
Typed Transformations of Typed Abstract Syntax

Arthur I. Baars
Instituto Tecnológico de Informática
Universidad Politécnica de Valencia

Valencia, Spain
abaars@iti.upv.es

S. Doaitse Swierstra
Department of Computer Science

Utrecht University
Utrecht, The Netherlands

doaitse@cs.uu.nl

Marcos Viera
Instituto de Computación

Universidad de la República
Montevideo, Uruguay
mviera@fing.edu.uy

Abstract
Advantages of embedded domain-specific languages (EDSLs) are
that one does not have to implement a separate type system nor
an abstraction mechanism, since these are directly borrowed from
the host language. Straightforward implementations of embedded
domain-specific languages map the semantics of the embedded lan-
guage onto a function in the host language. The semantic mappings
are usually compositional, i.e. they directly follow the syntax of the
embedded language.

One of the questions which arises is whether conventional com-
pilation techniques, such as global analysis and resulting transfor-
mations, can be applied in the context of EDSLs. The approach we
take is that, instead of mapping the embedded language directly
onto a function, we first build a representation of the abstract syn-
tax tree of the embedded program fragment. This syntax tree is
subsequently analyzed and transformed, and finally mapped onto
a function representing its denotational semantics. In this way we
achieve run-time “compilation” of the embedded language.

Run-time transformations on the embedded language can have
a huge effect on performance. In previous work (Viera et al. 2008)
we present a case study comparing the Read instances generated
by Haskells deriving construct with instances on which run-time
grammar transformations (precedence resolution, left-factorisation
and left-corner transformation) have been applied.

In this paper we present the library, which has an arrow like
interface, which supports in the construction of analyses and trans-
formations, and we demonstrate its use in implementing a common
sub-expression elemination transformation. The library uses typed
abstract syntax to represent fragments of embedded programs con-
taining variables and binding structures, while preserving the idea
that the type system of the host language is used to emulate the type
system of the embedded language. The tricky issue is how to keep
a collection of mutually recursive structures well-typed while it is
being transformed.

We finally discuss the typing rules of Haskell, its extensions
and those as implemented by the GHC and show that pure System-
F based systems are sufficiently rich to express what we want to
express, albeit at the cost of an increased complexity of the code.

Categories and Subject Descriptors F.3.3 [Logics and meanings
of programs]: Studies of program Constructs; D.3.3 [Program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
TLDI ’09 January 24, 2009. Savannah, Georgia, USA.
Copyright c© 2009 ACM 978-1-60558-420-1/09/01. . . $5.00

ming languages]: Language Constructs and Features; D.1.1 [Pro-
gramming techniques]: Applicative (Functional) Programming;
D.3.4 [Programming languages]: Processors

General Terms Algorithms, Languages, Verification

Keywords GADT, Meta Programming, Type Systems, Typed
Transformations, Common Subexpression Elimination

1. Introduction
Modern functional languages such as Haskell and ML are excel-
lent tools for embedding domain specific languages. This is usu-
ally done by defining a library of combinators, each combinator
representing a grammatical structure from the embedded language.
With such a library a programmer can use a domain-specific no-
tation, and at the same time benefit from all the features, such as
the type system and abstraction mechanisms, of the general pur-
pose host language. The tight integration of the domain-specific
language with the host language has great benefits: there is no need
to extend the compiler or to use ad hoc external tools which map
the specific notation onto the host language.

One of the essential aspects of a combinator-based domain-
specific embedded language is that it shares its type system with
the host language.

Although such a combinator-based approach for implement-
ing domain-specific languages looks very convincing at first sight,
many problems show up when one starts to use this technique in
practice. Just as conventional compilers may analyze programs ex-
tensively and may transform them based on the results of such anal-
yses, one also wants to use such techniques for combinator-based
embedded languages.

Unfortunately, such analyses and transformations are usually
not possible, because the value being constructed by the combi-
nators is a (possibly higher order) function (as in denotational se-
mantics), and hence the internal structure can be neither inspected
nor transformed. The approach we take is to have the combinators
build a data structure which corresponds to the typed abstract syn-
tax tree as described by the grammar of the embedded language.
This representation can then be analyzed, transformed, and finally
mapped onto its semantics. The main complication we now face is
that we have to do this in a typed setting.

The problem becomes even harder when the embedded lan-
guage not only borrows the type system and the abstractions pro-
vided by the host language, but also its declarative structure. Now
we have to deal with collections of abstract syntax trees containing
references to each other and the question arises how to representing
and observe the binding structures.

In their work on typed meta-programming (Pasalic and Linger
2004), Pasilic and Linger, using the encoding of equality types
in Haskell (Baars and Swierstra 2002), show how to represent

15

typed abstract syntax trees containing typed references to values.
A group of mutually recursive bindings is represented by a nested
cartesian product of terms. The variables occurring in the terms
are represented by typed pointers into this enviroment. A similar
approach was developed slightly earlier by Xi and Chen, using a
dependently typed version of ML, in their work on typeful program
transformations (Chen and Xi 2003). The key ingredient for both is
the encoding of environments and references pointing into these
environments in host language terms. This encoding ensures that
references always refer to existing values with the right types. In all
approaches, references are basically indices into an environment,
encoded as Peano numbers.

In earlier work we demonstrated the practical use of run-time
typed grammar transformations for combinator parsers. In (Baars
and Swierstra 2008) we have described a quite involved gram-
mar transformation, the Left Corner transform which effectively
removes left-recursive non-terminals from a grammar and replaces
them by a set of non left-recursive ones. As a consequence top-
down parsers can directly be generated from the resulting grammar.
In (Viera et al. 2008) we eliminate common prefixes from sets of
productions in order to improve parsing efficiency. In a small case
study we derive an efficient version for the Haskell function read ,
converting the worst case exponential time algorithm used thus far
into a linear one.

In this paper we explain the inner-workings of the library un-
derlying these transformations. It has an Arrow -style interface and
handles introductions of new typed bindings. It is not geared to-
wards grammar transformations and thus can be used to implement
a wide variety of other typed program transformations. As a small
example of the use of the library we include an implementation of
common-subexpression elimination, assuming that the algorithm
used thus does not become a object of study by itself and attention
can focus on the way the library is used.

Internally, the library makes heavy use of universally and ex-
istentially quantified types in combination with Generalized Al-
gebraic Data Types (GADT). This paper therefore can also be
seen as a non-trivial exercise using these type system extensions.
Throughout the paper, we use GHC (GHC) syntax for these exten-
sions to Haskell. The code in this paper can be found at: http:
//www.cs.uu.nl/wiki/Center/TTTAS, and was produced by
running lhs2TeX on the source of this paper. The code is accepted
by the Glasgow Haskell Compiler (GHC). The library described
in this paper is also released as a HackageDB(Hackage) package
and can be downloaded from: http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/TTTAS.

