
Under consideration for publication in J. Functional Programming 1

FUNCTIONAL PEARL

A type-correct, stack-safe, provably correct
expression compiler in Epigram

JAMES MCKINNA
University of St. Andrews

(e-mail: james.mckinna@st-andrews.ac.uk)

JOEL WRIGHT
University of Nottingham

(e-mail: jjw@cs.nott.ac.uk)

Abstract

Conventional approaches to compiler correctness, type safety and type preservation have
focused on off-line proofs, either on paper or formalised with a machine, of existing com-
pilation schemes with respect to a reference operational semantics. This pearl shows how
the use of dependent types in programming, illustrated here in Epigram, allows us not
only to build-in these properties, but to write programs which guarantee them by design
and subsequent construction.

We focus here on a very simple expression language, compiled into tree-structured code
for a simple stack machine. Our purpose is not to claim any sophistication in the source
language being modelled, but to show off the metalanguage as a tool for writing programs
for which the type preservation and progress theorems are self-evident by construction,
and finally, whose correctness can be proved directly in the system.

In this simple setting we achieve the following;

• a type-preserving evaluation semantics, which takes typed expressions to typed values.
• a compiler, which takes typed expressions to stack-safe intermediate code.
• an interpreter for compiled code, which takes stack-safe intermediate code to a big-step

stack transition.
• a compiler correctness proof, described via a function whose type expresses the equa-

tional correctness property.

1 Introduction

“This paper contains a proof of the correctness of a simple compiling algorithm
for compiling arithmetic expressions into machine language” (McCarthy & Painter,
1967). It is forty years since McCarthy pioneered the certification of programming
language implementation: his approach emphasised abstract syntax, operational
semantics, definition and proof by structural induction, and is largely unchanged
to the present day, with correctness properties expressed via commuting diagrams
of the form illlustrated below. What has changed is the emergence of systems for



2 James McKinna and Joel Wright

checking proofs, and through the specific use of tools based on varieties of Martin-
Löf type theory, the possibility of integrating programming and proof in one unified
formalism.

Exp
eval //

compile

��

V alue

push

��
Code exec

// Stack → Stack

This paper examines a simple example, that of a typed language of arithmetic
and boolean expressions with two semantics given by a primitive-recursive inter-
preter, eval, and a compiler, compile, to tree-structured code for a simple stack-
based abstract machine with intepreter exec. It thus contributes indirectly to the
PoplMark challenge (Aydemir et al., 2005) in illustrating a completely checkable
and executable piece of programming language manipulation. It is a prototype for
more substantial experiments which we intend to report upon in future work, al-
though unlike McCarthy, we do not envisage that in order to make such extensions,
“a complete revision of the formalism will be required” (ibid., closing remark).

2 Dependently Typed Programming in Epigram

The use of a dependently-typed host language allows us a direct formulation of type
preservation and progress. Dependent type theory provides programmers with more
than just an integrated logic for reasoning about program correctness — it allows
more precise types for programs and data in the first place, thus strengthening the
typechecker’s language of guarantees.

Epigram (McBride & McKinna, 2004), a kernel language for dependently-typed
programming, supports Dybjer’s notion of inductive families (Dybjer, 1994) as its
language of data, with an economical syntax for function (program) definition. The
syntax of the source code presented in this paper is that originally presented in
‘The view from the left’ (2004), however in the interest of readability we suppress
explicit calls to case constructs (which can be formally justified (Goguen et al.,
2006)). Type signature definitions are presented uniformly via a two-dimensional
‘inference rule’ style; this is used throughout to introduce new datatype families via
the data keyword, their constructors via where, and new function symbols via let.
Functions are declared by giving their type signatures, followed by a tree structure
which superficially resembles the equational syntax for pattern matching programs
in SML or Haskell.

