
Typed Transformations of Typed Abstract Syntax

Arthur I. Baars

Instituto Tecnol´o gico de Inform´a tica
Universidad Polit ´ecnica de Valencia

Valencia, Spain
abaars@iti.upv.es

Abstract
Advantages of embedded domain-specific languages (EDSLs) are
that one does not h ave to implement a separate type system nor
an abstraction mechanism, since t hese are directly borrowed from
the host language. Straightforward implementations of embedded
domain-specific languages map the semantics of the embedded lan-
guage onto a function in the h ost language. The semantic mappings
are usually compositional, i.e. they directly follow the syntax of the
embedded language.

One of the questions which arises is whether conventional com-
pilation techniques, such as global analysis and resulting transfor-
mations, can b e applied in the context of EDSLs. The approach we
take is t hat, instead of mapping the embedded language directly
onto a function, we first b uild a representation of the abstract syn-
tax tree of the embedded program fragment. This syntax tree is
subsequently analyzed and transformed, and finally mapped onto
a function r epresenting its denotational semantics. In t his way we
achieve run-time “compilation” of the embedded language.

Run-time transformations on the embedded language can have
a huge effect on p erformance. In previous w ork (Viera et al. 2008)
we present a case study comparing the Read instances generated
by Haskells deriving construct with instances on w hich run-time
grammar transformations (precedence resolution, left-factorisation
and left-corner t ransformation) have been applied.

In this p aper we present the library, which has an arrow like
interface, which supports in the construction of analyses and trans-
formations, and w e demonstrate its use in implementing a common
sub-expression elemination transformation. The library u ses typed
abstract s yntax to represent fragments of embedded programs con-
taining variables and binding structures, w hile preserving the idea
that the t ype system of the h ost language is used t o emulate the type
system of the embedded language. The t ricky issue is how t o keep
a collection of mutually recursive structures well-typed while it is
being transformed.

We finally discuss the t yping r ules of Haskell, its extensions
and t hose as implemented b y the GHC and show t hat p ure System-
F based systems are sufficiently rich to express w hat we want to
express, albeit at the cost of an increased complexity of the code.

Categories and Subject D escriptors F.3.3 [Logics and meanings
of programs]: Studies of program Constructs; D.3.3 [Program-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for p rofit or commercial advantage and that copies b ear t his n otice and the full citation
on the first p age. To copy otherwise, to republish, t o p ost on servers or t o r edistribute
to lists, requires p rior specific permission and/or a fee.

TLDI ’09 January 24, 2009. Savannah, Georgia, USA.
Copyright ?c 2009 ACM 978-1-60558-420-1/09/01 . . . $5.00

15

S. Doaitse Swierstra Marcos Viera

Department of Computer Science Instituto de Computacio ´n
Utrecht U niversity Universidad de la Repu ´blica

Utrecht, The N etherlands Montevideo, Uruguay

doaitse@cs.uu. nl mviera@fing.edu . uy

ming languages]: Language Constructs and Features; D. 1.1 [Pro-

gramming techniques]: Applicative (Functional) Programming;

D.3.4 [Programming languages]: Processors

General Terms Algorithms, Languages, Verification

Keywords GADT, Meta Programming, Type Systems, Typed

Transformations, Common Subexpression Elimination

1. Introduction
Modern functional languages such as Haskell and ML are excel-
lent tools for embedding domain specific languages. This is u su-

ally done b y defining a library of combinators, each combinator

representing a grammatical structure from the embedded language.
With such a library a p rogrammer can use a domain-specific no-
tation, and at the same t ime benefit from all the features, such as
the t ype system and abstraction mechanisms, of the general p ur-
pose host language. The tight integration of the domain-specific
language with the h ost language has great b enefits: there is no need
to extend the compiler or to use ad hoc external tools w hich map
the specific notation onto the h ost language.

One of the essential aspects of a combinator-based domain-
specific embedded language is t hat it shares its t ype system w ith
the host language.

Although such a combinator-based approach for implement-
ing domain-specific languages looks very convincing at first sight,
many problems show up w hen one starts to use t his t echnique in
practice. Just as conventional compilers may analyze programs ex-
tensively and may transform them b ased on the results of such anal-
yses, one also wants to use such techniques for combinator-based
embedded languages.

Unfortunately, such analyses and transformations are usually
not p ossible, because the v alue b eing constructed by the combi-
nators is a (possibly h igher order) function (as in denotational se-
mantics), and hence the internal structure can b e neither inspected
nor transformed. The approach w e t ake is to h ave the combinators
build a data structure which corresponds to the typed abstract s yn-
tax tree as described b y the grammar of the embedded language.
This r epresentation can t hen b e analyzed, transformed, and finally
mapped onto its semantics. The main complication w e now face is
that w e have t o do t his in a typed setting.

The problem becomes even harder w hen the embedded lan-
guage not only borrows the type system and the abstractions p ro-
vided b y the h ost language, but also its declarative structure. Now
we h ave t o deal with collections of abstract syntax t rees containing

references to each other and the question arises how to representing
and observe the binding structures.

In t heir work on typed meta-programming (Pasalic and Linger
2004), Pasilic and Linger, using the encoding of equality t ypes
in Haskell (Baars and Swierstra 2002), show how t o represent
typed abstract syntax t rees containing typed references to values.
A group of mutually recursive bindings is represented by a nested
cartesian product of terms. The variables occurring in the terms
are represented b y typed pointers into this enviroment. A similar
approach was developed slightly earlier b y Xi and Chen, using a
dependently typed version of ML, in their w ork on typeful program
transformations (Chen and X i 2003). The key ingredient for both is
the encoding of environments and references pointing into these
environments in host language terms. This encoding ensures that
references always refer to existing values w ith the right types. In all
approaches, references are b asically indices into an environment,
encoded as Peano numbers.

In earlier work we demonstrated the p ractical use of run-time
typed grammar transformations for combinator parsers. In (Baars
and Swierstra 2008) we have described a quite involved gram-
mar t ransformation, the L eftC orner transform which effectively
removes left-recursive non-terminals from a grammar and replaces
them by a set of non left-recursive ones. As a consequence top-
down parsers can directly be generated from the resulting grammar.
In (Viera et al. 2008) w e eliminate common prefixes from sets of
productions in order to improve parsing efficiency. In a small case
study we derive an efficient version for the Haskell function read,
converting the w orst case exponential time algorithm u sed thus far
into a linear one.

In t his paper we explain the inner-workings of the library un-
derlying these transformations. It has an Arrow-style interface and
handles introductions of new t yped bindings. It is not geared to-
wards grammar t ransformations and thus can be u sed to implement
a wide variety of other typed program transformations. As a small

example of the use of the library we include an implementation of
common-subexpression elimination, assuming that the algorithm
used t hus does not become a object of study b y itself and attention
can focus on the way the library is used.