This paper is organized as follows. In Section 2, summarizing
earlier work (Pasalic and Linger 2004; Baars and Swierstra 2002,
2004), we discuss the encoding of typed abstract syntax trees, refer-
ences and environments. These are the objects for our transforma-
tions. In Section 3, we develop the library that maintains a changing
typed environment. It ensures that all typed references (references
that “know” the type of the values they refer to) remain consistent
whenever a new definition is added to the environment. In Section
4, we show an example of the use of the library: the implementa-
tion of common sub-expression elimination. The implementation
of the library makes use of lazy-pattern matching on data construc-
tors involving existential types. This combination is unfortunately
not supported by GHC. In Section 5 we present several solutions
to avoid this problem. Finally, in Section 6, we present our conclu-
sions.

2. Typed References and Environments
We start by shortly repeating the ideas behind typed meta-program-
ming, in which we represent programs explicitly, so they can be
manipulated. We want to do this in such a way that we keep the nice

properties that typed programming languages have. Specifically,
the fact that the representation is type correct can be seen as a proof
that the represented expression is type correct.

As an example consider the abstract syntax (formulated as a
GADT) of a simple expression language:

data Exp a where
IntVal :: Int → Exp Int
BoolVal :: Bool → Exp Bool
Add :: Exp Int → Exp Int → Exp Int
Cons1 :: Exp a → Exp [a] → Exp [a]
Nil1 :: Exp [a]
LessThan :: Exp Int → Exp Int → Exp Bool
If :: Exp Bool → Exp a → Exp a → Exp a

where the expression

if 3 + 1 < 4 then 5 else 1 + 2

is represented by:

expr :: Exp Int
expr = If (LessThan (Add (IntVal 3) (IntVal 1))

(IntVal 4))
(IntVal 5)
(Add (IntVal 1) (IntVal 2))

The value of the represented expression has type Int , which is
reflected in the type of expr :: Exp Int . Note that the ill-typed
expression 3 < True cannot be represented, since it will not pass
the type-checker.

The type Exp a encodes the typing judgement ` e : α, that
reads “the expression e has type α”. Each constructor has the
structure of a formal judgment. For example LessThan encodes
the rule:

` e1 : Int ` e2 : Int

` e1 < e2 : Bool

Before discussing analyses and transformations we have to de-
cide how to represent variables and binding structures. We extend
our simple expression language with a constructor Var , where a
variable is represented by a reference of type Ref a env , an index
pointing to a value of type a in an environment of type env . In the
next section, we will delve into the details of the type Ref .

We extend the labelling (properties) of the type Expr by an ex-
tra type parameter env , which stands for the type of the environ-
ment in which the expression is to be evaluated:

data Expr a env where
Var :: Ref a env → Expr a env
IntVal :: Int → Expr Int env
BoolVal :: Bool → Expr Bool env
Cons :: Expr a env → Expr [a] env

→ Expr [a] env
Nil :: Expr [a] env
Add :: Expr Int env → Expr Int env

→ Expr Int env
LessThan :: Expr Int env → Expr Int env

→ Expr Bool env
If :: Expr Bool env → Expr a env

→ Expr a env → Expr a env

Now we have the judgement Γ ` e : α, that reads “the expression
e has type α in local context Γ”.

An evaluator eval for our simple expression language takes as
arguments the abstract syntax tree decribing an expression, and an
environment which provides values for the variables occurring in

16

the expression, and returns the value of the expression. For the time
being only the type of the function lookup matters:

lookup :: Ref a env → env → a

eval :: Expr a env → env → a
eval (Var r) e = lookup r e
eval (IntVal i) = i
eval (BoolVal b) = b
eval (Add x y) e = eval x e + eval y e
eval (Cons x y) e = eval x e : eval y e
eval Nil = []
eval (LessThan x y) e = eval x e < eval y e
eval (If x y z) e = if eval x e

then eval y e
else eval z e

2.1 Type equality
Pasalic and Linger (Pasalic and Linger 2004) introduce an encoding
of typed references that can be used for meta-programming. This
encoding relies on the equality type (Baars and Swierstra 2002;
Weirich 2000; Cheney and Hinze 2003). A (non-diverging) value
of type Equal a b is a witness of the proof that the types a and
b are equal. This witness takes the form of a conversion function,
which turns out to always be the identity function.

The addition of GADTs (Peyton Jones et al. 2006) to GHC
makes programming with the Equal data type a lot easier, because
all the fiddling with proofs is implicitly done by the compiler.
Furthermore, the performance increases, since the construction of
the proofs is no longer done at run-time. The compiler “knows” that
all proofs of type equality are witnessed by values like id , id id ,
id (id id), id id id etc, and can thus omit them safely from the
generated code: they have no other observable effect than taking
time to execute.

The encoding of type equality becomes trivial when using
GADTs:

data Equal :: ∗ → ∗ → ∗ where
Eq :: Equal a a

The type Equal has just one constructor Eq :: Equal a a . If a
pattern match on a value of type Equal a b succeeds (i.e., a non-⊥
value Eq is available), then the type checker is thus informed that
the types a and b were known to be the same at the place the Eq
was produced.

2.2 Typed References
In their paper on typed meta-programming, Pasalic and Linger
introduced the data type Ref for representing typed indices which
are labelled with both the type of value to which they refer and
the type of environment (a nested cartesian product, growing to the
right) in which this value lives.

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

In the case of a Suc we are not interested in the first element; this
constructor is polymorphic in the type b. The rules encoded by the
type Ref are:

Γ′, α ` Zero : α

Γ′ ` r : α

Γ′, β ` Suc r : α

Two references can be compared for equality using the function
match . If they refer to the same element in the environment this

function returns the value Just Eq , thus expressing the fact that
the types of the referred values are the same too:

match :: Ref a env → Ref b env → Maybe (Equal a b)
match Zero Zero = Just Eq
match (Suc x) (Suc y) = match x y
match = Nothing

The lookup function, the type of which we have seen before,
uses its Ref parameter as an index in the environment parameter.
Whenever we decrease the index, we take the fst part of the tuple,
until the index reaches Zero. The types guarantee that the lookup
succeeds:

lookup :: Ref a env → env → a
lookup Zero (, a) = a
lookup (Suc r) (e,) = lookup r e

The function update takes an additional function as argument,
which is used to update the value the reference addresses. The other
values in the environment are left unchanged:

update :: (a → a)→ Ref a env → env → env
update f Zero (e, a) = (e, f a)
update f (Suc r) (e, x) = (update f r e, x)

As an example, consider the example environment:

type ExampleEnv = ((((), Int),Char),String)
example = ((((), 1), ’a’), "b") :: ExampleEnv
ref a = Suc Zero :: Ref Char ExampleEnv
ref one = Suc (Suc Zero) :: Ref Int ExampleEnv

The expression lookup ref a example yields the character ’a’,
while the expression lookup ref one example yields the integer
1. Notice that the type of the reference determines the type of
the result! Application of update (+5) ref one to the example
environment updates it to ((((), 6), ’a’), "b"). This clearly shows
that the ref a and ref one refer to values of different types in the
same environment.

