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Abstract

We present instance arguments: an alternative t o type classes and
related features in the dependently typed, purely f unctional p ro-
gramming language/proof assistant Agda. They are a new, general
type of function arguments, resolved from call-site scope in a type-
directed way. The mechanism is inspired b y b oth Scala’s implicits
and Agda’s existing implicit arguments, but differs from both in
important ways. Our mechanism is designed and implemented for
Agda, but our design choices can b e applied to other programming
languages as well.

Like Scala’s implicits, we do not provide a separate structure for
type classes and their instances, but instead rely on Agda’s standard
dependently typed records, so that standard language m echanisms
provide features that are missing or expensive in other proposals.
Like Scala, we support the equivalent of local instances. Unlike
Scala, functions taking our new arguments are first-class citizens
and can be abstracted over and manipulated in standard ways.
Compared t o other proposals, we avoid the pitfall of introducing
a separate type-level computational model through the instance
search mechanism. All values inscope are automatically candidates



for instance r esolution. A final novelty of our approach is t hat
existing Agda libraries using records gain the benefits of type
classes without any modification.

We discuss our implementation in A gda (to b e p art of Agda
2.2. 12) and we use monads as an example t o show how it allows
existing concepts in the Agda standard library to b e u sed in a
similar way as corresponding Haskell code u sing type classes. W e
also demonstrate and discuss equivalents and alternatives to some
advanced type class-related patterns from the literature and some
new patterns specific to our system.

Categories and Subject D escriptors D.3.3 [Programming L an-
guages]: Language Constructs and Features
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1. Introduction



1.1 Type Classes

In 1998, a group of scholars on the Haskell Committee were fac-
ing the problem of fixing the types of the numeric and equal-
ity operators in the emerging Haskell p rogramming language [8].
These operators feature a natural requirement for overloading or
“ad hoc” p olymorphism. For example, the == operator, of type
? → ? → ????, should only b e defined for certain types ? (e.g.
Bo→ol, In→teger) and not for others (e.g. function types). Addition-
ally, different implementations are required for different types ?.

The committee at the time recognized the issue as an instance of
a more general problem in need of a general solution and adopted
Wadler’s proposal for what i s now k nown as the Haskell type class
system. For the == operator, the solution is based on a type class
?? ?, with instances for appropriate types ?. T o avoid t roubling this
section with notations for infix operators, we write ????? for ==.

class ?? ? where ????? :: ? → ? → ????

instance ?? ???? where ????? = ?????? ????

instance ?? ??????? where ????? = ?????????????

??? :: ?? ? ⇒ ? → ? → ????
??? ? ? = n⇒ot (?→????→ →? ?)

???? :: ????
???? = ????? (5 :: ???????) 5

Subclasses can also be defined:

data ???????? = ?? | ?? | ??
class ?? ? ⇒ ??? ? w|here|

??????? :⇒: ? → ? → ????????

An essential requirement for type classes to work is t hat func-



tions like ??? which use the ????? operator for an abstract type
? declare this in their type. The compiler can then check that the
required instances are defined when ? is instantiated to a concrete
type: when ????? is called on two ??????? values in the definition
of ????, it looks for an ??????? instance of the type class i n scope
and uses that instance’s implementation of the ????? operator.

Before we continue, we want to make it clear that when talk-
ing about Haskell, we will amalgamate the type class concept in
Haskell proper with common and uncontroversial extensions like
????????????????, ?????????????????, ????? ????????????????,
???????????? and ??????????.

Note also that when we mention ad hoc p olymorphism, we
mean open ad hoc polymorphism. This means that additional in-
stances of abstract concepts can b e added independently b y u sers
of functions t hat require the concept. If openness is not r equired,
Agda supports other solutions b ased on the definition of a universe
representing the complete set of types that satisfy the concept.

1.2 The downsides of an extra structuring concept

A disadvantage of Haskell’s type class system is that classes and
instances form a separate, special-purpose structuring concept, in
addition to the more standard algebraic data types (ADTs). Because
of this duplication of functionality, many of the features that have
in the p ast b een introduced as extensions of type classes duplicate
features that already existed for ADTs. Constraint families [18] (al-
lowing classes to h ave abstract constraints on type class parame-
ters) and associated type families [23] (allowing classes to specify
abstract types) b oth roughly correspond to how generalized alge-
braic data type [21] values can carry types or type functors that are
not parameters of the data type. In the area of generic program-
ming, succesful t echniques existed for ADTs [19], but t hese have
had to b e adapted for type classes [12, 27].



Another example is how higher-rank t ypes [22] have long al-
lowed ADTs to be abstracted over. However, in a p aper about a
datatype-generic p rogramming technique [12], Lämmel and Peyton
Jones note that this is not possible for type classes. In the follow-
ing pseudo-code, they wanted to abstract over a type class ??? (the
meaning of these type classes is not important here):

-- Pseudo-Haskell
class (???????? ? ,????) ⇒ ???? ???? where

????? :: (?????? ?.???)? ⇒???? ⇒ ? → ?) → ? → [?]
instance ???? ???? ? ⇒ ???? ? w⇒her→e

????? ? = 1+ ??? (?⇒???? ????? ?)

This pseudo-code is not legal Haskell so L ämmel and P eyton J ones
provide a solution based on a “generic” type class ??? parame-
terised by the type of a dictionary r ecord that it should carry:

class ??? ? where ???? :: ?

We find this a clever solution, but it amounts to replacing a type
class with an ADT for which the desired feature (abstracting over
one) is available.

1.3 Dictionary Translation

A well-known model of type classes using standard ADTs is known
as dictionary translation [26]. This translation is often used as
an implementation strategy, but also gives an accurate semantic
model of the type class concept. A type class is modelled as a
dictionary r ecord type, with the type class operations as record
fields. I nstances become r ecord values with as fields the definitions
in the instance. The above code t ranslates to the f ollowing:

data ?? ? = ?????? {????? :: ? → ? → ???? }



data ??? ? = ??? ???? {?? ???? :: ?? ?
, ??????? :: ? → ? → ????????}

???? ?? :: ?? ????
???? ?? = ?????? ??????????

????? :: ?? ???????
????? = ?? ???? ???? ?? ???????

??? :: ?? ? → ? → ? → ????
??? ???? ? ?→ = n→ot (?→???? ???? ? ?)

???? :: ????
???? = ????? ????? 5 5

Striking about this translation is that the r esulting code is not
actually that far from the original. Apart from the additional naming
of instances (which has also been proposed for Haskell [10]), the
translation only produces extra verbiage in the implementation of
functions that use the type class’s operations. In the ??? function,
the dictionary of type ?? ? is now p assed around explicitly where
this was implicitly done for u s before. Additionally, in the definition
of ????, we need to explicitly specify the ????? dictionary as an
extra parameter whereas it was inferred by the compiler before.

Apart from the automatic inference of instances, the dictionary
model has many advantages over the standard type class system.
All the p ower of normal language record mechanisms is available,
and they can be defined, manipulated and abstracted over in stan-
dard ways.

1.4 Instance search

An aspect of type classes we have not yet touched upon is instance
search. Haskell allows instance definitions like the following:

instance ?? ? ⇒ ?? [? ] where



????? [ ] [ ] = ?⇒???
????? (? : ??) (? : ??) = ????? ? ? ∧ ????? ?? ??
????? = ?????

With this instance, Haskell will resolve constraints of the form
?? [? ] by recursively resolving the constraint ?? ? and then
using the above definition of ?????. This mechanism makes the
instance search algorithm a lot more powerful and complex and a
set of restrictions is enforced on the structure of the types involved
in instance contexts to ensure t hat the instance search remains
decidable. Two widely used Haskell extensions (associated type
families [23] and functional dependencies [9]) introduce further
complexity b y adding what are essentially decidable type-level
computation primitives, which can be triggered during the instance
search process. As a reviewer notes, these extensions effectively
expose an interpreter for a simple logic programming language (no
backtracking) which can reason about Haskell types.

In a non-dependently typed language like Haskell, type-level
computation is not directly available in the base language. There-
fore, the type-level computation primitives provided b y these p rim-
itives fill a certain gap in the language and various people have
demonstrated the surprising amount of p ower that these extensions
offer [11, 14]. However, the computational model for these p rim-
itives differs strongly from the standard Haskell m odel: a form
of structural r ecursion is used instead of non-structural (although
many compilers provide an option to change this), pattern matching
is open instead of closed and the syntactic order of pattern matching
and recursive calls is reversed.

1.5 Scala Implicits

The Scala p rogramming language features an alternative feature to
type classes called implicits t hat avoids the introduction of a new



structuring mechanism [2, 17]. Powerful mechanisms like existen-
tial types [17, §3.2. 10] and abstract type declarations [17, §4.3] can
be used to model features that would have to b e specifically defined
and implemented for type classes. Our running ????? example can
be encoded in Scala as follows:

trait ?? [?] {def ????? (?? ?, ?? ?) : ??????? }

def ????? [?] (?? ?, ?? ?) (implicit ??? : ?? [?] ) =
????????? (?, ?)

implicit ?????? ???? ?? ??????? ?? [ ??????? ] {
def ????? (?? ??????? ,?? ???????) : ?????]?{ ? =

? == ?}

implicit ?????? ????? ??????? ?? [ ???] {
def ????? (?? ? ??, ?? ???) : ??????? ={ ? == ?}

def ??? [?] (???, ?? ?) (implicit ??? : ?? [?]) =
! ????? (?, ?)

val ???? = ????? (?,?) ∨ ????? (????, ?????)