Internally, the library makes heavy use of universally and ex-
istentially quantified t ypes in combination with Generalized Al-
gebraic Data Types (GADT). This p aper therefore can also b e
seen as a non-trivial exercise u sing these type system extensions.
Throughout the p aper, we use GHC (GHC) syntax for these exten-
sions t o Haskell. The code in this p aper can b e found at: http :
//www .cs .uu .nl/wiki/Center/TTTAS, and was produced by
running lhs2TeX on the source of this p aper. The code is accepted
by the Glasgow Haskell Compiler (GHC). The library described
in this p aper is also released as a H ackageDB(Hackage) package
and can b e downloaded from: http : //hackage .haskell . org/
cgi-bin/hackage-scripts/package/TTTAS.

This p aper is organized as follows. In Section 2, summarizing
earlier work (Pasalic and Linger 2004; Baars and Swierstra 2002,
2004), we discuss the encoding of typed abstract syntax trees, r efer-
ences and environments. These are the objects for our transforma-
tions. In Section 3, we develop the library that maintains a changing
typed environment. It ensures that all typed references (references
that “know” the type of the values they refer to) remain consistent
whenever a new definition is added to the environment. In Section
4, w e show an example of the use of the library: the implementa-
tion of common sub-expression elimination. The implementation
of the library makes use of lazy-pattern matching on data construc-
tors involving existential t ypes. This combination is u nfortunately
not supported b y GHC. In Section 5 we present several solutions
to avoid this problem. Finally, in Section 6, we present our conclu-
sions.

2. Typed References and Environments

We start b y shortly r epeating the ideas b ehind typed meta-program-

ming, in w hich we represent programs explicitly, so they can b e
manipulated. We w ant to do t his in such a way that we keep the n ice

16
properties that typed p rogramming languages h ave. Specifically,
the fact that the representation is type correct can b e seen as a p roof
that the represented expression is type correct.

As an example consider the abstract syntax (formulated as a
GADT) of a simple expression language:

data Exp a where
IntVal :: Int → Exp Int
BoolVal :: Bool →→ EExxpp BInotol
Add :: Exp Int → Exp Int →→ EExxpp IBnoto
Cons1 :: Exp a →→ EExxpp [I na]t →→ EExxpp [I na]t
Nil1 :: EExxpp [[aa]]
LessThan :: Exp Int → Exp Int → Exp Bool
If :: Exp Bool →→ EExxpp Ian →t Exp a →→ EExxpp aB

where the expression

if 3 + 1< 4 then 5 else 1+ 2

is r epresented by:

expr :: Exp Int
expr = If (LessThan (Add (IntVal 3) (IntVal 1))

(IntVal 4))
(IntVal 5)
(Add (IntVal 1) (IntVal 2))

The value of the r epresented expression has type Int, which is
reflected in the type of expr :: Exp Int. N ote that the ill-typed

expression 3 < True cannot be represented, since it will not p ass
the type-checker.

The type Exp a encodes the typing j udgement ‘ e : α, that
readTsh e“tt hyep eex Epxrepssa ione n ceo hdeass tthyepet αpi”n. E juacdgh cmonensttr‘ uct eor: h αas, thhaet
structure of a formal j udgment. For example LessThan encodes
the rule:

‘ e1 : Int ‘ e2 : Int
‘ e1‘ :e 1I n< te 2 :‘B e 2oo l:I nt

Before discussing analyses and transformations we have to de-
cide how to r epresent variables and binding structures. We extend
our simple expression language w ith a constructor Var, where a
variable is represented by a reference of type Ref a env, an index
pointing to a v alue of type a in an environment of type env. In the
next section, we w ill delve into the details of the type Ref.

We extend the labelling (properties) of the type Expr b y an ex-
tra t ype p arameter env, which stands for the type of the environ-
ment in w hich the expression is to b e evaluated:

data Expr a env where
Var :: Ref a env → Expr a env
IntV Val :: Int →→ EExxpprr aIne tn evnv
BoolVal :: Bool →→ EExxpprr IBnotoel nenvv
Cons :: Expr a env →→ EExxpprr [B ao]o lene vn

→ Expr [a] env
Nil →:: EExxpprr [[aa]] eennvv
Add :: Expr Int env → Expr Int env

→ Expr Int env
LessThan →:: EExxpprr IInntt eennvv → Expr Int env

→ Expr Bool env
If →:: EExxpprr BBooooll eennvv → Expr a env

→:: EExxpprr aB oeonlve →→ EExxpprr aa eennvv

Now w e have the j udgement Γ ‘ e : α, that reads “the expression
eN ohaws wtyep eh aαv eint hloec jauld cgoenmteexntt Γ Γ” .‘

An evaluator eval for our simple expression language takes as
arguments the abstract syntax tree decribing an expression, and an
environment w hich provides values for the v ariables occurring in
the expression, and returns the value of the expression. For the time
being only the type of the function lookup matters:

lookup :: Ref a env → env → a

eval :: Expr a env → env → a
eval (Var r) e =→ leo nokvu→ p →ra e
eval (IntVal i) = i
eval (BoolVal b) = b
eval (Add x y) e = eval x e + eval y e
eval (Cons x y) e = eval x e : eval y e
eval Nil = []
eval (LessThan x y) e = eval x e < eval y e
eval (If x y z) e = if eval x e

then eval y e
else eval z e

2.1 Type equality

Pasalic and Linger (Pasalic and Linger 2004) introduce an encoding
of typed references that can b e used for meta-programming. This
encoding relies on the equality type (Baars and Swierstra 2002;
Weirich 2000; Cheney and Hinze 2003). A (non-diverging) value
of type Equal a b is a witness of the proof t hat the types a and
b are equal. This witness takes the form of a conversion function,
which turns out t o always be the identity function.

The addition of GADTs (Peyton Jones et al. 2006) to GHC

makes programming w ith the Equal data type a lot easier, because
all the fiddling w ith p roofs is implicitly done by the compiler.
Furthermore, the p erformance increases, since the construction of
the p roofs is n o longer done at run-time. The compiler “knows” t hat
all proofs of type equality are witnessed by values like id, id id,
id (id id), id id id etc, and can thus omit them safely from the
generated code: they have no other observable effect than taking
time to execute.

The encoding of t ype equality becomes trivial when u sing
GADTs:

data Equal :: ∗ → ∗ → ∗ where
Etqa :E E: Equqaula: l: a a

The type Equal has j ust one constructor Eq :: Equal a a. If a
pattern match on a value of type Equal a b succeeds (i.e., a n on-⊥
vpaatluteer nEm q aitsc havo ainla ab vlea)l,u e tho efnt yt hpee Et yqpeu aclh aeckb e sru icsc teheudss i(nif.eo.,rma n edo nt h-a⊥t
the types a and b w ere known to b e the same at the p lace the Eq
was p roduced.