Inductive families, as supported in Epigram, allow us to represent directly the
stratification of values and expressions by their types. The interested reader is
referred to McBride & McKinna (2004) for further details on Epigram, and for the
program in this paper, to the fully annotated epigram source:

http://www.e-pig.org/downloads/compiler_pearl-2006-07-19.epi



Functional pearl 3

3 The First Semantics : eval

The example of a well-typed interpreter is, of course, familiar as the illustration of
programming with GADTs (for example in Hinze (Gibbons & de Moor, 2003)), but
whose earliest appearance in the literature we can find is that of Augustsson and
Carlsson in the dependently typed language Cayenne (1999), although such exam-
ples doubtless exist further back, at least in the folklore. GADTs are themselves
a restricted form of type family, allowing non-uniform indexing over host-language
types. One advantage of our approach via full inductive families is that we maintain
a clean separation between the object-language type system and its model in the
host language, where the use of GADTs relies on the pun between the two levels.
Moreover, to extend the example beyond the simple evaluator, for example to em-
brace well-typed stacks as we do below, requires further exploitation of such tricks,
in the style first identified (and argued against!) by McBride (2002). We can only
imagine what contortions might be required to represent the correctness proof in
Section 5 in such a style.

3.1 Type preservation is the type of the interpreter

The title of this section emphasises the basic feature of language representation
available to the programmer working in the dependently-typed setting: namely
that properties of programs (in this case the object-language semantics) become
directly expressible via the type system. Here we achieve this by stratifying the
representation of object-language expressions by their object-language types.

We begin by introducing this language of type expressions:

data
TyExp : ?

where
nat : TyExp bool : TyExp

Now, Epigram supports the following definition of the host language family of
types, ValT , indexed by T : TyExp, of object-language values, by case analysis:

let T : TyExp
ValT : ?

Val nat⇒ Nat

Val bool⇒ Bool

where Nat and Bool are the (usual) host-language inductive definitions of Peano
naturals and Booleans (with true, false and cond), respectively, omitted here.

Finally the inductive family of expressions, indexed by T : TyExp, may be given
directly as follows:

data T : TyExp
ExpT : ?

where

v : ValT
val v : ExpT

e1 , e2 : Exp nat
plus e1 e2 : Exp nat

b : Exp bool ; e1 , e2 : ExpT
if b e1 e2 : ExpT

which declares the (types of the) constructors of the abstract syntax essentially in
terms of their informal typing rules. Notice that we get object-level polymorphism
in the host-level injection of values into expressions.



4 James McKinna and Joel Wright

Throughout, we have made extensive use of Epigram’s implicit syntax mecha-
nisms (adapted from Pollack’s (Pollack, 1990) original approach in Lego) to sup-
press the object-level indices T . In particular, the if constructor is polymorphic at
the object level via the dependency at the host level, and any instance will have its
type indices correctly inferred.

Now we are in a position to write the evaluation function eval, taking expressions
to values. But now we have explicit (object-level type) index information in the
(host-level) types, we can express type preservation directly in the type signature
of eval:

let e : ExpT
eval e : ValT

The object langauge property of type preservation has been reified as a host-
language type. Constructing a program body for the interpreter with the above
signature is now, as usual, by structural recursion on e : ExpT

eval e ⇐ rec e
eval (val v) ⇒ v
eval (plus e1 e2 ) ⇒ (eval e1 ) + (eval e2 )
eval (if b e1 e2 ) ⇒ cond (eval b) (eval e1 ) (eval e2 )

where + is host-language addition on Nat, and cond is host-language if-then-else
in the usual way. Epigram’s typechecker enforces the object-language typing rules
we have encoded in the definition of ExpT , which ensure, inductively, that recursive
calls on eval yield values of the correct object- and host-level types.

Not only have we expressed our desired preservation property as a type, but the
proof that it holds is expressed precisely by the program for eval itself! That is, for
the recursive definition of eval to have the host level type claimed, is precisely the
proof that eval satisfies object-level type preservation. By working in a rich host
language, we obtain an extremely terse, type-correct interpreter virtually for free.

4 The Second Semantics : compile & exec

For the purposes of this paper we consider a direct-style semantics obtained by
compiling to code for a simple stack-based abstract machine. In this setting there
is a clear, well-defined, notion of safety, namely:

stack-type safety stacks are typed; intermediate code is stack-type respecting, in
a way to be made clear below; in particular, code for addition expects to pop two
natural number arguments on the stack, and push back a single natural number;

no underflow intermediate code executes only in the context of a stack which has
enough of the right type of arguments at the top to continue execution.