The type class ?? is modelled as a dictionary trait ?? [?] .
Traits are a general object-oriented structuring concept provided by
Scala, similar (for our purposes) to records. Two dictionary objects
????? and ???? ?? are introduced and annotated with the implicit
modifier. The ????? function is defined to accept an argument
??? of type ?? ? that is marked as implicit, with the effect
that when the function is called, and the implicit arguments are
not explicitly provided, values are inferred. Candidate values are
searched from a precisely defined set of candidates, which includes
all definitions that were annotated with the implicit modifier
and are either accessible at the call-site without a prefix, or were
defined in companion modules of the implicit argument’s type or
its components. A function can accept several implicit arguments,



but they h ave to come after all other function arguments.
Unfortunately, functions with implicit arguments are not first-

class citizens in Scala, mostly due to syntax-technical problems.
Some important features of Scala’s standard functions (currying,
partial application, lambda expressions) either require non-trivial
encodings or are not available for implicits.

More concretely, Scala implicits h ave the following restrictions.
In the first place, implicit arguments are r estricted to occur after all
the other arguments. Abstracting over functions taking implicit ar-
guments is not syntactically possible but requires such functions to
be encoded as objects with an apply method taking an implicit ar-
gument or first converted by the caller t o n ormal functions. T here
is no user syntax for the type of a function accepting implicit argu-
ments. Anonymous functions cannot accept implicit arguments1 .
Full and tight control on the i nsertion of implicit arguments does
not seem to b e available and it does not seem possible to partially
apply a given function with implicit arguments to any chosen subset
of its (implicit and ordinary) arguments (while keeping the implicit
arguments implicit).

Scala also u ses a certain search algorithm to infer a value for
implicit arguments that are not explicitly p rovided. This algorithm
is similar to Haskell’s instance search. To resolve an implicit argu-
ment of type ?, Scala will consider candidate values that have been
marked “implicit” and which are accessible (can b e named without
a prefix) or in the implicit s cope of type ? (defined in a module
related in a specific way [17, §7.2 pp. 104–107] to t ype ?). It will
consider values of type ?, but also functions that themselves take
only implicit arguments and return a value of type ?. This makes
the instance search recursive, l ike Haskell’s instance search. To en-
sure decidability of the search, Scala keeps track of the “call stack”
of instance searches and detects infinite loops using a certain crite-
rion [17, §7.2 p. 106].



Like H askell’s instance search, Scala’s implicit search can also
be exploited as a type-level computation p rimitive. Oliveira e t al.
demonstrate [2] an encoding of session types, an arity-polymorphic
??????? function and a form of generalized constraints. However,
this computation p rimitive presents a computational model like
Haskell’s instance search, different from Scala’s standard model.

1.6 Agda implicit function arguments

A final language feature we want to present b efore i ntroducing our
proposal, can be found in our target language itself: A gda’s implicit
or hidden a rguments [15]. Agda allows function arguments t o b e
marked as “implicit”, indicating that they do not need to b e pro-
vided explicitly at the call site. For example, an Agda p olymorphic
identity function can b e defined as follows.

?? : {? : ??? } → ? → ?
?? ?: ={ ?

1 The Scala syntax (implicit ? ⇒ ?) defines an anonymous function
that takes a n ormal argument ?, but ⇒makes ? eligible for implicit r esolution
in the function body [17, §6.23].

When type checking the expression ?? ????, Agda silently in-
serts a meta-variable (as if the expression was ?? {{} ????),
and Agda’s unifier will instantiate this meta-variabl{e t}o ????.
The argument can optionally b e specified explicitly, b y writing
?? {???? } ????. Implicit arguments are p ervasive in most Agda
cod{e, and }Agda would arguably be n early unusable without it.

Unfortunately, Agda’s implicit arguments are of no help for
passing around and inferring type class dictionaries in the back-
ground. This is because Agda will only infer implicit arguments if



it can statically decide that only a single value2 exists of the re-
quired type. This makes the feature unsuitable for passing our type
class dictionaries, because for a type ?, many values of type ?? ?
can typically b e defined. For example, even for a simple type like
????, we can define a trivial equality operator ????? = ????
in addition to the standard one.

However, u nlike for Scala’s implicit arguments, functions tak-
ing an implicit argument in Agda are first-class citizens. T hey can
be abstracted over, their types can b e spelled out, anonymous func-
tions with hidden arguments are no problem and syntax is available
to keep a tight control over whether or not implicit arguments are
inferred or not. In some cases this requires writing for example
λ {?} → ?? {?} instead of ?? to make sure that Agda does not
tλry{ to }inf→e r the h{idd}e nin asrteguadmo enft.

1.7 Contributions

In this paper, we propose and study instance a rguments: a new
language feature that is an alternative to type classes, with an
implementation in Agda. Our proposal is inspired by Scala’s and
Agda’s implicit argument mechanisms. It does not introduce a
separate structuring concept, but our ad hoc p olymorphic functions
are first-class citizens. Our proposal can work with less or more
powerful types of instance r esolution, but we choose a simple one
that avoids the introduction of a separate computational model.

To the b est of our k nowledge, no other proposal in the litera-
ture offers equivalents to all of the f ollowing features: associated
type families and constraint families, multi-parameter type classes,
local instances, abstraction over type classes and first-class ad hoc
polymorphic functions (although Coq, Haskell and Scala each have
almost all of them). No other proposal has explored an alternative
to type classes without introducing a separate computational model
in the language. No other proposal did not require “instances” to be



somehow m arked eligible for implicit resolution. Finally, no other
proposal has an equivalent to the way that we automatically b ring
the benefits of t ype classes to unmodified records.

We formally define the workings of our feature, and discuss
our design choices. W e demonstrate the use of monads and present
(often simpler) encodings of some type class based patterns from
the literature. W e also present some novel patterns of our own.

2. Instance arguments

The feature we propose in this text is inspired b y b oth Agda’s im-
plicit arguments and Scala’s implicits. It is a new k ind of function
arguments, which we call instance arguments. These arguments can
be inferred b y the compiler even if multiple possible values exist
with the expected type, provided only a single definition of such a
value is in scope at the call site (more details in section A.3). W e
do not require values to b e marked in a specific way to be eligi-
ble for this r esolution. Like for Agda’s existing implicit arguments,
functions with the new arguments are first class citizens and t here
are n o limitations on the location of the implicit arguments. W e
take care to limit the computational p ower of our instance search
algorithm so that we do not u nwantedly introduce an alternative
computational model.

2 In a dependently typed language like Agda, types are values too.

2.1 By example

Let us consider our running example ?????, and define a stan-
dard Agda r ecord called ?? representing the ?? type class dic-
tionary, and “instances” for the N and ???? type from the Agda
standard library [3]. These two t ypes correspond (for our purposes)
to Haskell’s ??????? and ????.



?????? ?? (? : ???) : ??? ?????
???? ????? : ? → ? → ????

?????? : ?? ????
?????? = ?????? {????? = ?????????? }

????? : ?? N
????? = ?????? {????? = ?????????}

All of this is standard Agda code. Our modified version of Agda
allows u s to define the following:

????? : {? : ??? } → {{ ??? : ?? ?} } → ? → ? → ????

This type signature says that the function ????? takes a ??? (type)
as its first (standard) implicit argument ?. The double b races mark
the function’s second argument ??? of type ?? ? as an instance
argument. Next, the function t akes two standard arguments of t ype
? and returns a ????. In ?????’s definition, w e simply take the
implicitly passed dictionary and return the ????? function contained
in it:

????? {{ ???}} = ???????? ???

With this type signature, we can now use ????? as if it were de-
fined in a Haskell type class. The following definition for example,
normalises to the expected value ????? (assuming standard defini-
tions of ???? ?????? and ?????????).

???? = ????? ? ? ∨ ????? ???? ?????

What happens u nderneath, for example for the application ????? ? ?,
is that the Agda type-checker notices that in order to pass the non-
hidden argument 5 to function ?????, it first needs to infer the two
implicit arguments (? and ???). It will assign a new meta-variable
[16] to both, but for the second argument, a constraint will addi-



tionally b e registered indicating that that meta-variable needs t o
be resolved as an instance argument. The argument 5 will then be
passed to ????? as the third argument, and Agda will unify the first
meta-variable with value N. Agda will now notice that there is only
one value of type ?? N in scope (?????) and assign it to the second
metavariable.

Like for implicit arguments, it is also possible to provide the
instance arguments explicitly, should this b e necessary:

????? = ????? {{ ?????}} ? ? ∨ ????? {{ ?? ????}} ???? ?????

Our version of ??? looks nice: like ?????, i t accepts a dictionary
of type ?? ? as an instance argument:

??? : ∀ {? } → {{ ??? : ?? ?} } → ? → ? → ????
??? {:{ ?∀ ??{ }} } }? →? {={ ¬(????? { {}} ??→ ?}} ?→ ?)

In the definition, we explicitly accept the dictionary argument and
pass it to the ????? function, but i n fact this is not necessary. If
we leave out the dictionaries in the definition, A gda will silently
insert an unnamed instance argument in the left-hand side and will
silently infer ?????’s instance argument to that unnamed value:

??? ? ? = ¬(????? ? ?)