2.2 Typed References

In their p aper on typed meta-programming, Pasalic and Linger
introduced the data type Ref for r epresenting typed indices which
are labelled w ith b oth the type of value to which they refer and
the type of environment (a n ested cartesian product, growing to the
right) in w hich this value lives.

data Ref a env where
Zero :: Ref a (env0, a)
Suc :: Ref a env0 → Ref a (env0, b)

In the case of a Suc w e are not interested in the f irst element; this
constructor is p olymorphic in the type b. The r ules encoded b y the
type Ref are:

Γ0 ‘ r : α

Γ0,α‘ Zero: α Γ0,β‘ Sucr : α

Two r eferences can be compared for equality using the function
match. If t hey refer to the same element in the environment this

17
function returns the value Just Eq, thus expressing the fact that
the types of the referred values are the same t oo:

match :: Ref a env → Ref b env → Maybe (Equal a b)
mmaattcchh Z::e Rroef eZnevro→ =e fJb use tn Evq→
match (Suc x) (Suc y) = match x y
match=Nothing

The lookup function, the type of which we have seen before,
uses its Ref p arameter as an index in the environment p arameter.
Whenever we decrease the index, we take the fst p art of the t uple,
until the index reaches Zero. The t ypes guarantee that the lookup
succeeds:

lookup :: Ref a env → env → a
llooookkuupp Z::e Rroef (en, v va→) →=e nav
lookup (Suc r) (e, ,) = lookup r e

The function update takes an additional function as argument,
which is used to u pdate the value the r eference addresses. The other
values in the environment are left unchanged:

update :: (a → a) → Ref a env → env → env
uuppddaattee : f: (Zaer →o (→ e, a R)e =f a(ee ,n nfv a →)
update f (Suc r) (e, x) = (update f r e, x)

As an example, consider the example environment:

type ExampleEnv = (((() , Int) , Char) , String)
example = (((() ,1) , ’ a’) , "b") :: ExampleEnv
refa = Suc Zero :: Ref Char ExampleEnv
refone = Suc (Suc Zero) :: Ref Int ExampleEnv

The expression lookup refa example yields the character ’ a’ ,

while the expression lookup refone example yields the integer
1. N otice that the type of the reference determines the type of
the result! A pplication of update (+5) refone to the example
environment updates it to (((() , 6), ’ a ’), "b"). This clearly shows
that the refa and refone refer to values of different types in the
same environment.

With our extended data t ype we now also can encode ex-
pressions which contain variables of different t ypes, such as
if b then 3 else a, using an environment containing an Int
and a Bool:

vara = Var (Suc Zero)
varb = Var Zero
e = If varb (IntVal 3) vara

:: Expr Int ((() , Int), Bool)
env = ((() ,11) , False) :: ((() , Int), Bool)
test = eval e env :: Int

Some may complain t hat this Peano representation is extremely
cumbersome and error p rone. In (Baars and Swierstra 2004), w e
have shown how, by u sing some extra combinators, this problem
can be overcome. Furthermore the t ype system also helps u s to
avoid accidental mistakes. Also, note that building and maintaining
the internal representation is the work of the combinator library
and is largely invisible to the p rogrammer describing program
transformations.

2.3 Declarations

In this section we will focus on the problem how to represent a
collection of possibly mutually recursive definitions, each consist-
ing of an identifier b eing defined and a right-hand side expression
containing these identifiers.

The idea is to store the right-hand side expressions in a hetero-
geneous list, and represent the identifiers b y indices in t his list. This
is very similar to the environments described above, w ith the main
difference that the actual environment now contains abstract syntax
terms labelled with a type instead of values having a type.

In this setting an environment consists of terms which in turn
are labelled w ith the type of the environment, because this type is
used to label the references contained in these terms. Representing
such environments as a n ested t uples would lead t o an infinite type.
For example consider the following two declarations:

let x = 1: y
y = 2 : x

These declarations give rise to an environment containing two
terms. Suppose we name the type of t his environment TwoLists,
then b oth t erms have t ype Expr [Int] TwoLists. This leads to the
following type for the environment:

type TwoLists = (((), Expr [Int] TwoLists)
, Expr [Int] TwoLists)

This type definition is cyclic, and is thus not allowed in Haskell.
Our solution is found in splitting the env type parameter into

two p arameters: one for the environment addressed b y the r efer-
ences occurring in the t erms and one dscribing the environment
which is b eing constructed b y the sequence of t erms. The t ype
Env term use def represents a sequence of instantiations of type
∀a . term a use, w here all the instances of a are stored in the type

p∀aar a.mteertmer d ae fu;s teh,u ws htheree et aypllet hdee fin sctoanntaciesnso tfha e atyrepes tp oareradmi entet hres tay pofe
the t erms of type term a use occurring in the Env term use def.
The t ype use on the other hand is a sequence containing the t ypes
to which may be referred from within terms of type term a use.

data Env term use def where
Empty :: Env t use ()
Ext :: Env t use def0 → t a use

→ Env t use (def0→ , →a)t

When the types def and use coincide we can be sure that the ref-
erences in the t erms do not p oint t o values outside the environment
and do p oint to terms representing the right type. h ence we can use
the nvironment being defined as the environment to b e indexed by
the r efernces contained in the r ight-hand side terms of the defini-
tions.

Splitting this single t ype into two type p arameters, which w e
only require in the end to be equal, makes it possible to to use
references which refer to terms which still have to b e added. Only
after we are done with manipulating and extending the environment
we require use and def to b e the same! The fact t hat a sequence of
terms is closed and w ell-typed is thus encoded in the type system
of the h ost language. So the mutually r ecursive declarations:

let x = 1: y
y = 2 : x

is encoded as:

type Final = (((), [Int]), [Int])
x = Var (Suc Zero) :: Expr [Int] Final
y = Var Zero :: Expr [Int] Final
decls :: Env Expr Final Final
decls = Empty ‘Ext‘ Cons (IntV Val 1) y

‘Ext‘ Cons (IntVal 2) x

where we note t hat the x and y here are Haskell values referring t o
the r ight-hand side terms of their definitions in the Env.

The lookup and u pdate operations on the data type Env are
defined in a similar way as before:

lookupEnv :: Ref a env → Env t s env → t a s
llooookkuuppEEnnvv Z: :eRr oe (E enxvt →tE) v=t ts
lookupEnv (Suc r) (Ext ts)= lookupEnv r ts

18
updateEnv :: (t a s → t a s) → Ref a env

:→: (Etn av st s→ ent v a → s) E→nRv etf fs aee nvn
updateEnv f→ →ZeE ron s(Ee xntv vts→ →t)E

= Ext ts (f t)
updateEnv f (Suc r) (Ext ts t)

= Ext (updateEnv f r ts) t

The chosen representation now has an efficiency problem, to be
fixed in the n ext section: whenever we extend the environment w ith
a new Ext all existing r eferences occurring in terms already stored
in the environment have to b e incremented b y applying an extra
Suc constructor to them, since the values to which they refer have
an index that is one higher in the new environment.