With our extended data type we now also can encode ex-
pressions which contain variables of different types, such as
if b then 3 else a , using an environment containing an Int
and a Bool :

var a = Var (Suc Zero)
var b = Var Zero
e = If var b (IntVal 3) var a

:: Expr Int (((), Int),Bool)
env = (((), 11),False) :: (((), Int),Bool)
test = eval e env :: Int

Some may complain that this Peano representation is extremely
cumbersome and error prone. In (Baars and Swierstra 2004), we
have shown how, by using some extra combinators, this problem
can be overcome. Furthermore the type system also helps us to
avoid accidental mistakes. Also, note that building and maintaining
the internal representation is the work of the combinator library
and is largely invisible to the programmer describing program
transformations.

2.3 Declarations
In this section we will focus on the problem how to represent a
collection of possibly mutually recursive definitions, each consist-
ing of an identifier being defined and a right-hand side expression
containing these identifiers.

The idea is to store the right-hand side expressions in a hetero-
geneous list, and represent the identifiers by indices in this list. This
is very similar to the environments described above, with the main

17

difference that the actual environment now contains abstract syntax
terms labelled with a type instead of values having a type.

In this setting an environment consists of terms which in turn
are labelled with the type of the environment, because this type is
used to label the references contained in these terms. Representing
such environments as a nested tuples would lead to an infinite type.
For example consider the following two declarations:

let x = 1 : y
y = 2 : x

These declarations give rise to an environment containing two
terms. Suppose we name the type of this environment TwoLists ,
then both terms have type Expr [Int] TwoLists . This leads to the
following type for the environment:

type TwoLists = (((),Expr [Int] TwoLists)
,Expr [Int] TwoLists)

This type definition is cyclic, and is thus not allowed in Haskell.
Our solution is found in splitting the env type parameter into

two parameters: one for the environment addressed by the refer-
ences occurring in the terms and one dscribing the environment
which is being constructed by the sequence of terms. The type
Env term use def represents a sequence of instantiations of type
∀a . term a use , where all the instances of a are stored in the type
parameter def ; thus the type def contains the type parameters a of
the terms of type term a use occurring in the Env term use def .
The type use on the other hand is a sequence containing the types
to which may be referred from within terms of type term a use .

data Env term use def where
Empty :: Env t use ()
Ext :: Env t use def ′ → t a use

→ Env t use (def ′, a)

When the types def and use coincide we can be sure that the ref-
erences in the terms do not point to values outside the environment
and do point to terms representing the right type. hence we can use
the nvironment being defined as the environment to be indexed by
the refernces contained in the right-hand side terms of the defini-
tions.

Splitting this single type into two type parameters, which we
only require in the end to be equal, makes it possible to to use
references which refer to terms which still have to be added. Only
after we are done with manipulating and extending the environment
we require use and def to be the same! The fact that a sequence of
terms is closed and well-typed is thus encoded in the type system
of the host language. So the mutually recursive declarations:

let x = 1 : y
y = 2 : x

is encoded as:

type Final = (((), [Int]), [Int])
x = Var (Suc Zero) :: Expr [Int] Final
y = Var Zero :: Expr [Int] Final
decls :: Env Expr Final Final
decls = Empty ‘Ext ‘ Cons (IntVal 1) y

‘Ext ‘ Cons (IntVal 2) x

where we note that the x and y here are Haskell values referring to
the right-hand side terms of their definitions in the Env .

The lookup and update operations on the data type Env are
defined in a similar way as before:

lookupEnv :: Ref a env → Env t s env → t a s
lookupEnv Zero (Ext t) = t
lookupEnv (Suc r) (Ext ts) = lookupEnv r ts

updateEnv :: (t a s → t a s)→ Ref a env
→ Env t s env → Env t s env

updateEnv f Zero (Ext ts t)
= Ext ts (f t)

updateEnv f (Suc r) (Ext ts t)
= Ext (updateEnv f r ts) t

The chosen representation now has an efficiency problem, to be
fixed in the next section: whenever we extend the environment with
a new Ext all existing references occurring in terms already stored
in the environment have to be incremented by applying an extra
Suc constructor to them, since the values to which they refer have
an index that is one higher in the new environment.

3. Transformation Library
In this section we develop a type Trafo representing typed trans-
formation steps on a heterogeneous collection and an Arrow -like
(Hughes 2000) library of combinators for composing such transfor-
mations. Each Trafo takes input and produces output and can be
composed in the same way as Arrows. Internally it maintains an
environment containing abstract syntax terms. Additionally, meta-
data about the transformation process can be maintained as well.
Such meta-data could for example be a symbol table, debugging
information, reference counts, etc.

In developing the type Trafo we use a Haskell-like type syn-
onym syntax augmented with the symbols ∀ and ∃ to denote uni-
versally and existentially quantified types. We first develop the type
Trafo to tackle the problem of maintaining a heterogeneous col-
lection of definitions, and subsequently extend it with Arrow -style
inputs, outputs, and meta-data. Finally we encode the Trafo using
data types, as accepted by GHC.

We model a collection of embedded-language definitions as
a value of type Env , and make these definitions the subject of
transformations that may induce new definitions, as in the case of
common-subexpression removal where subexpressions get named.
At the end of the transformation process each reference occurring
somewhere in a term stored in this Env must be a reference into the
final set of definitions. In this case, we call the environment closed.
One way to ensure that our environment is always closed is to adjust
all the references in all the terms whenever a new definition is added
to the environment. Unfortunately new definitions are to be added
at the head of the sequence (i.e. at position Zero), which implies
that all existing references have to be updated by the application
of an extra Suc constructor. This is cumbersome and inefficient,
and is better done once, i.e., when we know how many Sucs to
add to each reference so it addresses the right element in the final
structure.

We only require an environment to be closed after all transfor-
mations have been applied and all new definitions have been added.
The final type must be of the form Env t s s (or FinalEnv t s)
for some type s .

type FinalEnv t usedef = Env t usedef usedef

References into this environment s are coined final references. If
all the transformation steps only add terms of type (∃a . t a s)
to the environment, then they contain only final references, and
we do not need to adjust the references after each transformation
step. However, this seems to be impossible. How can we make the
transformation steps half way through the transformation process
construct terms of the type (∃a . t a s)? After all s is the type
of the final environment and is only known after all transformation
steps have completed. For creating such final references we need to
know how many new definitions will be added to the environment
by future transformation steps.

18

...

...

T env2 s T env3 sT env1 s

1 2 N
Env t s env1 Env t s env2 Env t s env3 Env t s s

T s s

Figure 1.