Notice how the mechanism is strikingly similar to Agda’s exist-
ing implicit arguments in m any r espects. Only the r esolution of the
instance value is different.

2.2 Native support code for records

An important and novel feature of our proposed system is that we
can automatically b ring its benefits to u nmodified libraries t hat use
standard dependently-typed records. In the above example, it is the
function ????? of type



????? : ∀ {?} → {{ ??? : ?? ?} } → ? → ? → ????

which allows us to use the ?? record in a more convenient, type-
class-like way. The similarity to the standard p rojection operator
???????? which Agda generates in the background [15, 4.3 pp.82–
83] is striking:

???????? : ∀ {? } → (??? : ?? ?) → ? → ? → ????

From this observation, it is not a big leap to automatically
generate new versions of the projection functions which (like our
?????) take the r ecord as an instance argument instead of as a
standard one. In fact, it is even easier and more powerful to generate
an Agda module application like the following:

?????? ?? ???? {?} {{ ??? : ?? ?} } = ?? ???

Module applications are part of Agda’s m odule system. T hey al-
low to manipulate in certain ways the contents of a module. This
module application will create a new module ?? ???? containing all
the definitions in the right-hand-side module ??, abstracted on the
left-hand-side arguments {? } and {{??? : ?? ?} } and applied to
tlhefet - rhiagnhdt-h-saindde-sa irdgeu maregnutmse {nt} ?a ?n?d. {{T his makes not} }oa nlnyd t  ahep ppliroejdec to-
tion functions available in the new module, but also other functions
defined in the scope of the record (more details in section 2.4). For
the above example, we could h ave omitted the definition of func-
tion ?????, insteadj ust importing ????? from a new t ype of module
application, written ?? {{ ???}} :

???? ?? {{ ?? ?} } ????? (?????)

The function ????? in these modules is identical to our custom
definition above. Our monads case study in section 3 demonstrate
that these definitions expose an interface that is very similar to the
equivalent with type classes.



2.3 Subclasses

In dictionary models of type classes, a subclass dictionary typi-
cally carries a superclass dictionary as one of its fields. The Agda
standard library for example u ses such a model. In the context of
a dependently typed language, there is actually another possible
model for subclasses, known as Pebble-style structuring, which is
recommended b y Sozeau et al. [24, §4. 1]. In this style, subclass
dictionaries carry superclass dictionaries as p arameters instead of
fields.

Both models can be expressed with our system. Each has some
specific advantages, e.g. a requirement to explicitly b ring in scope
superclass dictionaries or the need for an extra implicit superclass
dictionary parameter in f unctions with a subclass constraint. In this
section, we demonstrate a Pebble-style model of an ??? subclass
of our previously defined ?? :

?????? ??? {? : ??? } (??? : ?? ?) : ??? ?????
???? ??? : ? → }?( → ????

Let’s now suppose that we h ave values of type ?? N, ??? N
and ?? ???? in scope, but no instance of t ype ??? ????. W e can
then still open the ?? {{ ?? ? }} and ??? {{ ?? ? }} modules and use the
appropriate methods on{{ N }a }nda n?d???s, w{{ ith }t }hem coodrurelcets ad incdtiu osnaerit ehse
being resolved in the b ackground.

???? ??? {{ ?? ?} }
???? ?? {{ {{? ? ?} }}

????1 = ? ? ?
????2 = ?? ? ?
????3 = ?? ???? ?????

An ad-hoc polymorphic function ??? now looks as follows:



_ ?_ : {? : ??? } → {??? : ?? ?} →
{{ ???? }: →???{ ???}} → ? }→→ →? → ????

? ? ? = {?{ ? ? ∨ ?? ? ?

Note how the Pebble-style subclass model requires u s to explic-
itly mention a superclass constraint in the type signature of _ ? _.
This argument ??? : ?? ? is accepted as an implicit argument,
not an instance, because it can typically be inferred from the pa-
rameters of the chosen ???? parameter. Because we require the
superclass dictionary as an argument, it is automatically in scope
for resolution inside the method.

The above shows that our mechanism does not impose a choice
as to how subclasses are to be modelled b y the p rogrammer. W e
think this demonstrates that our instance arguments are a funda-
mental mechanism, giving the p rogrammer the freedom to make
his or her own design choices.

2.4 Native support code for records

A novel feature of our instance arguments is the fact that we
can automatically bring its benefits t o existing record b ased code,
as demonstrated in the introduction. Let us assume we have a
dependently-typed record definition of the following form:

?????? ? Δ : ??? ?????
????

?1 : ?1
?2 : ?2 [?1]
? ? ?

?? : ?? [?1 · · · xn−1 ]
?1 : ?1 [?1 · · ·· ?? x]
?1 = ?1 [?1 ·· ·· · ?? ]
· · ·



?? : ?1 [?1 · · · ??, ?1 · · · ?n−1 ]
?? = ?? [?1 ·· ·· · ?? , ?1 ·· ·· · ?n−1 ]

Agda will automatically generate a module of the following form:

?????? ? {Δ } (? : ? Δ) ?????
?1 : ?1
?1 = · · ·

· · ·

?? : ?? [?1 · · · ?n−1 ]
?? = · · ·

?1 := =?·1 ·[?1 · · · ?? ]
?1 = ?1 [?1 ·· ·· · ?? ]
· · ·

?? : ? [?1 · · · ??, ?1 · · · ?n−1 ]
?? = ?? [?1· ·· · · ?? , ?1 ·· · · ?n−1 ]

This module is p arameterised on a r ecord value ?, and the functions
in the module are implemented using its field values. We now allow
a new form of module application:

???? ? {{ ???}}

Like for Agda’s standard module applications, the modifiers ??????,
?????, ???????? and ?????? can b e used t o control precisely what
is imported. This new module application is equivalent to the fol-
lowing older-style notation (except that it doesn’t name the RInst
module):

???? ?????? ????? {Δ } {{ ? : ? Δ} } = ? {Δ } ?

In this new module, all the definitions from module ?, including the
field p rojections ?1 · · · ?? and additional declarations ?1 · · · ??,

are available in a form that accepts the record value ? as a instance
argument. As we h ave demonstrated in the introduction, t hese def-



initions allow them to b e used in a type-class-like way.
Technically, this new t ype of section applications can in fact be

applied to any module taking at least one argument, turning the
last (normal or hidden) argument into an instance argument. This
allows the mechanism to also be used for situations like in section 3,
where the Agda standard library’s monad concept is not defined as
a record directly, but as a special case of an indexed monad.

2.5 Considerations for instance arguments in other
languages

An important question about our proposed instance arguments i s
how Agda-specific they are. We believe that the mechanism is
widely applicable, and that many variations on our design choices
are possible.

Let us consider the different m odifications that we h ave made.
A first step is the introduction of a new, specially annotated type of
arguments to functions, which is likely unproblematic in many pro-
gramming languages. Clearly, in non-dependently t yped languages,
the arguments’ type must be r estricted to not depend on earlier non-
type arguments’ values, but this reflects the r ules for normal argu-
ments in those languages. However, care must b e t aken that func-
tions with the new type of arguments are fully first-class on the one
hand and that the p rogrammer can tightly control the introduction
of values for implicit arguments on the other hand.

To the best of our knowledge, Agda was the first language t o
demonstrate t hat these two r equirements can b e combined with a
natural syntax through a careful balancing in the t ype checking
rules which govern function applications, lambda expressions, and
the implicit insertion of implicit lambda’s. The rules in section A.1
and A.2 for our instance arguments are simply adaptations of the
corresponding r ules for Agda’s existing implicit arguments [15].
We think that a similar type of function arguments and similar rules



can b e introduced for any language which has some form of partial
function application and lambda expressions.

The choice of the algorithm by which not explicitly provided
instance arguments are inferred is in fact orthogonal t o the rest of
our design. W e clearly choose a relatively low-power one (more
explanation in section 4), but we think that other choices can also
be combined with the rest of our design, ranging from our r ela-
tively low-power inference (see section 4) t o a full-power auto-
mated p roof-search like Coq’s [24]. An advantage of our algorithm
is that we do not require values in scope to b e specially annotated
to b e eligible for this inference, but an annotation similar to Scala
implicit annotations can b e used to l imit the complexity of a more
powerful inference. Another advantage of our low-power inference
algorithm is that it does not introduce a separate t ype-level compu-
tational model in the language.

2.6 Formal Developments

In appendix A, we formally develop instance arguments, b ased on
the formalism that Norell uses to present the Agda language [15].
We formally define functions with instance arguments, how values
for them are type-checked, when values for instance arguments
are inferred and the rules for this resolution. W e discuss various
technical p oints and present a soundness result.

2.7 Implementation

We have implemented the above proposal in Agda. Our implemen-
tation is surprisingly cheap, with a non-context-diff of about 750
lines. It’s hard to compare line-counts between different program-
ming languages (Agda is implemented in Haskell, Coq in OCaml),
but for what it’s worth: the initial diff of Sozeau’s Coq type classes
[24] was ~2k lines long. Our implementation has b een incorpo-



rated in the development version of Agda3, and will be p art of Agda
2.2. 12 when it is released.