3. Transformation Library

In this section we develop a type Trafo representing typed trans-
formation steps on a heterogeneous collection and an Arrow-like
(Hughes 2000) library of combinators for composing such transfor-
mations. Each Trafo takes input and produces output and can b e
composed in the same way as Arrows. Internally it m aintains an

environment containing abstract syntax t erms. Additionally, m eta-
data about the t ransformation process can b e maintained as well.
Such meta-data could for example b e a symbol table, debugging
information, reference counts, etc.

In developing the t ype Trafo we use a Haskell-like type syn-
onym syntax augmented with the symbols ∀ and ∃ t o denote uni-
ovnerysmallys y anntadx xeax uisgtmenetinatlelyd q wuiathntt ifhieeds ytympbeso.l sW∀ e afinrsdt ∃det voedl oepn tohtee tuynpi-e
Trafo to tackle the problem of maintaining a heterogeneous col-
lection of definitions, and subsequently extend it with Arrow-style
inputs, outputs, and meta-data. Finally we encode the Trafo using
data t ypes, as accepted by GHC.

We model a collection of embedded-language definitions as
a value of t ype Env, and make these definitions the subject of
transformations t hat may induce new definitions, as in the case of
common-subexpression removal where subexpressions get named.
At the end of the transformation process each reference occurring
somewhere in a term stored in this Env m ust b e a reference into the
final set of definitions. In this case, we call the environment closed.
One way to ensure that our environment is always closed is to adjust
all the references inall the terms whenever a new definition is added
to the environment. Unfortunately new definitions are to be added
at the head of the sequence (i.e. at position Zero), which implies
that all existing references h ave to b e updated by the application
of an extra Suc constructor. This is cumbersome and inefficient,
and is b etter done once, i.e., w hen we know how m any Sucs to
add to each reference so it addresses the right element in the f inal
structure.

We only require an environment t o b e closed after all transfor-
mations have been applied and all new definitions have been added.
The f inal type must be of the form Env t s s (or FinalEnv t s)
for some t ype s.

type FinalEnv t usedef = Env t usedef usedef

References into this environment s are coined final references. If
all the transformation steps only add terms of type (∃ a . t a s)
taoll t thhee e tnravnisrfoonrmmeantito, nths eten stho eyn cyoa ndtadint e ormnlsy ffint aylp ere(fe∃raen. cet s,a aas nd)
we do not need to adjust the references after each t ransformation
step. However, t his seems t o b e impossible. How can we make the
transformation steps half way through the t ransformation process
construct terms of the type (∃ a . t a s)? A fter all s is the type
coofnt hsetr uf icntalt e ermnvsiro ofnm theentt y yapned (is∃ oan. lyt tk an ows n)? a Aftfetre arlal lt lra sni ssfot rhmeat tyipone
steps have completed. For creating such final references we n eed to
know how many new definitions will b e added to the environment
by future transformation steps.

Env Tt sen envv11 s1EnvT t se envnv2 2s2Env tT se ennvv33 s......NEnvT t ss ss
Figure 1.

We solve this problem by using Haskell’s lazy evaluation to pass
knowledge about the “future” b ackwards through the computation.
In our case information about the n umber of definitions added by
future steps is encoded in a Ref -transformer, that prepends as many
Suc-nodes to a reference as there are new definitions to come. The
type of such Ref -transformers is1:

newtype T e s = T{ unT :: ∀ x . Ref x e → Ref x s }

Figure 1 depicts the idea described above. The environment is
constructed from left to right. Each step takes as input the environ-
ment constructed thus far and yields an updated environment as re-
sult. On the top left, the computation starts with an environment of

some type Env t s env1. Each step extends the environment with
some new definitions, making the type of the environment change
at every step. The f inal result of all steps has t o b e an environment
of type FinalEnv t s. Ref -transformers are passed on and mod-
ified from right to left. These transformer effectively inform every
intermediate step how deep down the environment constructed thus
far is located in the final environment.

The environment yielded b y the last step is the place w here
the use and the def types h ave to coincide. Therefore the identity
transformer is used as the initial value for the “pass-back” chain.
Every step updates the transformer according to the number of
definitions it adds to the environment, b efore passing it on to its
preceding transformation step.

3.1 The Trafo data type

We now develop the type Trafo to implement the idea described
above. Every step has two incoming and two outgoing arrows,
one of each type at each side. This means our Trafo-type is a
function taking two arguments and returning two results. We w ant
our Trafo-type t o be p olymorphic in the type of the terms (t) stored
in the environment. As a first attempt, w e take:

type Trafo t =
T env2 s → Env t s env1
T→e (n Tv2 en sv →1 s, nEvn vt st esn evn1v2)

the role of the different elements is as follows:

Env t s env1 is the environment w hich has b een constructed up
to w here the current transformation starts, and corresponds to
the incoming arrow at the top left. The env1 parameter de-
scribes which elements have thus far been added to the envi-
ronment.

T env2 s is the incoming arrow at the bottom right. It m aps ref-
erences into an enviroment labelled with env2 into references

into the final environment s.

Env t s env2 is the environment constructed by this step, and
env2 will usually b e either env1 or an extension of env1 .

T env1 s corresponding to the b ottom left arrow coming out of a
Trafo, is the updated T env2 s, which can b e constructed by
the t ransformation since it knows how many elements it adds to
the environment.

This t ype definition is incomplete, the t ype v ariables env1,

env2, and s are still unbound. We do not want all t hese variables

1Note that the keyword forall is p resented b y the logical symbol ∀

19
to appear on the left-hand side of the type definition, as this w ould
expose the internal complexity of the library to the user, so we have
to add u niversal or existential quantifiers.

The type env1 is the t ype of the environment constructed thus-
far. A step should not make any assumptions about this environ-
ment, and hence the type variable env1 is to be universally quanti-
fied. The type env2 is the type ofthe result ofa transformation step.
This type depends on the number of new definitions introduced b y
the step. As this can be an arbitrary number, the type env2 is fully
determined b y the transformation and the incoming env1 .Because
env2 depends on env1 by extending it, this quantifier has t o b e
within the scope of env1 : once env1 is fixed the transformation
fixes env2. Finally, the type variable s r epresents the type of the
final result, w hich w e do expose. Its role is similar to the s in the
type ST s a, w hich is the type of state threads (Launchbury and
Jones 1994) of the Haskell libraries. All t his leads to the following
definition for the type Trafo:

type Trafo t s =
∀env1 . ∃env2 . T env2 s → Env t s env1

→ (TT eennvv12 s, EEnnvv tt ss eennvv12)

In the n ext step, w e extend the t ype Trafo w ith Arrow-style
input and output. This allows us to p ass values from one transfor-
mation Trafo t o the next, in addition to the implicitly p assed envi-
ronment and ref-transformers. So we add two arguments (a and b)
to the type Trafo, w hich stand for the types of the input and output:

type Trafo t s a b =
∀env1 . ∃env2 . a → T env2 s → Env t s env1

→ (ba, TT eennvv12 s, EEnnvv tt ss eennvv12)

Finally w e may w ant to maintain meta-information about the en-
vironment, such as which elements have been added already. This
information may be u sed to determine wheather new elements have
to b e added to the environment; hence it has to live outside the type
which is existentially quantified by env2, but it w ill in general de-
pend on the environment env1 constructed thus far.