We solve this problem by using Haskell’s lazy evaluation to pass
knowledge about the “future” backwards through the computation.
In our case information about the number of definitions added by
future steps is encoded in a Ref -transformer, that prepends as many
Suc-nodes to a reference as there are new definitions to come. The
type of such Ref -transformers is1:

newtype T e s = T{unT :: ∀x . Ref x e → Ref x s }

Figure 1 depicts the idea described above. The environment is
constructed from left to right. Each step takes as input the environ-
ment constructed thus far and yields an updated environment as re-
sult. On the top left, the computation starts with an environment of
some type Env t s env1 . Each step extends the environment with
some new definitions, making the type of the environment change
at every step. The final result of all steps has to be an environment
of type FinalEnv t s . Ref -transformers are passed on and mod-
ified from right to left. These transformer effectively inform every
intermediate step how deep down the environment constructed thus
far is located in the final environment.

The environment yielded by the last step is the place where
the use and the def types have to coincide. Therefore the identity
transformer is used as the initial value for the “pass-back” chain.
Every step updates the transformer according to the number of
definitions it adds to the environment, before passing it on to its
preceding transformation step.

3.1 The Trafo data type
We now develop the type Trafo to implement the idea described
above. Every step has two incoming and two outgoing arrows,
one of each type at each side. This means our Trafo-type is a
function taking two arguments and returning two results. We want
our Trafo-type to be polymorphic in the type of the terms (t) stored
in the environment. As a first attempt, we take:

type Trafo t =
T env2 s → Env t s env1
→ (T env1 s,Env t s env2)

the role of the different elements is as follows:

Env t s env1 is the environment which has been constructed up
to where the current transformation starts, and corresponds to
the incoming arrow at the top left. The env1 parameter de-
scribes which elements have thus far been added to the envi-
ronment.

T env2 s is the incoming arrow at the bottom right. It maps ref-
erences into an enviroment labelled with env2 into references
into the final environment s .

Env t s env2 is the environment constructed by this step, and
env2 will usually be either env1 or an extension of env1 .

T env1 s corresponding to the bottom left arrow coming out of a
Trafo, is the updated T env2 s , which can be constructed by
the transformation since it knows how many elements it adds to
the environment.

This type definition is incomplete, the type variables env1 ,
env2 , and s are still unbound. We do not want all these variables

1 Note that the keyword forall is presented by the logical symbol ∀

to appear on the left-hand side of the type definition, as this would
expose the internal complexity of the library to the user, so we have
to add universal or existential quantifiers.

The type env1 is the type of the environment constructed thus-
far. A step should not make any assumptions about this environ-
ment, and hence the type variable env1 is to be universally quanti-
fied. The type env2 is the type of the result of a transformation step.
This type depends on the number of new definitions introduced by
the step. As this can be an arbitrary number, the type env2 is fully
determined by the transformation and the incoming env1 . Because
env2 depends on env1 by extending it, this quantifier has to be
within the scope of env1 : once env1 is fixed the transformation
fixes env2 . Finally, the type variable s represents the type of the
final result, which we do expose. Its role is similar to the s in the
type ST s a , which is the type of state threads (Launchbury and
Jones 1994) of the Haskell libraries. All this leads to the following
definition for the type Trafo:

type Trafo t s =
∀env1 . ∃env2 . T env2 s → Env t s env1

→ (T env1 s, Env t s env2)

In the next step, we extend the type Trafo with Arrow -style
input and output. This allows us to pass values from one transfor-
mation Trafo to the next, in addition to the implicitly passed envi-
ronment and ref-transformers. So we add two arguments (a and b)
to the type Trafo, which stand for the types of the input and output:

type Trafo t s a b =
∀env1 . ∃env2 . a → T env2 s → Env t s env1

→ (b, T env1 s, Env t s env2)

Finally we may want to maintain meta-information about the en-
vironment, such as which elements have been added already. This
information may be used to determine wheather new elements have
to be added to the environment; hence it has to live outside the type
which is existentially quantified by env2 , but it will in general de-
pend on the environment env1 constructed thus far.

Thus, we introduce an extra argument m that stands for the
type of the meta-data. A Trafo takes the meta-data on the current
environment env1 as input and yields meta-data for the (possibly
extended) environment env2 .

type Trafo m t s a b =
∀env1 . m env1

→ ∃env2 .

(m env2
, a → T env2 s → Env t s env1
→ (b, T env1 s, Env t s env2)

)

We now have come to a problematic point: the type above is not
Haskell, nor is it accepted by the GHC due to the use of existential
quantifiers in type definitions. Unfortunately an existential type can
only be introduced by using the keyword ∀ on the left side of a
constructor in a data-declaration. Thus, we have to resort to an
encoding of the above type using two other data types:

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

data TrafoE m t s a b env1 =
∀env2 . TrafoE

(m env2)
(a → T env2 s → Env t s env1
→ (b, T env1 s, Env t s env2)
)

19

newSRef

Env t s e Env t s (e,a)

T (e,a) sT e s

Figure 2.

Now that we have developed the final version of our Trafo
data type we can define the combinators to construct and compose
transformation steps.

3.2 Creating new references
The most important operation is the extension of the enviroment
with a new term, returning a reference to this newly added term.
This operation is implemented by newSRef , which takes a typed
term as input, adds it to the environment and yields a reference
pointing to this value. The type of newSRef is:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

No meta-information on the environment is recorded by newSRef ;
therefore we use the type Unit for the meta-data. If meta-informa-
tion is required, one must define an application-specific version of
newSRef , as we will do in our example application in Section 4.
The type variable t stands for the type of the terms. We want the
input to newSRef to be of type t a s , where s stands for the type
of the final environment. The result of a newSRef is a reference of
type Ref a s , which points to the newly inserted, a labelled, term
in the final environment.

newSRef
= Trafo (λ → TrafoE Unit extEnv)

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s, Env t s (e, a))

extEnv ta (T tr) env
= (tr Zero,T (tr . Suc),Ext env ta)

The incoming meta-information is ignored and Unit is returned
as meta-data. The function extEnv , used in TrafoE , is more inter-
esting: it takes as arguments the term to be inserted ta :: t a s ,
the current environment env :: Env t s e , and a reference trans-
former (T tr) :: T e s , which transforms references into the cur-
rent environment into references into the final environment. The
result is a tuple containing the new environment, which has type
Env t s (a, e), and a reference of type Ref a s . The term (ta) be-
comes the last element of the new environment, hence the reference
pointing to this term is Zero. However, more terms may be added
in the future, therefore the reference transformer (tr) is applied,
which basically prepends to Zero as many Suc-nodes as there are
future additions to the environment under construction. Finally, we
record the fact that one new element was added to the environment
by adding an extra Suc-node to the reference transformer tr , which
we pass on to our predecessors. Since all application-specific ver-
sions of newSRef have to do this work, we include the function
extEnv as part of the library.