3. Monads case study

Our instance arguments provide an alternative for type classes.
They lift some of the limitations of type classes but our inference
algorithm is less powerful than Haskell’s. To demonstrate that our
mechanism is at least powerful enough for many common use c ases
of t ype classes, we take a look at a typical type class example:
monads. In this section, we demonstrate that with our instance
arguments, we can use the A gda standard library’s ????????’s
in similar ways to Haskell’s monads.

The closest e quivalent of Haskell’s ????? type class in Agda’s
standard library is the ???????? concept in the ????????? ?????
module. Unlike its Haskell relative, it is defined as a special kind of
indexed monad, a concept that is defined as ???? ????? in module
????????? ?????? ???????4. W e copy the most important parts of
the definitions here:

???????? : ∀ {?} → (??? ? → ??? ?) → ???
???????? ?: ∀={ ?}?→ ?? ? (???? →{ →? = ?) )}→ →(λ → ?)

?????? ???? ????? {? ?} { ? : ??? ? } (? : ???? ? ?) :
??? (? ? ??? ?) ??{???
????? ?? _>> = _ _>> _
????

?????? : ?????? {? ?} → ? → ? ? ? ?
_>> = _ : ??????{ {? ? }? ?→ ?} →→ ? ? ? ? →

(? → ? ? ? ?{) → ? ? }? ?→

_> >_ : ∀ {? ? ? ? ? } →
_? :? ∀? ?{ → ? ? ?} ?→ → ? ? ? ?



?1 >> ?2 =→ ?1 >> = λ→ → ?2

We see that RawMonad is defined as an indexed monad which
just ignores its indices. An indexed monad contains the essen-
tial monadic operators ?????? and _ >> = _ as fields and provides
the _>> _ operation. In order to highlight correspondence with
Haskell’s monads, we slightly m odify the RawIMonad record mod-
ule to additionally include a syntax definition (a form of restricted
macro) for a form of do-notation. This addition is orthogonal to the
use of instance arguments.

???? : ∀ {? ? ? ? ?} →
? ? :? ∀? → (? →} }?→ →? ? ?) → ? ? ? ?

???? {? } {?→ →} {( ?} →{? } {?} )=→

_>> { =}_ {{?}} {{? }} {{?}} { {?}} { ?=}
?????? ???? ? (λ ? → ?) = ?? ? ← ? ???? ?

We can bring in scope some monad “instances” f rom the A gda
standard library. We bring in scope a state monad with mutable state
variable of fixed type N, a p artiality monad (defining a form of par-
tial or possibly non-terminating computations) and the list monad
(defining monadic operations over the ???? type constructor):

???? ?????? ????????? ??????????? ????? (??????????)
?????????? = ?????????? N
???? ?????? ????????? ???????????????? ????? ()

???????? (????? ?? ???????????????)
?????? = ???????????????
???? ?????? ???? ????? ????? (????; ? ? ??; [ ])

3 Use the command ????? ??? ???? ? ?????? ? ??????? ? ???????? to
download the latest source code.



4 The definitions are called raw because they do not contain p roofs of the
monad laws.

???????? (????? ?? ?????????)
?????? = ?????????

There i s a technical reason, related to the universe polymorphism
of these monad instances, why we need to provide the apparently
trivial definitions of ?????? and ??????. We will come back to
this in section 4 .

In current Agda, the most convenient way t o use these monad
“instances”, is to apply the ???????? module to the correct
monad instance at the location where it is used.

????? : N → N ⊥
????? ?: =N →??? ???? ???????? ??????????????? ??

?? ? ← ?????? ? ????
?? (??←??? ? ?) ???? ?????? ?? ???? ?????

This code does not look too bad actually. Opening a monad in-
stance’s module brings in scope j ust the definitions of the monadic
operations we need. However, it becomes more difficult if we de-
cide that we need to use for example the monadic bind operator
on a list, requiring monadic operations from two different monad
“instances”. In this case, current Agda requires us to rename one:

????????? ??????? : N → ???? N

????2 : N → (???? N) ⊥
????2 ?: =N

??? ???? ???????? ???????????????
???? ???????? ?????? ????? ()

???????? (_>> = _ ?? _>> = l_) ??
?? ? ← ?????? [?] ????
?? (??←??? ? ?) ???? ?????? (? >> = l ???????) ???? ?????



We can improve upon this situation using instance arguments.
First, we bring the definitions from the ???????? {{ ?? ? }} mod-
ule application in scope. We have to define it ourse{l{v es }b } ecm auosde-
???????? is not directly defined as a record, but it is general and
could be added to Agda’s standard library. We can then define our
examples in a simpler way and let Agda infer the correct values for
the instance arguments.

???? ???????? {{ ?? ?} }

????1 : N → N ⊥
????1 ?: =N →?? N? ←⊥ ?????? ? ????

?? (??←??? ? ?) ???? ?????? ?? ???? ?????

????2 : N → (???? N) ⊥
????2 ?: =N

?? ? ← ?????? [?] ????
?? (??←??? ? ?) ???? ?????? (? >> = ???????) ???? ?????

In the case of ????1, one could argue that we don’t actually gain
all that much. Agda now automatically chooses the correct monad
“instance” from the values in scope instead of requiring the p ro-
grammer to make this choice. However, the second example shows
that in a case where we use monadic operations from different
monad “instances”, instance arguments effectively spare u s some
uninteresting b ookkeeping, b y inferring appropriate “instances” i n
the background.

4. No automated proof search

Our resolution algorithm is only a r estricted analog to Haskell’s
instance search. The mechanism is designed so that only one type-
directed scope-based r esolution will be done per not explicitly pro-



vided instance argument in the program (see section A.3). This lim-
itation is a deliberate choice, intended t o avoid introducing a sepa-
rate computational model through the instance search mechanism,
as for Scala implicits or Haskell and Coq type classes. However,
this decision does u navoidably limit the functionality of our mech-
anism. For example, for the ?? type introduced in section 2, we
could have a definition like the following:

?????? : {? : ??? } → ?? ? → ?? (???? ?)
?????? {:?{ } ??? =} ?→ ????? {??→??? = ?? ? } ?????

?? ? :{ ??}?? ? → ???? ? →{ ????
?? ? [ ] [ ] = ??→??
?? ? (? ?? ??) (? ?? ??) = ??? (????? ??? ? ?) (?? ? ?? ??)
?? ? = ?????

Now, with the ?? ???? value from section 2 in scope, you might
expect an instance of ?? (???? ????) to b e automatically inferred
as ?????? ??????. However, in our system, this is not the case: in
such a situation, we require the user to explicitly construct a value
of the correct type himself. It suffices to bring this value in scope at
the call site, for example b y placing it in a local ????? block.

???? = ????? (???? ? ? ????? ? ? ???? ? ? [ ]) (???? ? ? ????? ?? [ ])
????? ?????????? = ?????? ??????

We encountered another interesting case of this problem in
the previous section, where we had to provide seemingly “trivial”
definitions for values ?????? and ??????. The reason that these
were needed is that the definitions were not actually trivial. The
types of the values involved are as follows:

??????????????? : {? : ????? } → ???????? (_⊥ {? })
?????? : ????:?{ ??? (_⊥ {{}} → )
????????? : { ? : ?????( (}_ ⊥→{ {?}? ?)????? (???? { ? })



?????? : ?:?? {????? (?}??→ ? {{} )

This is an example of Agda’s universe polymorphism. The value
_⊥ is not a functor of type ??? → ???, but instead, for any level ?,
__⊥⊥{ ils}n oist aa ffuunnccttoorr ooff t tyyppee ??? ?→ → ??? ?. T his means that partial
_c⊥om{lp}uti astioa nf us ncactno rboe fdt eyfipneed produ→cing values (Set 0), types (Set 1),
kinds (Set 2), and for each of these types of partial computations, a
monad “instance” is provided as ??????????????? { ? }.

The monadic computations and lists we used{ b}ef.ore all p ro-
duced or contained values, so our ?????? and ?????? are defined
as monad instances for resp. partial computations and lists working
with values. Note that we did not need to specify level 0 explicitly
for this. Because we j ust omit the level argument, Agda inserts an
underscore implicitly and infers its value when it resolves ??????
and ?????? as values for the instance arguments.

4.1 But why not?

So, in both of the above examples, our r esolution search was not
smart enough to automatically infer certain instance arguments that
one might expect it to. In both cases, help from the programmer is
required to make it find the correct value. The extra information is
limited (placing the required value in scope) and does not require
explicitly passing the instance arguments everywhere they are used.

We actually believe that a smarter r esolution algorithm can be
defined for our mechanism. Extensions can be imagined where
functions like ?????? are annotated somehow to make the resolution
consider them. Such an extension would be largely orthogonal to
the r est of our design. However, introducing such an extension
makes the instance search recursive. Even if it can still be k ept
decidable with restrictions on the functions considered, it would
inevitably expose an additional computational model, similar to
Haskell’s, Scala’s or Coq’s instance search.