Epigram’s type system allows us to represent both of these properties (preser-
vation and progress, again) in the types of data (typed stacks; typed intermediate
code) and operations (compile; exec) respectively, so that no further work is re-
quired to establish them. This is simply another instance of the idea that “type
preservation is the type of the interpreter”. The corresponding progress theorem is
encoded in the types of intermediate object-level code fragments.



Functional pearl 5

4.1 Typing stacks

Our simple abstract machine will be defined in terms of a big-step semantics for
intermediate code Code, taking an initial stack of Vals to a result stack of Vals.
We exploit the same idea as before, namely to index the family of stacks over their
object-level type signature: these stack types may be given simply as lists of TyExps,
where lists are declared in the usual way with nil ([]) and cons (::):

data A : ?
List A : ?

where [] : List A
x : A xs : List A

x :: xs : List A

let StackType : ?
StackType⇒ List TyExp

Typed stacks are now the family of dependently-typed lists, indexed by stack
type:

data S : StackType
Stack S : ?

where
ε : Stack []

v : ValT s : StackS
v � s : Stack(T :: S )

The use of dependent types suppports such an entirely concrete approach to
stacks: since we enforce stack-typing, we can specify a type-safe top operation
without needing to handle stack underflow explictly, with the obvious definition:

let s : Stack(T :: S )
top s : ValT top (v � s)⇒ v

Epigram accepts such case analysis during type-checking, correctly rejecting
the need to consider the ε case, since its type fails to unify with Stack(T :: S ).
A detailed account of typechecking such pattern matching programs is available
elsewhere (Goguen et al., 2006); the precise details need not concern us here.

4.2 Compiling and executing typed intermediate code

Stack-safety for intermdiate code is achieved in two steps: firstly, we define the
type family Code of intermediate code in such a way that the type of its interpreter
exec expresses the stack-type preservation theorem. Then we define the compiler
compile to produce code with the intended meaning, namely to leave a value of
the correct type on top of the stack:

data S ,S ′ : StackType
CodeS S ′ : ?

· · ·

let c : CodeS S ′ ; s : StackS
exec c s : StackS ′ · · ·

let e : ExpT
compile e : CodeS (T :: S ) · · ·



6 James McKinna and Joel Wright

4.3 Specifying Intermediate Code

For our specific expression language, we can now introduce actual intermediate code
as (tree-structured) sequences, with explicit no-op skip, sequencing ++ and a typed
PUSH; the typing rule for ADD stipulates that the stack layout is correctly set-up
for addition, while that for IF expects a Boolean on top of the stack (whose tail
has type S ), and then executes one of two arbitrary code sequences c1 , c2 which
operate on stacks of type S :

data S ,S ′ : StackType
CodeS S ′ : ?

where

skip : CodeS S
c1 : CodeS0 S1 ; c2 : CodeS1 S2

c1 ++ c2 : CodeS0 S2

v : ValT
PUSH v : CodeS (T :: S ) ADD : Code (nat :: nat :: S ) (nat :: S )

c1 , c2 : CodeS S ′

IF c1 , c2 : Code (bool :: S )S ′

4.4 Implementing an Interpreter for Intermediate Code

Before examining the details in Epigram, we consider the construction of the
interpreter exec informally. Guided by the above typing rules for intermediate
code, it proceeds by case analysis on the code constructor:

case: skip for any stack type S and stack s of that type, return s;
case: ++ this is just iterated composition as usual;
case: PUSH push the corresponding value on the stack at hand;
case: ADD now we can exploit stack typing in earnest: since the input stack s is

of type nat :: nat :: S , we know by case analysis on s that it must be of the form
n �m � s ′ for natural numbers n,m and stack s ′ (necessarily of type S ); this is
because the indices occurring in the constructors of the Stack family are all in
constructor form, and thus any other stack configuration would be ill-typed (and
give rise to a unification failure during type-checking). Thus there is no need
to explicitly consider ill-typed stacks, nor underflow; execution is guaranteed to
make progress in this case, writing back the natural number n + m on top of s ′;

case: IF similarly: since the input stack s is of type bool :: S , we know, by case
analysis on s that it must be of the form b � s ′ for some Boolean b and stack s ′

(necessarily of type S ); ditto, by case analysis on b itself, which corresponds to
examining the top stack entry, we then jump to the execution of the appropriate
branch ci on stack s ′, whose type again guarantees, inductively, that execution
does not get stuck at this point.