Thus, w e introduce an extra argument m that stands for the
type of the meta-data. A Trafo takes the meta-data on the current
environment env1 as input and yields meta-data for the (possibly
extended) environment env2.

type Trafo m t s a b =
∀env1 . m env1

m→e n∃evn1v2 .
(∃ nmv 2en. v2
, a → T env2 s → Env t s env1

→ (ba, TT eennvv12 s, EEnnvv tt ss eennvv12)

)
We now have come to a p roblematic p oint: the t ype above is not

Haskell, nor is it accepted b y the GHC due to the use of existential
quantifiers in type definitions. U nfortunately an existential type can
only b e introduced by using the keyword ∀ on the left side of a
ocnolnystb ruecti onrt oind uac eddat aby-du ecslianrgatit ohne. eTyhwuso,r dw∀e hoanv eth etol erfetsos ridt etoo faan

encoding of the above type using two other data types:

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

daTtara Tfora (f∀oeEn m .t s a nbv e1nv →1 T=r

∀env2 . TrafoE
(f m env2)
(a → T env2 s → Env t s env1
→ (ba, TT eennvv12 s, EEnnvv tt s eennvv12)

→)

ETnv e t ss enewSRefEnvT t s(e (,ea,)a s)
Figure 2.

Now that w e h ave developed the final version of our Trafo
data type we can define the combinators to construct and compose
transformation steps.

3.2 Creating new references

The most important operation is the extension of the enviroment

with a new term, r eturning a reference to this newly added term.
This operation is implemented b y newSRef, w hich takes a typed
term as input, adds it to the environment and yields a reference
pointing to this value. The t ype of newSRef is:

newSRef :: Trafo Unit t s (t a s) (Ref a s)
data Unit s = Unit

No meta-information on the environment is recorded by newSRef;
therefore w e use the type Unit for the meta-data. If meta-informa-
tion is r equired, one must define an application-specific version of
newSRef, as we will do in our example application in Section 4 .
The t ype variable t stands for the type of the terms. We w ant the
input to newSRef t o b e of type t a s, where s stands for the type
of the f inal environment. The r esult of a newSRef is a reference of
type Ref a s, which points to the newly inserted, a labelled, term
in the final environment.

newSRef
= Trafo (λ → TrafoE Unit extEnv)

extEnv :: t a s → T (e, a) s → Env t s e
→ (tRa efs sa→ s, TT (ee s, EEnnvv tt ss (e e, a))

extEnv ta→ →((TR etrf) aes nv,T

= (tr Zero, T (tr . Suc), Ext env ta)

The incoming meta-information is ignored and Unit is returned
as meta-data. The function extEnv, used in TrafoE, is more inter-
esting: it takes as arguments the term to be inserted ta :: t a s,
the current environment env :: Env t s e, and a reference trans-
former (T tr) :: T e s, w hich transforms r eferences into the cur-
rent environment into references into the final environment. The
result is a tuple containing the new environment, which has type
Env t s (a, e), and a reference of type Ref a s. The term (ta) be-
comes the last element of the new environment, hence the reference
pointing t o t his term is Zero. However, more terms may b e added

in the future, therefore the r eference transformer (tr) is applied,
which b asically prepends to Zero as many Suc-nodes as there are
future additions to the environment u nder construction. Finally, we
record the fact that one new element was added to the environment
by adding an extra Suc-node to the r eference transformer tr, which
we p ass on t o our p redecessors. Since all application-specific ver-
sions of newSRef have to do this work, we include the function
extEnv as p art of the library.

In certain cases an application-specific newSRef will not have
to add a new t erm, but will return an existing r eference instead.
For these cases we added a function that casts a reference in the
constructed environment to one in the final environment:

castSRef :: Ref a env
→ x → T env s → Env t s env
→→ (Ref a s , TT eennvv ss , EEnnvv tt ss eennvv)

castSRef r→ = (λ (T t) decls → (t r, T t, decls))

20

3.3 runTrafo

Of course w e w ant to “run” our Trafo-computations. This is the
task of the function runTrafo, w hich has the following type:

runTrafo :: (∀s . Trafo m t s a (b s))
→ :: (m∀ s(.) T →r aaf o→m R te ssual t (mb st) b)

data Result m t b
= ∀ env2 . Result (m env2) (b env2)

((mFin eanlvE2n)v(tb eennvv22))

The type of runTrafo is inspired b y that of runST :: (∀ s .

SThTe st ap)e → of a, nwThricahf ois ipsa rint ospfi trehed s btyatet hthatreo adf r liubrnaSryT (S: :T(∀). T sh e.
rSaTnk -s2 a ty)p →e fo ar, r wunhiTchra ifsop eanrstuo rfe sth e ths atta at treatn hsrfoeramdal itbiornar yst(epSsT c)a.n Tnhoet
make any assumptions about the type of final environment (s).

The function runTrafo takes as arguments the Trafo we
want to run, meta-information for the empty environment, and
an input value. The result of runTrafo is the f inal environ-
ment (Env t env2 env2) together with the resulting meta-data
(m env2), and the output v alue (b env2). Because env2 could
be anything w e have to hide it u sing existential quantification, and
thus introduce the data definition Result.

Note that the type of the output is (b s), one might wonder why
the output is notj ust some type c(not labelled with s). The r eason is
that returning a value of type b s is slightly more general. It allows
a transformation to r eturn a value labelled w ith t ype s, which w ould
otherwise not be allowed.

The implementation of the function runTrafo r eads:

runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))
→∀s .mT (r)a f→o am →t sRa es(ublt s)m) t b

runTrafo trafo m a =
let Trafo trf = trafo

TrafoE m2 f = trf m
in case f a (T id) Empty of

(b, ,,env) → Result m2 b env

The functionf inside the Trafo type is applied to the input value
(a), the identity Ref -transformer, and the empty environment. The
result of f is the output (b), and the transformation result (env),
which are wrapped in a Result constructor together with the result-
ing meta-data (m2). The function runTrafo u ses lazy pattern bind-
ing for the matches on Trafo and TrafoE (for strict pattern match-
ing one should use case instead of let). This is essential as we

need to instantiate the u niversally quantified s with the existential
type constructed by the inner TrafoE constructor. Unfortunately
this is not allowed by the Glasgow Haskell compiler (GHC) as it
forbids the use of lazy pattern matching in combination with exis-
tential types. Other compilers such as Hugs(Hugs), and the Haskell
compiler under construction at Utrecht U niversity(EHC) do allow
this combination. In Section 5 we suggest two solutions t o circum-
vent this problem.