Because our implementation is in Agda, we are extra sensitive
to this point. Any instance search that can automatically infer for
example the value of ?????????? above, must somehow perform a
reasonably powerful automated proof search. T his is an area where
up to now, the Agda language designers have taken a very p rin-
cipled approach. Agda does provide such a mechanism (dubbed
????), but only in the interactive proving/programming environ-
ment, not in the language. Agda has also refrained from introduc-
ing an equivalent to Coq’s untyped, imperative meta-programming
facility (Coq “tactics”), instead developing a more principled mech-
anism through the ????????? construct. This construct is intended
to allow Agda to function in a sense as “its own t actic language”,
although it is currently still limited because n o access t o the context
or scope is available to the m eta-programs. We believe that A gda’s
approach in this area is very p romising, and the limited p ower of
our inference algorithm avoids compromising Agda’s principled
design choices in these areas b y introducing a parallel computa-
tional model which could be exploited as a meta-programming con-
struct, as has happened in other languages.

4.2 Advantages

Note also t hat our simple r esolution scheme has some advantages
of its own. W e have used it for all of the examples in section 3
and 5 and the resolution has p roven p ractical, predictable, intuitive
and sufficient. A lso, we do not need to limit resolution complex-
ity by r equiring candidate values to be annotated specially, instead
considering all values in scope. This lowers the impact of our fea-
ture on u sers’ code and makes for example the ellipsis in section 5
more widely usable. Its intuitive meaning also changes from “Fill
in this value from an annotated value in scope” to “Fill in t his value
from the scope”, which feels more natural to us.

Note that because the entire scope is considered for r esolution,



it is up to the p rogrammer to make sure that only a single value
of a correct t ype is in scope. Instance arguments should only be
used on types which are informative enough so that they typically
identify values uniquely. If there still is a conflict, existing features
in Agda’s module system (e.g. ?????? and ????? modifiers) can
be used to control the scope. Note also that values that are not
directly in scope but via a named module are not considered for
instance resolution, but they can still b e accessed explicitly. In our
experiments, we find that instance arguments provide a solution (ad
hoc overloading) for many of the name conflicts that arise in typical
useo f Agda’s standard library (e.g. ?=?? in ????????, ?????????
etc.) and that type conflicts for reasonably typed instance arguments
occur seldom.

5. Some advanced patterns

It turns out that our r elatively simple extension of Agda can support
analogs or variants of many features which have required important
implementation efforts in Haskell, as well as some new patterns of
its own. In this section, we discuss a selection of such topics.

5.1 Standing on the shoulders of records

We discussed in the introduction how modelling type classes us-
ing an existing powerful r ecord mechanism such as Agda’s depen-
dently typed records makes certain features available “for free” t hat
require separate extensions for Haskell type classes. Sozeau et al.
and Oliveira et al. have p reviously demonstrated this observation
for Coq type classes (which are Coq dependently typed records un-
derneath [24]) and Scala implicits (where t ype classes are typically
modelled as Scala t raits [2]).

One such feature is the equivalent of Haskell’s associated type



families [23]. An associated type family i s essentially a type class
member that is a type or type functor. U sing a dictionary model
of a type class in a dependently typed language, there i s nothing
special about records with members that are not j ust values and we
essentially get associated type families for free.

Another feature which we get “for free” is known as constraint
families for Haskell [18]. A constraint (synonym) family in Haskell
is a member of a type class that r epresents a class constraint on
a type class’s parameters and/or other types. Using a dictionary
model of type classes, this concept actually reduces t o t ype fami-
lies. Orchard and Schrijvers’ example of constrained functors (pos-
itive type functors whose ???? function is r estricted to types in a
certain t ype class) can be modelled as follows:

?????? ?????????????????? (? : ??? → ???) : ??? ?????
???? ?????????? : ??? → ???

???? : ∀ {? ? : →??? } → ?????????? ? →
???:??∀? ??{ ?? ? → (? }→→ ?) → ? ? → ?→ ?

??????????????? ??????? : ?????????????????? ????
??????????????? ??????? = ?????? {

?????????? = λ → ?
,???? = λ → →????? ???? }

?????????????? ??????? : ?????????????????? ???
??????????????? ??????? = ?????? {

?????????? = ??? , ???? = ??{????? }

5.2 Multi-parameter type classes and f unctional
dependencies

A multi-parameter t ype class in Haskell is (obviously) a type class
with more t han one parameter. The equivalent in our approach



would b e instance arguments of a record type with more than one
parameter, and this is clearly allowed in our system. Functional
dependencies in a multi-parameter type class are annotations which
indicate that certain parameters of a type class can be deduced from
(a subset of) the others [9]. Such an annotation cannot directly b e
provided in our framework. However, in this section, we highlight
certain behaviour of our system, which is r eminiscent of functional
dependencies, even though it works differently under the hood.

Consider the following code, which uses the ????????????????
record from module ????????? ?????? in the Agda standard library.
We use explicit ????? declarations to avoid certain name clashes,
but also t o make it more clear what is happening u nder the h ood.

???? ?????? ???????? ??????? ????? (?????? ?????????;
?????? ????????????????)

???? ?????? ???? ? ???? ????? (?????; ????; ?????????)
???? ????????? ????????? ????? (????????????????)

???? ???????????????? {{ ?? ?} } ????? (?=??)
???? = ????? =? ????

The ???????????????? ? ?≈? record is semantically a more de-
veloped version of the record≈ ?? from the introduction, containing

essentially an equality decision p rocedure ?=?? for ab inary p red-
icate ?≈? on type ? (as well as p roof that ?≈? is an equivalence

relation). The field ?=?? has the following type:

?=?? : (? : ?) → (? : ?) → ??? (? ≈ ?)

A value of type ??? (? ≈ ?) contains either a proof that
? ≈ ? or a p roof that ? ≈≈ ?. W e can bring a value of type
???≈????????????? ???? ?≡? in scope b y importing ???? ? ????



and opening the ????????? r≡ecord (this would b e more convenient
if ????????????? were exported directly by the ????????? module).
Finally, we bring the new record field p rojection operator (taking
the r ecord as a instance argument) into scope b y importing it from
the ???????????????? {{ ? ? ? }} module application (see section 2.4).

Fromt hatp oint on, we can transparently use the function ?=?? on
Bools, as demonstrated in the definition of ????.

A first thing to note is that the ???????????????? record t akes
two arguments, making it the equivalent of a multi-parameter type
class. It is interesting to consider what happens when type-checking

the definition of ????. The function ?=?? has the following type
(ignoring universe p olymorphism):

?=?? : {? : ???} → {?≈? : ? → ? → ???} →

{{ {???? : }???→ ???{ ??≈???????? ?→ ?≈→?}} →

{({ ? : ?) → (? : ?) → ??? (? ≈≈ ?)}}

When ????? =? ???? is type checked, Agda infers that ? =

???? from the arguments of ?=??. It then infers the instance
argument ???? from the local scope. The only candidate value
in scope is ?????????????, typed ???????????????? ???? ?≡?.

From unifying the type of this value with the expected type of ??≡??,
Agda infers that the implicit argument ?≈? must be the b inary
predicate ?≡?.

In this ca≡se, we see that one argument of the ????????????????
type constructor already uniquely determines the value to b e used
from the scope. Its other arguments can then b e inferred from
this value, producing an effect similar to a h ypothetical situation
where ???????????????? were a multi-parameter type class with a
functional dependency from type ? to b inary p redicate ?≈?.

Nevertheless, our mechanism works very differen≈tly from



Haskell type classes with functional dependencies. First of all,
nowhere h ave we declared any functional dependencies between
arguments of the ???????????????? record type, and t hese de-
pendencies were not checked when we brought values of type
???????????????? into scope. Only when we actually needed to in-
fer an instance argument, it was checked that only a single suitably-
typed value was in scope.

Semantically, declaring the equivalent of a functional depen-
dency on the arguments of the ???????????????? record type cor-
responds to an assertion t hat only one decidable equality predicate
can exist for any given type ?. T his assertion is semantically wrong
here and can cause problems in scenarios where multiple such p red-
icates are used together. Our system manages to infer the value of
the ?≈? predicate without such a dependency, because only one
value o≈f type ???????????????? ???? ?≈? is in scope at the call

site of ?=??, which is semantically am uch weaker requirement.
Note finally that it is a value, not a type, that i s b eing inferred

in a functional dependencies-like way. In fact, our mechanism does
not make any fundamental distinction between t ypes or values, as
one might expect in a dependently-typed language like Agda. The
mechanism will even happily infer types from values, which is not
possible in Haskell.

5.3 Implicit Configurations

One pattern implemented in the context of t ype classes which is
rendered almost trivial in the context of our proposal is Kiselyov
and Shan’s implicit configurations [11]. The authors discuss a solu-
tion to what they call the configurations problem: propagating run-
time p references throughout a program, allowing multiple concur-
rent configuration sets t o coexist safely under statically guaranteed
separation. T heir main example concerns modular arithmetic: t hey



want to be able to build expressions in modular arithmetic which
are parameterised over a concrete modulus but without the need to
pass the modulus around explicitly. They also want static assurance
that the same modulus is used for all operations in such an expres-
sion.

Kiselyov and Shan’s solution is b ased on a mix of phantom
types, t ype classes and type-level computation. We demonstrate
that a simpler encoding is possible in our system, and that we
can even fully avoid one of the main difficulties in their work:
the reflection at type-level of run-time values. Let us suppose that
we have a signature like the following: we assume an ????????
dictionary r ecord and ???, ??? and ??? operations taking such a
dictionary as a instance argument. We also assume we h ave a type
? containing values ????, ???, ??? and ????? and a dictionary ? ???
of type ???????? ? .