In certain cases an application-specific newSRef will not have
to add a new term, but will return an existing reference instead.
For these cases we added a function that casts a reference in the
constructed environment to one in the final environment:

castSRef :: Ref a env
→ x → T env s → Env t s env
→ (Ref a s , T env s , Env t s env)

castSRef r = (λ (T t) decls → (t r ,T t , decls))

3.3 runTrafo

Of course we want to “run” our Trafo-computations. This is the
task of the function runTrafo, which has the following type:

runTrafo :: (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

data Result m t b
= ∀env2 . Result (m env2) (b env2)

(FinalEnv t env2)

The type of runTrafo is inspired by that of runST :: (∀ s .
ST s a) → a , which is part of the state thread library (ST). The
rank-2 type for runTrafo ensures that transformation steps cannot
make any assumptions about the type of final environment (s).

The function runTrafo takes as arguments the Trafo we
want to run, meta-information for the empty environment, and
an input value. The result of runTrafo is the final environ-
ment (Env t env2 env2) together with the resulting meta-data
(m env2), and the output value (b env2). Because env2 could
be anything we have to hide it using existential quantification, and
thus introduce the data definition Result .

Note that the type of the output is (b s), one might wonder why
the output is not just some type c(not labelled with s). The reason is
that returning a value of type b s is slightly more general. It allows
a transformation to return a value labelled with type s , which would
otherwise not be allowed.

The implementation of the function runTrafo reads:

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

The function f inside the Trafo type is applied to the input value
(a), the identity Ref -transformer, and the empty environment. The
result of f is the output (b), and the transformation result (env),
which are wrapped in a Result constructor together with the result-
ing meta-data (m2). The function runTrafo uses lazy pattern bind-
ing for the matches on Trafo and TrafoE (for strict pattern match-
ing one should use case instead of let). This is essential as we
need to instantiate the universally quantified s with the existential
type constructed by the inner TrafoE constructor. Unfortunately
this is not allowed by the Glasgow Haskell compiler (GHC) as it
forbids the use of lazy pattern matching in combination with exis-
tential types. Other compilers such as Hugs(Hugs), and the Haskell
compiler under construction at Utrecht University(EHC) do allow
this combination. In Section 5 we suggest two solutions to circum-
vent this problem.

3.4 Arrow-style combinators
The Arrow library consists of a set of functions for constructing
and combining values that are instance of the Arrow class. Further-
more there is a convenient notation for programming with Arrows.
This notation is inspired by the do-notation for Monads. To imple-
ment the Arrow interface one needs to implement three methods
arr , >>>, and first .

We make the type (Trafo m t s) instance of the Arrow class:

instance Arrow (Trafo m t s) where

The method arr lifts a function.

-- arr :: (a → b)→ Trafo m t s a b
arr f = Trafo (λm → TrafoE m (λa t e → (f a, t , e)))

20

The >>> operator composes two Trafos. It is actually a straight-
forward transcription of the composition depicted in Figure 1. In
that figure box 1 refers to the incoming environment, box 2 to the
intermediate and box 3 to the outgoing.

-- (>>>) :: Trafo m t s a b→ Trafo m t s b c
--→ Trafo m t s a c

Trafo t1 >>> Trafo t2 =
Trafo
(λm1 → case t1 m1 of

TrafoE m2 f1 → case t2 m2 of
TrafoE m3 f2 →

TrafoE
m3
(λa tt env1 →

let (b, tt1 , env2) = f1 a tt2 env1
(c, tt2 , env3) = f2 b tt env2

in (c, tt1 , env3)
)

)

The method first applies the first component of the input to the
argument Trafo and copies the rest unchanged to the output. It is
implemented as follows:

-- first :: Trafo m t s a b → Trafo m t s (a, c) (b, c)
first (Trafo tr)

= Trafo (λm1 → case tr m1 of
TrafoE m2 f →

TrafoE
m2
(λ∼(a, c) tt env1 →

let (b, tt1 , env2) = f a tt env1
in ((b, c), tt1 , env2)))

For easy reference, we also show the other functions of the
Arrow -interface. The code is just the default definition found in
the Arrow -class.

second :: Trafo m t s b c → Trafo m t s (d , b) (d , c)
second f = arr swap >>> first f >>> arr swap

where swap∼(x , y) = (y , x)

(***) :: Trafo m t s b c → Trafo m t s b′ c′

→ Trafo m t s (b, b′) (c, c′)
f *** g = first f >>> second g
(&&&) :: Trafo m t s b c → Trafo m t s b c′

→ Trafo m t s b (c, c′)
f &&& g = arr (λb → (b, b)) >>> (f *** g)

The function loop is used to construct feedback loops. It takes a
Trafo that has an input of type (a, x) and output of type (b, x).
The component of type x is fed back resulting in a Trafo with
input a and output b.

instance ArrowLoop (Trafo m t s) where
-- loop :: Trafo m t s (a, x) (b, x)→ Trafo m t s a b

loop (Trafo st) =
Trafo
(λm → case st m of

TrafoE m1 f1 →
TrafoE m1
(λa t e →

let ((b, x), t1 , e1) = f1 ((a, x)) t e
in (b, t1 , e1)

))

4. Common sub-expression elimination
In this section we show how the library developed in the previ-
ous section can be applied to implement common sub-expression
elimination (CSE). The object of this transformation is the Expr -
language from Section 2.

CSE is a compiler optimization, where for each sub-expression
e that occurs more than once the CSE transformation introduces a
new declaration v = e , and furthermore replaces all subsequent
occurrences of e with the variable v .

For example the following expressions:
a = 4;
b = (a + 4) + (a + 4);

are transformed into:
a = 4;
x = a + a;
b = x + x ;

The subject of our CSE transformation is a sequence of (possibly
mutually recursive) declarations. These are reprensented as an Env
of typed Exprs:

type Decls env = Env Expr env env

In the type Decls above the type variable env encodes the type of
each of the declarations. The result of the transformation is also a
sequence of declarations. It is labelled with a different type variable
because the CSE transformation may introduce new declarations.
The amount of newly introduced declarations depends on the num-
ber of common sub-expressions in the original set of declarations.
As a result the type of the result of the transformation is not stati-
cally known. Therefore we introduce the following existential type
for the result of the CSE transformation:

data TDecls env = ∀env ′ . TDecls (Decls env ′)
(T env env ′)

In the type TDecls env , the type variable env stands for the type
of the original declarations. The type TDecls constains a sequence
of declarations (Decls env ′), in which the type variable env ′ rep-
resents the type of the transformed declarations. The transformed
declarations are accompanied by a Ref -transformer mapping ref-
erences from the original sequence of declarations to references in
the new one.