3.4 Arrow-style combinators

The Arrow library consists of a set of functions for constructing
and combining values that are instance of the Arrow class. Further-
more there is a convenient notation for p rogramming with Arrows.
This notation is inspired b y the do-notation for Monads. To imple-
ment the Arrow interface one needs t o implement t hree methods
arr, >>>, and f irst.

We make the type (Trafo m t s) instance of the Arrow class:

instance Arrow (Trafo m t s) where

The method arr lifts a function.

-- arr :: (a → b) → Trafo m t s a b
arr f a r=r T:: r(aafo→ (λb m)→ →→T TraraffooEm m (λa a b t e → (f a, t, e)))

The >>> operator composes two Trafos. It is actually a straight-
forward t ranscription of the composition depicted in Figure 1. In
that figure box 1r efers to the incoming environment, box 2 to the
intermediate and box 3 to the outgoing.

-- (>>>) :: Trafo m t s a b → Trafo m t s b c
---- →(>> T>r)a f:o:T Tmra tf os am mct

Tr-a-f o→ tT1 >af>o> mTr tas foa tc2 =
Trafo
(λm1 → case t1 m1 of

Tmr1af o→Ec mas2e f t11 →m 1cao sfe t2 m2 of
aTfroaEfoEm 2mf 31 f →2 → ca

aTfroaEfoEm
m3
(λa tt env1 →

ltett e (nvb,1 1tt→ 1 , env2) = f 1 a tt2 env1
(c, tt2 , env3) = f 2 b tt env2

in (c, tt1, env3)

)
)

The method f irst applies the first component of the input t o the
argument Trafo and copies the r est unchanged to the output. It is
implemented as follows:

-- f irst : : Trafo m t s a b → Trafo m t s (a, c) (b, c)
firs-t- (i Trsrtaf: :o T trra)f

= Trafo (λm1 → case tr m1 of
TT rraafofoE (λmm2 1f →→

aTfroaEfoEm
m2
(λ∼(a, c) tt env1 →

l∼et(a (,bc,)ttt 1t , ennvv12)→ = f a tt env1
in ((b, c), tt1, env2)))

For easy reference, we also show the other functions of the
Arrow-interface. The code is j ust the default definition found in
the Arrow-class.

second :: Trafo m t s b c → Trafo m t s (d, b) (d, c)
sseeccoonndd : f: T=r aafror swap >b> c> →f irsT t r fa f>o> >m art r s swap

where swap∼(x, y) = (y, x)

(***) :: Trafo m t s b c → Trafo m t s b0 c0
→ TTrraaffoo m tt s (bbc , b→ 0) (Tcr,a cf0o)

f *** g = f irst f >>> second g
(&&&) :: Trafo m t s b c → Trafo m t s b c0

→ TTrraaffoo m tt s bb (cc→ , →c0T)
f &&& g = arr (λb → (b, b)) >>> (f *** g)

The function loop is used to construct feedback loops. It takes a
Trafo that has an input of type (a, x) and output of type (b, x).
The component of type x is fed b ack resulting in a Trafo with
input a and output b.

instance ArrowLoop (Trafo m t s) where
-- loop :: Trafo m t s (a, x) (b, x) → Trafo m t s a b

loo-p- (o Topra f::oT srta)f o=m

Trafo
(λm → case st m of

Tmra→ foEc a mse1 tf 1m m→o

aTfroaEfoEm 1mf 11
(λa t e →

laett (e(b →, x), t1, e1) = f 1 ((a, x)) t e
in (b, t1,e1)

))

21

4. Common sub-expression elimination

In this section w e show how the library developed in the p revi-
ous section can b e applied to implement common sub-expression
elimination (CSE). The object of this transformation is the Expr-
language from Section 2.

CSE is a compiler optimization, where for each sub-expression
e t hat occurs more than once the CSE transformation introduces a

new declaration v = e, and furthermore replaces all subsequent
occurrences of e with the variable v.

For example the following expressions:

a = 4;
b = (a + 4) + (a + 4);

are transformed into:

a = 4;
x = a + a ;
b = x + x;

The subject of our CSE transformation is a sequence of (possibly
mutually recursive) declarations. These are reprensented as an Env
of typed Exprs:

type Decls env = Env Expr env env

In the type Decls above the t ype variable env encodes the type of
each of the declarations. The result of the transformation is also a
sequence of declarations. It is labelled with a different type variable
because the CSE t ransformation may introduce new declarations.
The amount of newly introduced declarations depends on the n um-
ber of common sub-expressions in the original set of declarations.
As a result the t ype of the result of the transformation is not stati-
cally k nown. Therefore w e introduce the following existential type
for the result of the CSE t ransformation:

data TDecls env = ∀env0 . TDecls (Decls env0)
(T env env0)

In the t ype TDecls env, the type variable env stands for the type
of the original declarations. The type TDecls constains a sequence
of declarations (Decls env0), in w hich the type variable env0 rep-
resents the t ype of the t ransformed declarations. The transformed

declarations are accompanied b y a Ref -transformer mapping ref-
erences from the original sequence of declarations to references in
the new one.

Summarizing the type implementation of the CSE transform,
developed in the r emainder of this section has the following type:

cse :: Decls env → TDecls env

Before we delve into the implementation of cse, we first show an
example.

a = 4;
b = (a + 4) + (a + 4) ;

These declarations are encoded as typed abstract syntax as follows:

a = Suc Zero
b = Zero
exampledecls :: Decls (((), Int) , Int)
exampledecls =

Empty ‘Ext‘ (IntVal 4)
‘Ext‘ (Add (Add (Var a) (IntVal 4))

(Add (Var a) (IntVal 4)))

To t ransform the declarations w e apply the cse function:

resdecls :: TDecls ((() , Int) , Int)
resdecls = cse exampledecls

The transformed declarations (resdecls) can be u sed as follows:
evalDecls :: Decls env → env
eevvaallVDaercl :: :: RDeefc as eennvv →→ TnDvecls env → a
evalVar va:r: R R(e eTfD aece lns vd→s →(TT Dtte)c)l

= lookup (tt var) (evalDecls ds)

valuea = evalVar a resdecls

valueb = evalVar b resdecls

The function evalVar takes a reference and the transformed
declarations as arguments. It evaluates the declarations(evalDecls)
and uses the r eference in combination w ith the Ref- transformer(tt)
to select the value from the evaluated declaration that corre-
sponds the reference(var). N ote t hat w e omitted the definition of
evalDecls and only show its type.