?????????
???????? : ??? → ???
??? : ∀ {?} { {→???? : ???????? ?} } → ? → ? → ?
??? :: ∀∀ {{ ? }} {{{  {???? : ???????? ?}}} } →→ ? →→ ? →→ ?
??? :: ∀∀ {{ ? }} {{{  {???? : ???????? ?}}} } →→ ? →→ ? →→ ?

? : ???
???? ??? ??? ????? : ?
???? : ???????? ?

Like Kiselyov and Shan, we define a wrapper data type ? ? ?
parameterised b y phantom token ? (in our case not a type but a
value of opaque type ?????) and type ?. This wrapper r epresents
a value of type A that is b eing considered under an unspecified
modulus. W e also define a dictionary record ??????? ? ? (also
parameterised b y a token s and type ?).

??????? ????????? ????? : ???



?????? ??????? (? : ?????) (? : ???) : ??? ?????
???? ??????? : ?

???? ? (? : ?????) (? : ???) : ??? ?????
??? : ? → ? ? ?

?? ??? : ∀ {? ?} → ? ? ? → ?
????? (:?∀ ?{? ?) }=→ ?

Our ???? ??????? function is simpler than Kiselyov and Shan’s
because we don’t have to b other with constructing a type for which
the Modulus instance returns a certain value, but instead j ust pass
the desired dictionary explicitly.

??????? ????????? ???????????? : ?????

???? ??????? :
∀ {?} → {{ ???? : ???????? ?} } → (??????? : ?) →
(∀∀{ {? }} →→ {{{  {??? : ??????? }?} }?→ }} →( ? ? ?) → ?)

??(??∀ ? {?}??→ ??? ?{?????? ? = ?? ???}} $→
? {???????????? } {{ ?????? { ??????? = ???????}}}

Our addition and m ultiplication become pretty similar to Kise-
lyov and Shan’s version:

????????? : ∀ {? ?} {{ ???? : ???????? ?} }
{{ {???} :{ ??????? ? ?} } →}} ? → ? ? ?

????????? ? = ??? $ ??? ?????}?} ? ?→

??? : ∀ {? ?} {{ ???? : ???????? ?} }
{ {??:? ∀: ???}?{? ?{ ? ? ?} } → ? ? ? →} ? ? ? → ? ? ?

(?{ ?{? ?) ? (??? ?) =}} ? →???????? $→ ??? ? ?

??? : ∀ {? ?} {{ ???? : ???????? ?} }
{ {?:??∀ :{ ??}??{ ? {?? ? ?} } → ? ? ?} → ? ? ? → ? ? ?

(?{ ?{? ?) ? (??? ?) = }??→ ??????? $→ ??? ? ?



These operators are used similarly to Kiselyov and Shan’s:

????1 : ?
????1 = ???? ??????? ??? $

??? ? = ??? ??? ?? (? ? ?) ? (? ? ?)

???????? : ∀ {?} → {{ ??? : ??????? ? ?} } → ? ? ?
???????? :=∀ ? ?{? ?} →= ?{ ?? ???; ? = ???} }??→ ?

?? (? ? ?) ? ?

????2 : ?
????2 = ???? ??????? ????? ????????

With this, our encoding of Kiselyov and Shan’s implicit con-
figurations is done. We believe that we achieve the same goals
as Kiselyov and Shan, but we avoid their threading of values into
types (through an involved type-level reflection of values) and back
again (through a form of type-level computation), which seems un-
needed, very complex and possibly inefficient (depending on what
optimisations the compiler can p erform). Interestingly, the fact that
we don’t need t o reflect values at the t ype level is not (as one
might expect) a consequence of Agda’s dependently typed nature.
Instead, it is the value-level r epresentation of dictionaries which
allows this greater simplicity. M ore concretely, in the definition of
???? ??????? above, we can construct the dictionary as a value and
pass it explicitly t o the computation, whereas Kiselyov and Shan
need to j ump through a lot of h oops to construct a type for which
the correct instance will be inferred. Kiselyov and Shan instead pro-
posed adding a form of local instances to Haskell, of which we also
support an equivalent (see section 5.5).

5.4 Implicit Proof Obligations

In the context of A gda, we believe that instance arguments are



useful for a pattern which is (to the best of our knowledge) novel:
implicit p roof obligations. Consider the integer division operator in
module ????? ???? ?????? in Agda’s standard library:

????? : (???????? ??????? : N)

{≡? : ????? (??????? =? ?) } → N

This division operator requires a guarantee that the provided divisor
is non-zero. However, instead of r equiring a normal argument of
type ??????? ≡ ?, the ????? operator cleverly accepts a value

of type ????? (??????? =? ?). T his type contains a single value if
and only if ??????? is non-zero, but additionally, this value can b e
automatically inferred if Agda k nows that ??????? is of the form
??? ? for some ?. For example, if we write ? ??? ?, then Agda
will infer the non-zeroness proof obligation. T his pattern has been
described b y N orell [15, 3.7. 1p.71], and critically depends on the
fact that the property in question (non-zeroness) can be decided.
Proof obligations modelled using this pattern are not passed on
implicitly to other methods that require it. Finally, the ?????
operator becomes somewhat clumsy to use in a situation where only
a normal proof ??????? ≡ ? is available.

We propose an ad?≡ditional operator ????? ?o which takes the
proof obligation as an instance argument (we omit the definition
in terms of the above ?????). This operator does not have the
limitations of the ????? operator discussed above, but does have
some limitations of its own: for example in the call ? ???? ?, Agda
can only infer the implicit argument of our operator if a value of
type ? ≡ ? is in scope.

????????? : (???????? ??????? : N)
{{ ≡?? : ??????? ≡ ?} } → N ×N

??????? = {-≡-? omitted
? ?



?????? : (???????? ??????? : N) {{ ≡?? : ??????? ≡ ?} } → N
? ???? ? ???? ? ??????? ?
? ???? ? | (?, ,) = ?

?????????
? : N
?≡?? : ? ≡ ?

???? : N
???? = ? ???? ?

Note how in the definition of ??????, the proof obligation is im-
plicitly passed on to the ????????? function, which also requires
it. We believe that this example shows that our proposed instance
arguments have uses that go beyond those of type classes. Not only
dictionary records can b e usefully passed around implicitly but also
other values which are uniquely identified by their type in call-site
scopes. In a dependently typed language like A gda, implicit proof
obligations are a clear example of such values.

5.5 Local i nstances

A feature that is not supported by Haskell type classes are local
type class instances. Consider the following two equality functions
on Strings: the first r epresents standard equality and the second
only compares the strings’ lengths. The first definition uses the
standard string equality decision p rocedure and the second applies
the ????????? operator after first applying a string length function
to its two arguments. Note that we assume a single, standard value
of type ?? N in scope.

????????1 : ?????? → ?????? → ????

????????1 ?1 ?2 = ? ?1 =? ?2 ?

????????2 : ?????? → ?????? → ????



????????2 = ?? ?? →??????

Now suppose that we have a function whose behaviour depends
on a configuration argument, determining which type of equality it
should use throughout a series of calculations. W e can support this
by defining the equivalent of a local instance ?? ????? ofthe ?? type
class, which uses the correct string equality operator, depending on
the configuration parameter.

???? : ???? → ????
???? ????????→ = ?? ?? ?????? ?????? ???? ?? ? ???? ?? ?

????? ?? ????? = ?????? {?? =
?? ???????? ???? ????????{2 ???? ????????1 }

The value ?? ????? functions as a local type class instance,
something which is also supported b y Scala implicits, but not b y
Haskell or Coq t ype classes, where type class instances are always
global.

5.6 Two final examples

As a small encore in this section, we c an’t resist discussing two
code snippets using instance arguments. The first is an example of
a function abstracting over functions with implicit arguments. It
demonstrates the first-class nature of our new type of arguments:
functions with instance arguments can b e abstracted over, their
types can be written out etc.

??????????? : ∀ {? : ??? } {? : ? → ??? } →
({ {? : ?} }: ∀→{ ? ?) → }({? : ?) →→ ? ?

??(?{? ?{?????? ?} }? →= ? {{ )?}→}

Our final example is small, but very useful: it i s an analog
of Agda’s standard underscore construct for instance arguments,
similar to Scala’s ?????????? or ?. Like in Scala, we don’t need t o



introduce special syntax for t his: the following definition suffices.
This ellipsis can b e used as a shorthand in any situation where
only a single type-correct value is in scope. Because our resolution
algorithm does not require candidates t o be specially annotated
to b e eligible, our ellipsis is more generally useful t han Scala’s
??????????.

· · · : {? : ??? } → {{ ? : ?} } → ?
·· ·· ·· { : {? {}} = ?

6. Related Work

There exists a lot of literature about type classes, extensions of them
and alternatives to them [2, 5, 6, 9, 10, 18, 20, 23, 24, 26, 27]. We
have already discussed Haskell type classes and Scala implicits in
the introduction and we do not repeat t his here.

We do not further discuss implicit parameters as implemented in
Hugs and GHC [13], as these use a name-based r esolution, instead
of the type-based resolution of our design and are thus not suited
for our use cases.

6.1 Coq Type Classes

Sozeau and Oury h ave recently presented Coq type classes [24].
Coq is a dependently typed, p urely functional p rogramming lan-
guage/proof assistant like A gda, with a longer history and a
larger user b ase. Unlike Agda, it has a very principled core lan-
guage and associated type-checker. On top of that, there is a
variety of arguably less principled language features and meta-
programming/proof automation facilities.