Summarizing the type implementation of the CSE transform,
developed in the remainder of this section has the following type:

cse :: Decls env → TDecls env

Before we delve into the implementation of cse , we first show an
example.

a = 4;
b = (a + 4) + (a + 4);

These declarations are encoded as typed abstract syntax as follows:
a = Suc Zero
b = Zero
exampledecls :: Decls (((), Int), Int)
exampledecls =

Empty ‘Ext ‘ (IntVal 4)
‘Ext ‘ (Add (Add (Var a) (IntVal 4))

(Add (Var a) (IntVal 4)))

To transform the declarations we apply the cse function:
resdecls :: TDecls (((), Int), Int)
resdecls = cse exampledecls

The transformed declarations (resdecls) can be used as follows:

21

evalDecls :: Decls env → env
evalVar :: Ref a env → TDecls env → a
evalVar var (TDecls ds (T tt))

= lookup (tt var) (evalDecls ds)

value a = evalVar a resdecls
value b = evalVar b resdecls

The function evalVar takes a reference and the transformed
declarations as arguments. It evaluates the declarations(evalDecls)
and uses the reference in combination with the Ref -transformer(tt)
to select the value from the evaluated declaration that corre-
sponds the reference(var). Note that we omitted the definition of
evalDecls and only show its type.

The transformed declarations (resdecls) internally have the fol-
lowing structure:

TDecls
(Empty ‘Ext ‘ (IntVal 4)

‘Ext ‘ (Add (Var (Suc (Suc Zero)))
(Var (Suc (Suc Zero))))

‘Ext ‘ (Add (Var (Suc Zero))
(Var (Suc Zero)))

)
(T (λref → case ref of

Zero → Zero
Suc Zero → Suc (Suc Zero))

:: T (((), Int), Int) ((((), Int), Int), Int))

A new declaration has been inserted in between those for a and
b, this fact is reflected in the Ref -transformer. The reference Zero
(for b) remains unchanged because the declaration b is still the last
one. The reference for declaration a however gets an extra Suc
node.

4.1 Implementation
Briefly our implementation of CSE performs the following steps:
For each sub-expression
• check if we already encountered it

if not, add a declaration for this sub-expression to the result
if yes, replace it by a reference to the equivalent expression
that is already in the result

To determine whether expressions have common sub-express-
ions we need to compare expressions for equality. Therefore we
introduce the function equals , which compares two expressions,
and, if they are equal returns a witness encoding that the types of
the two expressions are the same.

equals :: Expr a env → Expr b env
→ Maybe (Equal a b)

equals (Var r1) (Var r2) = match r1 r2
equals (IntVal i1) (IntVal i2)
| i1 ≡ i2 = Just Eq

equals (LessThan x1 y1) (LessThan x2 y2)
= do Eq ← equals x1 x2

Eq ← equals y1 y2
return Eq

. . .
equals = Nothing

The implementation of the function equals is fairly straightfor-
ward. To determine whether two Vars are equal the function
match is applied to determine whether the contained references
are the same. Two IntVal expressions are equal if their contained

values are the same. To determine whether two LessThan expres-
sions are equivalent, the function equals is recursively applied on
their components. We omit the definitions of equals for the con-
structors BoolVal , Add and If , because they are very similar to
the ones above.

During the CSE transformation we need to determine whether
we already encountered an expression before. If an expression has
not been encountered before, a declaration for it is added to the
result. On the other hand if it was encountered before, it is not
added to the result, but is instead replaced by a reference to the
equivalent expression that is already present in the result.

For this we introduce the type Memo:

newtype Memo env env ′

= Memo
(∀x . Expr x env
→ Maybe (Ref x env ′)

)

The Memo tells us whether an expression has been encountered
before, and if so, returns a witness in the form of a reference to
the copy of the expression in the transformation result. Note the
use of two distinct type variables: env stands for the type of the
original sequence of declarations and env ′ for the result of the
transformation.

We introduce a “smart” constructor to create an empty Memo:

emptyMemo :: Memo env ()
emptyMemo = Memo (const Nothing)

We proceed by introducing a type synonym for the CSE transfor-
mation Arrow :

type TrafoCSE env = Trafo (Memo env) Expr

The terms that are to be transformed have type Expr and the state
(meta-data) maintained is a table of type Memo.

During the transformation all sub-expressions are visited. For
each sub-expression we check whether it has already been encoun-
tered before. If so the table of type Memo provides us a reference
to the earlier occurrence of the sub-expression, which is used as a
replacement for the current sub-expression. On the other hand if
the sub-expression was not encountered before, the Memo table is
extended with an entry for this sub-expression.

This is captured in the function insertIfNew , which is our
application specific version of newSRef . Its argument is the sub-
expression that is being visited. Its result is a TrafoCSE with as
input the transformed version of the sub-expression, which has type
(Expr a s). The output is a reference to the transformed version
of the first occurrence of the sub-expression.

insertIfNew :: ∀s a env . Expr a env
→ TrafoCSE env s (Expr a s) (Ref a s)

insertIfNew e =
Trafo
(λ(Memo m :: Memo env env ′)→ case m e of

Nothing → TrafoE (extMemo e (Memo m)) extEnv
Just r → TrafoE (Memo m) (castSRef r)

)

extMemo :: Expr a env → Memo env env ′

→ Memo env (env ′, a)
extMemo e (Memo m)

= Memo (λs → case equals e s of
Just Eq → Just Zero
Nothing → fmap Suc (m s)

)

22

The first time we encounter a sub-expression it is not found in the
Memo-table (i.e. the Nothing-case above). Firstly the transformed
version of the sub-expression is appended to the transformed
declarations using extEnv . The Memo table is extended (using
extMemo) with an entry mapping the current sub-expression to
Zero, so for a next occurence of the sub-expression we know
where to find the transformed first occurrence. Because we added
one declaration ourselves, one extra Suc is added to the rest of the
references in the Memo table.

For every subsequent encounter of the sub-expression, we find
it in the Memo table (i.e. the Just case above). The reference to
the first occurrence is simply the one found in the Memo table. We
apply the function castSRef to take into account the declarations
that might be added by future transformation steps.

The function app cse 2 applies the CSE transformation to a
single expression. The resulting TrafoCSE has as arrow input a
Ref -transformer, that maps references from the original sequence
of declarations to corresponding ones pointing into the transfor-
mation result. As output the TrafoCSE yields a reference to the
transformed expression.

app cse :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

app cse (Var r) = proc (T tenv s)→
returnA ≺ tenv s r

The reference inside a variable is transformed by applying the
supplied Ref -transformer. The transformed reference now points
to the corresponding value in the transformation result.

app cse e@(IntVal i) = proc →
insertIfNew e ≺ IntVal i

For integer constants the function insertIfNew is applied to the
original expression (e). As transformed expression IntVal i is
passed. The function insertIfNew only inserts this expression if
the integer constant is not already presented in the transformation
result.

app cse e@(LessThan x y)
= proc tt →
do l ← app cse x ≺ tt

r ← app cse y ≺ tt
insertIfNew e ≺ LessThan (Var l) (Var r)

. . .

