09.html.

James Chapman, Pierre-Évariste Dagand, Conor McBride, and Peter Mor-
ris. The gentle art of levitation. In ICFP ’10, pages 3–14. ACM, 2010.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool for
random testing of Haskell programs. In ICFP ’00, pages 268–279. ACM,
2000.

Richard A. Eisenberg. Defunctionalization for the win, 2013.
URL http://typesandkinds.wordpress.com/2013/04/01/
defunctionalization-for-the-win/.

Richard A. Eisenberg and Stephanie Weirich. Dependently typed program-
ming with singletons. In Haskell ’12, pages 117–130. ACM, 2012.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional tree transfor-
mations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst., 29(3), May 2007. ISSN 0164-0925.

Ralf Hinze. Polytypic values possess polykinded types. Science of Com-
puter Programming, 43(2–3):129–159, 2002.

Ralf Hinze, Andres Löh, and Bruno C. d. S. Oliveira. “Scrap Your Boil-
erplate” reloaded. In FLOPS, volume 3945 of LNCS, pages 13–29.
Springer, 2006.

Stefan Holdermans, Johan Jeuring, Andres Löh, and Alexey Ro-
driguez Yakushev. Generic views on data types. In MPC, volume 4014
of LNCS, pages 209–234. Springer, 2006.

Patrik Jansson and Johan Jeuring. PolyP—a polytypic programming lan-
guage extension. In POPL ’97, pages 470–482. ACM, 1997.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a practical
design pattern for generic programming. In TLDI ’03, pages 26–37.
ACM, 2003.

Eelco Lempsink, Sean Leather, and Andres Löh. Type-safe diff for families
of datatypes. In WGP ’09, pages 61–72. ACM, 2009.

Andres Löh. Exploring Generic Haskell. PhD thesis, Universiteit Utrecht,
2004.

José Pedro Magalhães. The right kind of generic programming. In WGP
’12, pages 13–24. ACM, 2012.

José Pedro Magalhães, Atze Dijkstra, Johan Jeuring, and Andres Löh. A
generic deriving mechanism for Haskell. In Haskell ’10, pages 37–48.
ACM, 2010.

José Pedro Magalhães and Andres Löh. Generic generic pro-
gramming, 2013. URL http://www.andres-loeh.de/
GenericGenericProgramming/. Unpublished original draft of
Magalhães and Löh (2014).

José Pedro Magalhães and Andres Löh. Generic generic programming. In
PADL, volume 8324 of LNCS, pages 216–231. Springer, 2014.

Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

Conor McBride. Ornamental algebras, algebraic ornaments. 2010. Submit-
ted to Journal of Functional Programming.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list processing.
In Haskell ’07, pages 49–60. ACM, 2007.

Thomas van Noort, Alexey Rodriguez Yakushev, Stefan Holdermans, Jo-
han Jeuring, Bastiaan Heeren, and José Pedro Magalhães. A lightweight
approach to datatype-generic rewriting. Journal of Functional Program-
ming, 20(Special Issue 3–4):375–413, 2010.

Russell O’Connor. Functor is to lens as applicative is to biplate: Introducing
multiplate. CoRR, abs/1103.2841, 2011.

Alexey Rodriguez Yakushev, Stefan Holdermans, Andres Löh, and Johan
Jeuring. Generic programming with fixed points for mutually recursive
datatypes. In ICFP ’09, pages 233–244. ACM, 2009.

Neil Sculthorpe, Nicolas Frisby, and Andy Gill. The Kansas Univer-
sity Rewrite Engine: A Haskell-embedded strategic programming lan-
guage with custom closed universes. Submitted to the Journal of
Functional Programming, 2014. URL http://www.cs.swan.ac.uk/
~csnas/papers_and_talks/kure.pdf.

Tim Sheard and Simon Peyton Jones. Template meta-programming for
Haskell. In Haskell ’02, pages 1–16. ACM, December 2002.

Martin Sulzmann, Manuel M. T. Chakravarty, Simon Peyton Jones, and
Kevin Donnelly. System F with type equality coercions. In TLDI ’07,
pages 53–66. ACM, 2007.

Stephanie Weirich. RepLib: a library for derivable type classes. In Haskell
’06, pages 1–12. ACM, 2006.

Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon Peyton Jones,
Dimitrios Vytiniotis, and José Pedro Magalhães. Giving Haskell a
promotion. In TLDI ’12, pages 53–66. ACM, 2012.