The authors introduce type classes as essentially a new way to
define dependently typed r ecord types. If a function has an implicit
argument of such a r ecord type, and its value cannot b e inferred



through Coq’s standard unification, then Coq will try to infer a
value through an instance search. This instance search is imple-
mented as an automated p roof search using a special-purpose p ort
of the ????? tactic. It performs a bounded breadth- or depth-first
search using the type class’s instances as lemma’s. This can include
both direct instances (objects of the r ecord type) and p arameterized
instances (functions which take certain arguments and return such
an object).

Sozeau and Oury go on to discuss some superficial syntax
extensions and r elatively straightforward models of superclasses
and substructures and then provide a discussion of various aspects
of their system, most importantly their instance search tactic. They
think their current instance search tactic is not sufficient in the
context of multi-parameter type classes and arbitrary instances
(which their system currently allows). They state the algorithm’s
non-determinism and impredictability as problems which they hope
to address in the future by restricting the shape of allowed instances
and using a more predictable algorithm.

In addition to these problems, we believe that Sozeau et al.’s
instance search procedure i s currently at least as powerful as
Haskell’s or Scala’s instance/implicit search and exposes the same
kind of separate computational model (see section 4). Also, if we
understand Sozeau and Oury’s text correctly, a given implicit func-
tion argument can sometimes behave as a t ype class constraint and
sometimes as a normal implicit argument, if its type depends on
the value of previous arguments. Our r esolution algorithm is less
powerful than Sozeau et al.’s, but it is predictable, deterministic and
does not expose an alternate computational model.

Sozeau and Oury’s mechanism is limited to record types that
were defined as a type class, so existing libraries need t o b e adapted
to benefit from it. T ype class instances can be defined locally
(see section 5.5), but it seems that the local instance will not be



considered for automatic r esolution.

6.2 Coq Canonical Structures

Coq features another type system concept which can be exploited as
an alternative to type classes: canonical structures [1, 25]. T his fea-
ture allows certain values of a record type to b e marked as canoni-
cal structures. Such values are then automatically c onsidered when
the Coq type inferencer tries to infer a value of the r ecord type from
the value of one of its fields. Canonical structures have existed for
some time in Coq, but have recently attracted the attention of au-
thors looking to provide easy to use libraries of complex concepts,
exploiting canonical structures as a powerful meta-programming
feature that can be implicitly triggered to resolve values in the back-
ground. There are some similarities in the design to ours, as it does
not introduce a separate type of structure and does a form of im-
plicit resolution from call-site scope. However, because the resolu-
tion is keyed on values instead of types, the idea is not suitable for
non-dependently typed languages, where we can only reason about
types at compile time.

However, the entire design of the feature seems very p ragmatic.
We have not b een able to find a detailed (formal?) description of
the exact workings of the system. From what we understand, it
is deeply coupled to Coq’s type inference engine and uses certain
syntactic criteria, behaving differently for semantically equivalent
values. T here seems to b e a certain interaction with a form of back-
tracking in Coq’s type inference engine, which can b e exploited for
encoding backtracking in the specification of how values should b e
inferred. All of this leads to a meta-programming model that seems
even more powerful than Haskell’s instance resolution, hard to un-
derstand and strongly different from Coq’s standard computational
model(s).



6.3 Explicit Haskell

In an unpublished technical report, Dijkstra and Swierstra describe
an implicit arguments system which t hey have implemented in a
Haskell variant called Explicit Haskell [4]. Their main motivation is
that Haskell does not provide a way to override the automatic reso-
lution of instances (dictionaries) for functions with a type class con-
straint. They extend Haskell with named instances, local instances,
and a way to explicitly provide an instance to a function with a type
class constraint, either b y naming the instance or b y lifting a value
of a record type corresponding to the type class. They also allow
type class constraints to appear anywhere in a type, not j ust at the
beginning. For resolving type class constraints, they use a resolu-
tion close to Haskell’s. The only difference is that instances can be
annotated t o not t ake part in t his resolution (in which case they can
only b e used by name). In the same text, Dijkstra and Swierstra
discuss a system for partial type signatures, which seems to have
independent value. The system allows the user to partially specify
types for values and leave the rest to b e inferred.

This design has many similarities to our system. T heir exten-
sions to the concept of type class constraints effectively transforms
them into a special form of function arguments similar to our in-
stance arguments. T heir design offers some of the same benefits as
ours (e.g. local instances, named instances), and they discuss some
of the same examples as we do in section 5.

However, they make some different choices than we do: their
constraints remain limited to arguments whose type was defined
as a type class instance and their resolution is similar t o Haskell’s.
They do not fully unify type classes with t heir associated record
types, so that some of the advantages we can offer are not available
(e.g. abstracting over a type class).



6.4 Modular Type Classes

Dreyer et al. discuss an alternative to type classes in the context
of M L [5]. T hey share our view that Haskell type classes dupli-
cate functionality by introducing a separate structuring concept,
and they argue that M L modules already provide f unctionality akin
to associated t ype families and type class inheritance (like we do
for ADT’s). They propose t o model single-parameter t ype classes
as class signatures: module signatures with a single abstract type
named ?. Instances become modules and functors. T heir p rimitive
overload ??? from ??? returns a version of function ??? from
class signature ??? that will resolve the appropriate module imple-
menting ??? from call-site scope. Another p rimitive ????? (???)
resolves and returns this module.

Resolution of such a module takes into account modules and
functors that h ave been annotated in the current scope with a using
declaration. Since functors are considered, the instance search is
recursive, and can likely b e exploited as a type-level programming
primitive similar to Haskell’s instance search, even though D reyer
et al do not discuss t his. Their proposal does not support the equiv-
alent of multi-parameter type classes. It is not clear to us if and how
their type class modules can be abstracted over.
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A. Under the hood

In this appendix, we discuss the precise changes we make in more
detail. The definitions in this section are extensions and adaptations
of Norell’s r ules for current Agda type-checking and standard im-
plicit arguments [15, 3.5 pp. 69–70, 5.1.5 pp. 99–100]. They should
be read in the context of Norell’s developments and may not be
fully clear without them.

A.1 Implicit lambdas

We add another implicit function space {{ ? : ? }} → ? in
Wadedi taidodn aton oththee erxii mstipnligc i{t? f :n c?ti }o → sp c?e a {n{ d (? : ?)}} →→ ?. Like
tahded ietixoisntit nogt ihemp elxicisitti nfugn {ctions, t}he→ →new functions are) s →emantically
equivalent to the corresponding ordinary functions. Values of type
{{ ? : ?} } → ? can be introduced as (typed or untyped) lambda
v{{ alues λ }{{ ?→ }} → ? or λ {{ ? : ?} } → ? or they can b e defined
vasa lucoensstλ a n{{ ts }}( at →the topo-rl λev{ e {l or in w}} he →re-clauses).

For type-checking values of this type, we extend the rules for
Agda’s standard implicit arguments [15, 3.5 pp. 69–70] as follows.
If a value does not explicitly mention an instance argument from
the type it is checked against, rule (2) infers implicit lambda’s, like
for normal implicit arguments.

Γ ?λ { {x}} Γ.e,x↑ : { { A x: ? A e }↑ } B → ? B ? s λ {{ x}} .s (1)



ΓΓ,x? :  eA ↑ ?  { {e x↑  : BA }? }  →s B e ?=? λ λ {{ {{ xx}} } .}s.e? (2)

A.2 Instance arguments

Next, we need to determine when instance arguments of a function
are not provided explicitly and should be inferred. This mechanism
is governed by the inference rules for argument checking j udge-
ments of the form Γ ? A @ e ↓ B ? s¯. Such a j udgement means
tmhaetn tths eo fvta hlueef so rem mcaΓ n b?eA A pa@ sse ¯ ed↓ aBs ar ?gu s ¯m.eS nutcs htoa aaj uvdaglueem eofn ttym pee Ans,
producing a value of type B. The full list of arguments to be applied
to the function (including implicitly inserted ones) is “returned” in
s¯.

We extend the corresponding r ules for implicit arguments [15,
3.5 p . 70] as follows. For a non-provided instance argument, we
do not j ust insert a meta-variable α, but we additionally add a
constraint FindInScope α. This is a special kind of constraint that
indicates that α should be resolved as an instance argument. To do
this, we need to extend the form of argument checking j udgements
to additionally return a set of constraints C: Γ ? A @ e ↓ B ? s¯, C.
tToh aids daidtiaopntaedlly f orertmur naca ts uaetllo yf ccoonrrsetrsapoinntdsCs :m Γo? re Aclo@s¯ee ly↓ Bto ?A g¯s  d,aC’s.
existing implementation of the rules. Existing rules in the old form
of the j udgement should now b e read as simply producing no
constraints or simply pass generated constraints through if they
recurse.