For the constructor LessThan the function app cse is applied re-
cursively resulting in references to the transformed sub-expressions.
The Ref -transformer tt is passed for both sub-expressions. Again
insertIfNew is applied to the original expression; as transformed
expression we pass a LessThen node containing the references to
the transformed sub-expressions.

The implementations of app cse for the constructors BoolVal ,
Add , and If are very similar, and are therefore omitted.

The function app cse defined above applies the CSE transform
to a single expression only. The final transformation should trans-
form a sequence of declarations, which is encoded as a value of the
data type Env . Therefore we define cse env , which takes an Env
as argument and applies app cse to each expression. Analogous to
app cse , the function cse env takes a Ref -transformer as input.
It collects all the references returned by app cse in an Env . This
collection contains for each reference of the original declarations a
corresponding reference in the transformation result.

cse env :: Env Expr env env ′

→ TrafoCSE env s

2 The following functions use arrow notation (Paterson 2001)

(T env s)
(Env Ref s env ′)

cse env Empty = proc → returnA ≺ Empty
cse env (Ext es e) = proc tt →

do renv ← cse env es ≺ tt
r ← app cse e ≺ tt
returnA ≺ Ext renv r

The collection of Ref s returned by the function cse env can be
used to compute the Ref -transformer that it requires as input:

refTransformer :: Env Ref s env → T env s
refTransformer refs = T (λr → lookupEnv r refs)

The result of cse env is used to compute its own input. To con-
struct such a feedback-loop, we use the special mdo-notation for
mutually recursive Arrow statements.

trafo :: Decls env → TrafoCSE env s () (T env s)
trafo decls = proc →

mdo let tt = refTransformer refs
refs ← cse env decls ≺ tt
returnA ≺ tt

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀env . Decls env → TDecls env
cse decls

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t

5. Alternative implementation for runTrafo
Recall the data type Trafo and the function runTrafo:

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

data TrafoE m t s a b env1 =
∀env2 . TrafoE

(m env2)
(a → T env2 s → Env t s env1 →

(b,T env1 s,Env t s env2)
)

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→ m ()→ a → Result m t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, , env)→ Result m2 b env

In the definition of runTrafo we want the type of the final envi-
ronment (s) to be the same as the type of the environment coming
out of the transformation (env2). To achieve this the universally
quantified s must be instantiated as env2 . For this the use of lazy
pattern binding (using let) on the existential data type (TrafoE)
is essential. Unfortunately GHC, the most widely used Haskell
Compiler, does not support lazy pattern matching on data construc-
tors with existential types. In such cases it reports the infamous
“My brain just exploded” error message. Other compilers such as
Hugs(Hugs) and EHC(EHC) do support lazy pattern matching on
data constructors with existential types. The reason this is not sup-
ported by GHC, is because it cannot be translated into GHCs in-
termediate language, which is based on System-F. GHCs core lan-
guage should be extended with some kind of fix-point operator at
the type level. However, this has as disadvantage that type level

23

terms may be non-terminating, and therefore type terms can no
longer be simply erased.

Using unsafeCoerce is a simple solution for this problem:

unsafeCoerce :: a → b
runTrafo :: (∀s . Trafo m t s a (b s))→ m ()→ a

→ Result m t b
runTrafo trafo m a = case trafo of

Trafo trf → case trf m of
TrafoE m2 f →

case f a (T unsafeCoerce) Empty of
(rb, tt , env2)→

Result (unsafeCoerce m2)
rb
(unsafeCoerce env2)

The function is named unsafe for a good reason; it effectively
switches off the typer checker. We believe this implementation of
the function runTrafo is safe though. We could not find any ex-
amples where the use of use runTrafo goes wrong. Furthermore,
the implementation is operationally identical to the original imple-
mentation of runTrafo, which is considered type correct accord-
ing to other compilers than GHC. However, in a paper on typed
transformations the use of unsafeCoerce feels a bit like cheating.
Therefore we also provide, below, a version that is free of both
unsafeCoerce and lazy pattern matching on existential types. With
this solution, however, the Trafo type is no longer a real Arrow ,
and hence the special Arrow notation cannot be used.

In the type of runTrafo above the universal quantification on
s is on the outside of the type Trafo, whereas the existential
quantification on env2 is inside. Instantiating s with env2 would
be much easier if this was the other way around. We may move the
universal quantification over s inside the quantification over env2 .
This would give us the following type:

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1)

data TrafoE2 m t a b env1 =
∀env2 . TrafoE2

(m env2)
(∀s . a s → T env2 s → Env t s env1

→ (b s,T env1 s,Env t s env2)
)

Note that the type variables a and b are now labelled with s , and
hence have kind (∗ → ∗). This is essential because we want
to manipulate terms and Ref s which are labelled with type s . For
example the type of newRef which used to be:

newSRef :: Trafo m t s (t a s) (Ref a s)

now becomes:

newSRef2 :: Trafo2 m t (t a) (Ref a)

The implementation of runTrafo on the new Trafo2 type is fairly
straightforward:

runTrafo2 :: Trafo2 m t a b → m ()→ (∀s . a s)
→ Result m t b

runTrafo2 trafo m a =
case trafo of

Trafo2 trf → case trf m of
TrafoE2 m2 f →

let (rb, tt , env2) = f a (T id) Empty
in Result m2 rb env2

Unfortunately the new data type Trafo2 is not really an Arrow ,
because the type variables a and b are of kind ∗ → ∗ instead

of ∗ . We can however provide an Arrow -style interface for
programming with the type Trafo2 , by making it instance of the
following class:

class Arrow2 arr where
arr2 :: (∀s . a s → b s)→ arr a b
(>>>>) :: arr a b → arr b c → arr a c
first2 :: arr a b → arr (Pair a c) (Pair b c)
second2 :: arr a b → arr (Pair c a) (Pair c b)
(****) :: arr a b → arr a ′ b′

→ arr (Pair a a ′) (Pair b b′)
(&&&&) :: arr a b → arr a b′ → arr a (Pair b b′)

newtype Pair a b s = P (a s, b s)

Although the combinators above do not define a real Arrow , pro-
gramming with them is the same as programming with Arrows, ex-
cept that one cannot use the special Arrow syntax (Paterson 2001).
This is unfortunate, because the special syntax make programming
with Arrows a lot easier.

6. Conclusion
We have shown how to use the Haskell type system and its exten-
sions to perform a fully typed program transformation. Doing so
we have used a wide variety of type system concepts: placing ex-
istentials precisely at the positions where needed, making things
polymorphic where needed, using loop combinators to feed back
the result of the computation into the computation inside the scope
of an existential, using GADTs to type the environments we con-
struct, scoped type variables, splitting the type labels of the envi-
ronment into a use and a def part and thus temporarily decoupling
the types of the occurring references and the types associated with
the terms in the environment being constructed. We introduced an
arrow like style for composing the transformations. Besides this we
make use of lazy evaluation in order to get computed information
to the right places to be used.