In fact, such an informal analysis usually justifies the stack-safety property, but
here provides commentary on the following well-typed piece of Epigram code defin-
ing exec:



Functional pearl 7

let c : CodeS S ′ ; s : StackS
exec c s : StackS ′

exec c s ⇐ rec c
exec skip s ⇒ s
exec (c1 ++ c2 ) s ⇒ exec c2 (exec c1 s)
exec (PUSH v) s ⇒ v � s
exec ADD (n �m � s) ⇒ (n + m) � s
exec (IF c1 c2 ) (true � s) ⇒ exec c1 s
exec (IF c1 c2 ) (false � s) ⇒ exec c2 s

4.5 Implementing the Compiler to Intermediate Code

The last piece in the jigsaw is the compiler, compile, which we implement via
structural recursion, without any further discussion of its type-correctness. Note
that we do not need to supply the trailing stack-type S explicitly:

let e : ExpT
compile e : CodeS (T :: S )

compile ⇐ rec e
compile (valv) ⇒ PUSH v
compile (plus e1 e2 ) ⇒ (compile e2 ) ++ (compile e1 ) ++ ADD

compile (if b e1 e2 ) ⇒ (compile b) ++ IF (compile e1 ) (compile e2 )

5 Compiler Correctness

Equality is a distinguished family in Epigram’s type system with one constructor
refl. So we may state the correctness property of compilation in its customary equa-
tional form, and its proof is simply another dependently-typed functional program,
correct:

let e : ExpT ; s : StackS
correct e s : (eval e)� s = exec (compile e) s

The proof proceeds by induction on the expression, e, and so the implementation
of the function proceeds by primitive recursion on e.

case: val v This case is trivial as evaluating the functions on the left and right hand
side of the equation both result in pushing the value v onto s. The host-language
type of correct in this case is computationally equal to v�s = v�s, and thus
is simply proved by reflexivity, refl.

case: plus e1 e2 By induction hypothesis (recursive call on e1 , e2 respectively), we
know that

(eval e1 ) � s = exec (compile e1 ) s;
(eval e1 ) � s = exec (compile e1 ) s.



8 James McKinna and Joel Wright

Now, the LHS is computationally equivalent to ((eval e1 ) + (eval e2 ))� s, while
the right-hand side becomes execADD ((eval e2 )� (eval e1 )� s). Finally, the
computational rule for execADD finishes the proof, again by reflexivity.

case: if b e1 e2 As above we have the following induction hypotheses.

(eval e1 ) � s = exec (compile e1 ) s;
(eval e1 ) � s = exec (compile e1 ) s;

and

(eval b) � s = exec (compile b) s.

Now, by rewriting with this last equation, we reduce the right-hand side to
exec (IF (compile e1 ) (compile e2 )) (eval b) � s, while the left-hand side is just
(eval (if b e1 e2 ))� s. We do case analysis on eval b following that of the defi-
nition of eval — in the true case the problem is solved by the first induction
hypothesis, in the false case the problem is solved by the second induction hy-
pothesis (the typing rule for the ‘with’ program notation in Epigram is precisely
designed for this situation where there is a sub-computation, in this case eval b
in the definitions of eval and exec, whose behaviour must be abstracted from
its occurrence in a type, namely that of correct. The details of this idea are in
‘The view from the left’ (McBride & McKinna, 2004) section 5).

Note that what we have achieved is a type-correct stratification (at the object-
level) of the old compiler correctness diagram. Moreover, the host-level type check-
ing has ensured that the essense of the informal proof (equational reasoning plus
appeal to induction hypotheses) is retained in the Epigram implementation of
correct.