The transformed declarations (resdecls) internally h ave the fol-
lowing structure:

TDecls
(Empty ‘Ext‘ (IntVal 4)

‘Ext‘ (Add (Var (Suc (Suc Zero)))
(Var (Suc (Suc Zero))))

‘Ext‘ (Add (Var (Suc Zero))
(Var (Suc Zero)))

)
(T (λref → case ref of

Z (λerreo c→as eZer reof
Suc Zero →→ SZuerco (Suc Zero))

:: STu c((Z ()e, rIon t→), SI nutc) (((S(u(c), ZInert)o,) I)nt), Int))

A new declaration has b een inserted in between those for a and
b, this fact is reflected in the Ref -transformer. The reference Zero
(for b) remains u nchanged because the declaration b is still the last
one. The r eference for declaration a however gets an extra Suc
node.

4.1 Implementation

Briefly our implementation of CSE performs the following steps:
For each sub-expression

• check if we already encountered it

if not, add a declaration for this sub-expression to the result

if yes, replace it b y a reference t o the equivalent expression
that is already in the result

To determine whether expressions have common sub-express-
ions we need t o compare expressions for equality. Therefore w e
introduce the function equals, w hich compares two expressions,
and, if t hey are equal returns a witness encoding that the types of
the two expressions are the same.

equals :: Expr a env → Expr b env
→ :: EMxapyrbea (eEnqvu→a l aE xb)p

equals (→ →VaM r ary1b)e e((VEaqru ra2l)a =b match r1 r2
equals (IntVal i1) (IntVal i2)

| i1 ≡ i2 = Just Eq
equ|ail s1 ≡(Lei 2ssT Than x1 y1) (LessT Than x2 y2)

= do Eq ← equals x1 x2
EEqq ←← eeqquuaallss xy11 xy22
rEeqtu ←rn Equqa

. . .

equals = Nothing

The implementation of the function equals is fairly straightfor-
ward. To determine whether two Vars are equal the function
match is applied to determine whether the contained references
are the same. Two IntVal expressions are equal if their contained

22
values are the same. To determine whether two LessThan expres-
sions are equivalent, the function equals is recursively applied on
their components. We omit the definitions of equals for the con-
structors BoolVal, Add and If , because t hey are v ery similar to
the ones above.

During the CSE transformation we need to determine whether
we already encountered an expression before. If an expression has
not been encountered before, a declaration for it is added to the
result. On the other hand if it was encountered before, it is not
added to the result, but is instead replaced b y a reference to the
equivalent expression that is already present in the result.

For this we introduce the t ype Memo:

newtype Memo env env0
= Memo

(∀x . Expr x env
→. EMxapyrbex (e Rnevf x env0)

)
The Memo tells us whether an expression has b een encountered
before, and if so, returns a witness in the form of a reference to
the copy of the expression in the t ransformation result. N ote the
use of two distinct type variables: env stands for the type of the
original sequence of declarations and env0 for the r esult of the
transformation.

We introduce a “smart” constructor to create an empty Memo:

emptyMemo :: Memo env ()
emptyMemo = Memo (const Nothing)

We proceed b y introducing a type synonym for the CSE transfor-
mation Arrow:

type TrafoCSE env = Trafo (Memo env) Expr

The t erms that are to be transformed have type Expr and the state
(meta-data) maintained is a table of type Memo.

During the transformation all sub-expressions are visited. For

each sub-expression we check whether it has already been encoun-
tered before. If so the table of type Memo provides us a reference
to the earlier occurrence of the sub-expression, which is used as a
replacement for the current sub-expression. On the other hand if
the sub-expression was not encountered before, the Memo t able is
extended w ith an entry for this sub-expression.

This is captured in the function insertIfNew, w hich is our
application specific version of newSRef. Its argument is the sub-
expression that is b eing visited. Its result is a TrafoCSE with as
input the t ransformed version of the sub-expression, w hich has type
(Expr a s). The output is a reference to the transformed version
of the f irst occurrence of the sub-expression.

insertIfNew :: ∀s a env . Expr a env
→ ∀Tsraa foe CnSvE. eEnxvp rs a(Ee xnpvr a s) (Ref a s)

insertIfNew e→ =
Trafo
(λ(Memo m :: Memo env env0) → case m e of

Nothing → TrafoE (extMem)o→ →e (cMaseemm o me o))f extEnv
JNuostth irn →→ T TrraafofoEE ((MexetmMoem mmo) e(c(aMsetSmRoefm r)))

)
extMemo :: Expr a env → Memo env env0

:→: E Mxperma o ennvv →(enM v0e,m ma)o
extMemo e→ (MM eemmoo men)v

= Memo (λs → case equals e s of
Jsu→ st cEaqs e→e qJuuaslts Ze e sroo
NJuostthiE nqg →→ J fumsatpZ Seruco (m s)

)

The f irst time we encounter a sub-expression it is not found in the
Memo-table (i.e. the Nothing-case above). Firstly the transformed

version of the sub-expression is appended to the transformed
declarations using extEnv. The Memo table is extended (using
extMemo) w ith an entry mapping the current sub-expression to
Zero, so for a n ext occurence of the sub-expression we know
where t o f ind the transformed first occurrence. Because we added
one declaration ourselves, one extra Suc is added to the rest of the
references in the Memo table.

For every subsequent encounter of the sub-expression, w e find
it in the Memo table (i.e. the Just case above). The reference to
the first occurrence is simply the one found in the Memo table. We
apply the function castSRef to take into account the declarations
that might be added b y future transformation steps.

The function appc se 2 applies the CSE transformation to a
single expression. The resulting TrafoCSE has as arrow input a
Ref -transformer, t hat maps references from the original sequence
of declarations t o corresponding ones pointing into the transfor-
mation result. A s output the TrafoCSE yields a r eference t o the
transformed expression.

appc se :: Expr a env
→ TrafoCSE env s (T env s) (Ref a s)

appc se (→ →VaT rr raf)o =C proc v(Ts (tTen vens v) s→)

rep truorncA(T T≺t etnenvvs s) r→

The reference inside a variable is transformed b y applying the
supplied Ref -transformer. The transformed reference now points
to the corresponding value in the transformation result.

appc se e@(IntVal i) = proc →

insertIfN→ew e ≺ IntV Val i

For integer constants the function insertIfNew is applied to the
original expression (e). As transformed expression IntVal i is
passed. The function insertIfNew only inserts t his expression if
the integer constant is not already p resented in the transformation
result.

appc se e@(LessThan x y)
= proc tt →

d por lo c←t appc se x ≺ tt
rl ←← appc se y ≺≺ ttt
irn s←erat pIfpNec wse e ≺≺ L ttessThan (Var l) (Var r)

. . .