We think that studying the algorithm and its approaches to
the various subproblems is indispensable for anyone who wants
to program similar transformation-based algorithms in a strongly
typed setting. Some might wonder why the approach taken may
be necessary at all, and why not resort to off-line techniques, and
they have a point. It is often easier to work in an untyped setting,
only to check the generated result afterwards for type correctness.
On the other hand one can see the added complexity as a partial
correctness proof of the transformation, and as we all know proofs
of correct lemmas are superfluous.

We believe that the arrow-based library will turn out to be useful
in building programs that transform typed abstract syntax, and that
the pattern we have followed in this paper will be followed in many
more interesting applications to come.

It is unfortunate that GHC does not support lazy pattern match-
ing on data constructors with existential types. We hope this will be
supported in the future. Until then, a user of the library is posed the
following dillema: either have an unsafeCoerce in the implemen-
tation of runTrafo, or use the alternative Trafo type, but loose the
convenience of the Arrow -notation.

References
Arthur Baars and S. Doaitse Swierstra. Typed transformations of typed

abstract syntax. UU-CS 21, Utrecht University, 2008.
Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In

S. Peyton Jones, editor, Proceedings of the seventh ACM SIGPLAN
international conference on Functional programming, pages 157–166.
ACM Press, 2002. ISBN 1-58113-487-8.

24

Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self-inspecting code.
In Haskell ’04: Proceedings of the 2004 ACM SIGPLAN workshop on
Haskell, pages 69–79, New York, NY, USA, 2004. ACM Press. ISBN
1-58113-850-4.

Arthur I. Baars, S. Doaitse Swierstra, and Marcos Viera. TTTAS
HackageDB package. URL http://hackage.haskell.org/
cgi-bin/hackage-scripts/package/TTTAS.

Chiyan Chen and Hongwei Xi. Implementing typeful program
transformations. In PEPM’03, 2003.

James Cheney and Ralf Hinze. First-Class Phantom Types. Technical
report TR2003-1901, Cornell University, 2003.
http://techreports.library.cornell.edu:
8081/Dienst/UI/1.0/Display/cul.c%is/TR2003-1901.

EHC. Essential haskell compiler. URL
http://www.cs.uu.nl/wiki/Ehc.

GHC. Glasgow haskell compiler. URL
http://www.haskell.org/ghc/.

Hackage. Hackage. URL http://hackage.haskell.org/.
John Hughes. Generalising monads to arrows. Science of Computer

Programming, 37:67–111, 2000.
Hugs. Hugs. URL http://www.haskell.org/hugs/.
John Launchbury and Simon L. Peyton Jones. Lazy functional state

threads. In SIGPLAN Conference on Programming Language Design
and Implementation, pages 24–35, 1994. URL
citeseer.ist.psu.edu/article/launchbury93lazy.html.

Emir Pasalic and Nathan Linger. Meta-programming with typed
object-language representations. In Generative Programming and
Component Engineering (GPCE’04), volume LNCS 3286, pages 136 –
167, October 2004.

Ross Paterson. A new notation for arrows. In International Conference on
Functional Programming, pages 229–240. ACM Press, September
2001.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for gadts.
SIGPLAN Not., 41(9):50–61, 2006. ISSN 0362-1340.

Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. Haskell do you
read me? constructing and composing efficient top-down parsers at
runtime. In A. Gill, editor, Haskell Symposium. ACM, 2008.

Stephanie Weirich. Type-safe cast. In Proceedings of the fifth ACM
SIGPLAN international conference on Functional programming, pages
58–67. ACM press, 2000. ISBN 1-58113-202-6.

A. Transformation library
A.1 Data types

data Equal :: ∗ → ∗ → ∗ where
Eq :: Equal a a

data Ref a env where
Zero :: Ref a (env ′, a)
Suc :: Ref a env ′ → Ref a (env ′, b)

data Env term use def where
Empty :: Env t use ()
Ext :: Env t use def ′ → t a use

→ Env t use (def ′, a)

type FinalEnv t usedef = Env t usedef usedef

data Result m t b
= ∀s . Result (m s) (b s) (FinalEnv t s)

newtype T e s = T{unT :: ∀x . Ref x e → Ref x s }

data Unit s = Unit

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

data TrafoE m t s a b env1 =
∀env2 . TrafoE

(m env2)
(a → T env2 s → Env t s env1
→ (b,T env1 s,Env t s env2)

)

A.2 Functions

match :: Ref a env → Ref b env → Maybe (Equal a b)

lookupEnv :: Ref a env → Env t s env → t a s

updateEnv :: (t a s → t a s)→ Ref a env
→ Env t s env → Env t s env

newSRef :: Trafo Unit t s (t a s) (Ref a s)

extEnv :: t a s → T (e, a) s → Env t s e
→ (Ref a s,T e s,Env t s (e, a))

castSRef :: Ref a env
→ (x → T env s → Env t s env
→ (Ref a s , T env s , Env t s env))

runTrafo :: (∀s . Trafo m t s a (b s))→ m ()→ a
→ Result m t b

A.3 Arrow interface

arr :: (a → b)→ Trafo m t s a b

(>>>) :: Trafo m t s a b → Trafo m t s b c
→ Trafo m t s a c

first :: Trafo m t s a b → Trafo m t s (a, c) (b, c)

second :: Trafo m t s b c → Trafo m t s (d , b) (d , c)

(***) :: Trafo m t s b c → Trafo m t s b′ c′

→ Trafo m t s (b, b′) (c, c′)

(&&&) :: Trafo m t s b c → Trafo m t s b c′

→ Trafo m t s b (c, c′)

loop :: Trafo m t s (a, x) (b, x)→ Trafo m t s a b

A.4 Trafo2

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1)

data TrafoE2 m t a b env1 =
∀env2 . TrafoE2

(m env2)
(∀s . a s → T env2 s → Env t s env1

→ (b s,T env1 s,Env t s env2)
)

newSRef2 :: Trafo2 m t (t a) (Ref a)

25

runTrafo2 :: Trafo2 m t a b → m ()→ (∀s . a s)
→ Result m t b

class Arrow2 arr where
arr2 :: (∀s . a s → b s)→ arr a b
(>>>>) :: arr a b → arr b c → arr a c
first2 :: arr a b → arr (Pair a c) (Pair b c)
second2 :: arr a b → arr (Pair c a) (Pair c b)
(****) :: arr a b → arr a ′ b′

→ arr (Pair a a ′) (Pair b b′)
(&&&&) :: arr a b → arr a b′ → arr a (Pair b b′)

newtype Pair a b s = P (a s, b s)

26