ExpT eval //

compile

��

ValT

�

��

correct

CodeS (T :: S )
exec

// StackS → Stack (T :: S )

The code implementing correct, the rest of the programs in this paper and
Epigram binaries which can be used to execute them, can be found at the above
mentioned URL.

6 Conclusion

This paper demonstrates that given a suitably rich host-language type system, ex-
emplified here by Epigram’s support for inductive families, important safety prop-
erties may be captured entirely by a typed representation of the object-language.
Here we have shown two examples of this, namely type-preservation in eval, ob-
tained ‘for free’, while in exec we have both stack-type preservation and no stack-
underflow. The only correctness property for the compiler which requires separate
proof is nevertheless also representable as a host-language program.



Functional pearl 9

It is important to note that the implementations of eval, exec and compile
require no annotation to support this correctness proof. What type annotations they
may carry are entirely, and largely silently, managed by Epigram’s type checker.

Indeed, it is only because type inference is too weak to recognise n : Nat as an
element of ValT for T = nat which mean we require type tags T at all. It remains
an interesting piece of further work to eliminate these tags altogether.

While others have demonstrated the conceptual, theoretical, methodological and
practical advantages of maintaining type information throughout compilation from
high-level source to assembly language (Morrisett et al., 1999) we hope this paper
contributes to the mechanisation of such an approach within an environment such
as Epigram.

We gratefully acknowledge our colleagues in the Epigram team, with special
thanks to Conor McBride and Peter Morris. Many thanks also go to Graham Hut-
ton, and to the Scottish Programming Languages Seminar. Epigram and this work
is generously supported by grants from the EPSRC (grant references GR/N24988,
GR/R72259 and EP/C512022).

References

Augustsson, Lennart, & Carlsson, Magnus. (1999). An exercise in dependent types: A
well-typed interpreter. http://www.cs.chalmers.se/~augustss/cayenne/.

Aydemir, Brian E., Bohannon, Aaron, Fairbairn, Matthew, Foster, J. Nathan, Pierce, Ben-
jamin C., Sewell, Peter, Vytiniotis, Dimitrios, Washburn, Geoffrey, Weirich, Stephanie,
& Zdancewic, Steve. (2005). Mechanized metatheory for the masses: The PoplMark
challenge. International Conference on Theorem Proving in Higher Order Logics
(TPHOLs). Lecture Notes in Computer Science. Springer Verlag.

Dybjer, Peter. (1994). Inductive families. Formal aspects of computing, 6, 440–465.

Gibbons, Jeremy, & de Moor, Oege (eds). (2003). the fun of programming. Palgrave.
Chap. 12.

Goguen, Healfdene, McBride, Conor, & McKinna, James. (2006). Eliminating dependent
pattern matching. Futatsugi, Koichi, Jouannaud, Jean-Pierre, & Meseguer, José (eds),
Algebra, Meaning and Computation: a 65th birthday volume for Joseph Goguen. Lecture
Notes in Computer Science, vol. 4060. Springer-Verlag.

McBride, Conor. (2002). Faking It (Simulating Dependent Types in Haskell). Journal of
functional programming, 12(4& 5), 375–392. Special Issue on Haskell.

McBride, Conor, & McKinna, James. (2004). The view from the left. Journal of Functional
Programming, 14(1), 69–111.

McCarthy, John, & Painter, James. (1967). Correctness of a compiler for arithmetic
expressions. Pages 33–41 of: Proceedings of the XIXth AMS Symposium on Applied
Mathematics, Mathematical Aspects of Computer Science.

Morrisett, Greg, Walker, David, Crary, Karl, & Glew, Neal. (1999). From System F to
typed assembly language. ACM Transactions on Programming Languages and Systems,
21(3), 527–568.

Pollack, Randy. (1990). Implicit syntax. In: Preliminary Proceedings of the
1st Workshop on Logical Frameworks, http://www.lfcs.inf.ed.ac.uk/research/types-
bra/proc/proc90.ps.gz, pages 421–433.