Γ ?Γe ?  ↑{  { Ax?  : As }}  →Γ B ?@  B{[ { xe: }=} ;s e ¯ ]↓ @ B  ¯ e??↓ B s ?; ¯ s?,Cs ¯ ,C (3)

AddMeta(α : Γ → A) e = { {e}} ; e¯?
Γ A? {d {xM M:e tAa}( }α α→: ΓB→ →@ A{ {α)}} ; ¯e ↓ Be?= ? ? { { s, C;



Γ? { { x: A }} → B @ { { α}} ; e ¯↓ B ?s ¯ ,C

Γ?  {{ x: A }} → B @ e ¯ ↓ B ??s ¯ ,C∪ { FindInScopeα} (4)

We change the last r ule on [15, p. 70] to the following:

A=?  { {x:  AΓ1}} ? A →  @A ? 2↓  AA ?=? ? { ,x{}: A 1}→ A 2 (5)

A somewhat technical point here is that at the moment, we do
not allow meta-variables introduced for instance arguments to be
η-expanded, as this is done for Agda’s normal implicit arguments.
We take a conservative approach because we currently do not have
a good understanding of possible interactions between η-expansion
and instance resolution. During our experiments, we have estab-
lished t hat all of them (see section 3 and 5) have worked well with-
out η-expansion. It is future work to get a better understanding of
the issues involved.

A.3 Resolution algorithm

The resolution of a constraint FindInScope α in context Γ and
scope S with Γ ? α : A tries to infer a value from either the
svacolupees Sin twhieth hcuΓ rre? nt αcon: teA xt tΓri eosr tthoe i ncfoenrsta an vtsal uine scope Seit. hIfe rot nhley
one candidate is found in both sets, it is selected. If there is more
than one candidate, resolution of the constraint is p ostponed in
the hope that more type information will b ecome available further
on, reducing the set of candidates further. If the constraint is not
resolved when type checking finishes, this is reported to the user.
If there are no candidates, then the constraint cannot be solved and
this is also reported.

To formalise these rules, we need some extra information about
meta variables introduced through inference rule (4) above: the
context and scopes at the p oint where they were defined. We do not
make t his change explicit because the context is actually already
implicitly b eing maintained throughout Norell’s development [15],
and because both the scope and the context are already b eing



kept in the Agda implementation. For a meta variable α, we write
MScp α and MCtx α for the scope r esp. the context in which a
meta variable α was introduced.

With these nuances, we can formally define how we solve con-
straints FindInScope α as follows:

Lookup(α : A)
Candidates(MCtx(α) , MScp(α), α, A) = {(n, An)}

Γ? A ? Γ A ?nF ?indC InScopeα ?C α :=n (6)

This definition says that if we have a meta-variable α typed A,
that i s to b e inferred as an instance argument, then it is resolved
if there is a unique solution. In this case, we require convertibility
of the types and assign the value to the meta-variable. The set of
candidates in context Γ and scope S, for meta-variable α, of type
A is defined by predicate Candidates:

Candidates(Γ, S, α, A) =

{(n, An) | Cand(Γ, S, n, An) and ValidCand(α, A,n, An)}
(7)

The candidates are those terms n, of type An, that are potential
candidates in the current context and scope (predicate Cand below)
and are valid with respect to the current meta-variable and its type.
This last property is defined by the V alidCand predicate.

?Σ??CΣh?eVcaklCidaCndan(αd,(αA,,An,?n,A?,?A)?? ) =C ⇒= ⇒? Σ ??Σ?? (8)

In the definition of this predicate, we perform a check, but if this
check makes changes to the current signature, we do not yet carry
them through h ere. This is formalised using the explicit notation of
the signatures in the j udgements [15, 3.3. 1 p . 54].

Γ ? A ? A? ? C α := n CurrentConstraints(C)



∀ AC ?∈ AC : ?C =C FindInScopeC Cαu? ⇒ren ¬tC(?o nCs ?ra Cnt?)s

CheckCand(α,A,n?,A?)? C (9)
The check that a certain term is valid for a certain meta-variable
consists of two parts. F irst, the term’s type must be convertible
to the required type. Second, if we assign the value to the meta-
variable, no other constraint must be immediately invalidated. For
this last check, we do not r ecursively consider other FindInScope
constraints, since this would introduce recursion in the instance
search. This check is necessarily incomplete: in Norell’s words, the
type checker will give one of three answers [15, Note p . 65]: “yes
it is type correct”, “no it is not correct” or “it might b e correct if the
metavariables are instantiated p roperly”. Only if we get the second
answer, we reject the candidate under scrutiny.

Rule (9) strikes a fine balance. On the one hand, the resolution
algorithm needs to b e powerful enough to b e usable, but we avoid
making it too powerful (see discussion in section 4). The intuition
behind the criterion above is that we consider any value that is
type-correct in the sense that it has the correct t ype, but also in
the sense that it does not immediately invalidate constraints. The
criterion has proven sufficient for all use cases discussed in this text,
but also necessary: without the check for invalidated constraints,
monad instances for example are often not r esolved. N ote that we
have used a new CurrentConstraints operation, which works on
the signature that is implicit in the typing j udgements:

?Σ? CurrentConstraints(C) =⇒ ?Σ? where C = {C | C ∈ Σ}
( Σ10})

We still need to define the potential candidates in a given context
and scope. The Cand property formalises this:



CΓa =nd Γ(1Γ;,nS: ,An ,;AΓ2) (11)

VisiblepriC(nan,Sd)(Γ,SL,no,oAku)p(n: A ) (12)

The somewhat t echnical p redicate Visiblep (n, S) asserts that
name n is publicly or privately (defined b y p ) i n scope S:

VVisiisblieblαe(pnub,(Sn,? S)σ ) (13)

VisibleNSVαi(sni,bσle)α∨ (nV ,Sisi? bleσ N)Spub(n,σ) (14)

VisibleNSnα (∈nn ,?sMα(,cnns)pub,nspri?) (15)

From rules (6) and (9) above, it is clear that r esolution of con-
straints FindInScope α only compares types t hat have already
been type checked, and does not trigger extra type checking. There-
fore, only one constraint FindInScope α will be resolved per oc-
curence in the user’s code of a function taking an instance argument
without a value being provided explicitly. This means that, contrary
to other p roposals, the computational power of our r esolution algo-
rithm is fundamentally limited, in the sense that it does not allow
any form of r ecursion, looping or b acktracking. It t herefore does
not introduce a separate computational model in the language (see
section 4).

A.4 Soundness

Intuitively, soundness of the r ules above is easily guaranteed, be-
cause all we do is assign terms of the correct type to meta-variables.



The following lemma reflects this intuition, supplementing Norell’s
Lemma 3.5. 13:

Lemma 1(Instance resolution preserves consistency). I f Γ ?|Σ|
vLaemlidm, aΣ1 1is( Icnosntsaniscteentr e easondlu

?Σ? Γ ? FindInScope α =⇒ ?Σ??

then Σ? is consistent.

Proof. A consequence of Norell’s Lemma 3.5. 12 (Refinement p re-
serves consistent signatures), together with the observation that
rule (6) will only ever perform a type correct assignment of a meta-
variable (a signature refinement).

This lemma suffices to establish that Norell’s L emma 3.5. 14
(Constraint solving is sound) stays valid in the context of our new
kind of constraints, as well as the main result, Theorem 3.5. 18
(Soundness of type checking).

Like Norell for normal implicit arguments, we provide formal
rules for the insertion of instance arguments and the insertion of
instance lambda’s, but do not prove any formal results about them.

Some of the r ules above may give the impression that this r es-
olution algorithm is sensitive to the order in which type-checking
is interleaved with constraint solving. However, this sensitivity ac-
tually only exists for error reporting. Remember that during type-
checking, constraints will only b e added and solved (after a correct
meta-variable assignment), but they cannot otherwise b e removed.
As a consequence of this, the candidates set for a given instance ar-
gument meta-variable α, defined by rule (7) above, form a descend-
ing series during type-checking: later sets are subsets of previous
ones. Furthermore, if a value in scope can be assigned to α such
that the entire A gda expression succesfully t ype checks, then this
value will b e contained in all of these candidate sets. All non-valid



candidates will eventually b e removed. Therefore, if n o other valid
candidates are available, the valid value will inevitably b e chosen.

For erroneous programs, the order of constraint solving may
determine the k ind of error message that is generated. Depending
on whether a constraint C is registered after a certain instance
argument is already resolved, or before, an error will be reported for
the FindInScope constraint or the constraint C. T his influence of
type-checking on error reporting also exists for standard Hindley-
Milner type inferencing [7], so we consider it acceptable.

One extension of the current resolution scheme that we have
considered in detail is b ased on a prioritisation of candidates, e.g.
by giving p recedence to values defined closer to the call site. How-
ever, contrary to our current r esolution algorithm, such a prioritisa-
tion does make the result of instance resolution depend on the order
of constraint r esolution. Suppose there is a value in the highest p ri-
ority set which is valid except for a constraint produced late during
type checking and suppose this is the only candidate at the highest
priority, but a lower priority candidate is also valid, and does not
invalidate the late constraint. Since we don’t know upfront which
constraints will b e produced during the r est of type-checking, we
have to decide at some p oint which value to use. If the late con-
straint has then not yet been produced, the highest priority candi-
date will be selected and a type error will b e reported when the late
constraint is finally encountered. However, if the resolution occurs
after the p roduction of the late constraint, the valid low-priority
candidate is chosen instead of the invalid h igh-priority one, and all
goes well.

We currently do not see a solution for this problem, so we keep
the introduction of a prioritised resolution algorithm as future work.
Our experiments (see section 3 and 5) show that the current non-
prioritised r esolution scheme suffices for r eal use.