For the constructor LessThan the function appc se is applied re-
cursively resulting inreferences to the transformed sub-expressions.
The Ref -transformer tt is p assed for b oth sub-expressions. A gain
insertIfNew is applied to the original expression; as transformed
expression w e pass a LessThen node containing the references to
the transformed sub-expressions.

The implementations of appc se for the constructors BoolVal,
Add, and If are very similar, and are therefore omitted.

The function appc se defined above applies the CSE transform
to a single expression only. The final transformation should trans-
form a sequence of declarations, w hich is encoded as a value of the
data type Env. Therefore we define csee nv, which takes an Env
as argument and applies appc se t o each expression. Analogous to
appc se, the function csee nv t akes a Ref -transformer as input.
It collects all the references returned by appc se in an Env. This
collection contains for each reference of the original declarations a
corresponding reference in the transformation result.

csee nv :: Env Expr env env0
→ TrafoCSE env s

2 The following functions use arrow notation (Paterson 2001)

23
(T env s)

(Env Ref s env0)

csee nv Empty = proc → returnA ≺ Empty
csee nv (Ext es e) = proc →ttr →etu

deoe nrevn (vE x←t ecsse e)e =n v erso ≺c tttt
rre ←← appc se ees ≺≺ tttt
return←A a≺p pEc xts eree nv≺ ≺r

The collection of Refs returned by the function csee nv can be
used to compute the Ref -transformer that it requires as input:

refTransformer :: Env Ref s env → T env s
rreeffTTrraannssffoorrmmeerr :r:e fEsn =v RTe f(λs re n→v lo→ ok TupEe nnvv r refs)

The result of csee nv is used to compute its own input. To con-
struct such a feedback-loop, w e use the special mdo-notation for
mutually recursive Arrow statements.

trafo :: Decls env → TrafoCSE env s () (T env s)
ttrraaffoo d::e Dclesc l=s proc T→ra

mdo →let tt = refTransformer refs
refs ← csee nv decls ≺ tt
rreeftsur← nA c s≺e t etn

Finally we present the function cse which simply runs the trafo
and extracts the result:

cse :: ∀ env . Decls env → TDecls env
ccssee d::e ∀celns

= case runTrafo (trafo decls) emptyMemo () of
Result t env → TDecls env t

5. Alternative implementation for runTrafo

Recall the data type Trafo and the function runTrafo:

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

daTtara Tfora (f∀oeEn m1 .t ms ae nbv e1nv →1 T=r

∀env2 . TrafoE
(Tmra feonEv2)
(a → T env2 s → Env t s env1 →

(→ b, TT ee nnvv12 s, E→nEv tn vs te nsve 2n)v

)
runTrafo :: ∀m t a b . (∀s . Trafo m t s a (b s))

→∀s m (r)a f→o a →t sRa es(ublt s m t b
runTrafo trafo m a =

let Trafo trf = trafo
TrafoE m2 f = trf m

in case f a (T id) Empty of
(b, ,,env) → Result m2 b env

In the definition of runTrafo w e w ant the type of the final envi-
ronment (s) to be the same as the type of the environment coming
out of the transformation (env2). To achieve t his the u niversally
quantified s must b e instantiated as env2. For t his the use of lazy
pattern binding (using let) on the existential data type (TrafoE)
is essential. Unfortunately GHC, the most widely u sed Haskell
Compiler, does not support lazy pattern matching on data construc-
tors w ith existential types. In such cases it reports the infamous
“My brain j ust exploded” error message. Other compilers such as
Hugs(Hugs) and EHC(EHC) do support lazy pattern matching on
data constructors with existential t ypes. The reason this is not sup-
ported by GHC, is because it cannot b e t ranslated into GHCs in-
termediate language, which is based on System-F. GHCs core lan-
guage should b e extended with some kind of fix-point operator at

the type level. However, this has as disadvantage that type level
terms may b e non-terminating, and t herefore t ype terms can no
longer b e simply erased.

Using unsafeCoerce is a simple solution for this problem:

unsafeCoerce :: a → b
ruunnsTafreaCfoo r::c e(: ∀:sa . →Tra bfo m t s a (b s)) → m () → a

→ :: R(∀essu. lTt mraf to bm
runTrafo t→raRf oe smu at =m ctab se trafo of

Trafo trf → case trf m of
Tafroaft orEf →m2c a fs →et

caafosEe m f a2 (f fT→ unsafeCoerce) Empty of
(rb, tt, env2) →

bR,etstu,letn v(2un)s→ afeCoerce m2)
rb
(unsafeCoerce env2)

The function is named unsafe for a good reason; it effectively
switches off the t yper checker. We believe this implementation of
the function runTrafo is safe though. We could not find any ex-
amples w here the use of use runTrafo goes w rong. Furthermore,
the implementation is operationally identical to the original imple-
mentation of runTrafo, which is considered type correct accord-
ing to other compilers than GHC. However, in a p aper on typed
transformations the use of unsafeCoerce feels a bit like cheating.
Therefore we also provide, b elow, a version that is free of both
unsafeCoerce and lazy pattern matching on existential types. With
this solution, however, the Trafo type is no longer a real Arrow,
and hence the special Arrow notation cannot b e used.

In the t ype of runTrafo above the universal quantification on
s is on the outside of the type Trafo, whereas the existential
quantification on env2 is inside. Instantiating s w ith env2 w ould
be much easier if this was the other way around. We may move the
universal quantification over s inside the quantification over env2.

This would give u s the following type:

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1)

daTtara fTor2afo(∀Ee2n m1 .t am be nevn1v1→ →=T

∀env2 . TrafoE2
(Tmra feonEv22)
(∀s . a s → T env2 s → Env t s env1

a→s (→b s, Te evn2v1 s s, E Ennvv vtt tss e ennvv21)

)
Note that the t ype v ariables a and b are now labelled with s, and
hence have k ind (∗ → ∗). This is essential because w e w ant
htoe nmcaenh iapvuleakt ei ntder m(s∗ and→ Re∗fs . wTh ihcihs iasre e slasbeneltilaedlb weicathu tsyep we esw. Fanort
example the t ype of newRef which used t o be:

newSRef :: Trafo m t s (t a s) (Ref a s)

now becomes:

newSRef2 :: Trafo2 m t (t a) (Ref a)

The implementation of runTrafo on the new Trafo2 type is fairly
straightforward:

runTrafo2 :: Trafo2 m t a b → m () → (∀s . a s)
→ :: RTerasufolt2 mm tt ba

runTrafo2 t→raRf oe smu at =m

case trafo of
Trafo2 trf → case trf m of

aTrfoa2foEt r2f m→2c fa →e

laefto E(r2b ,m mtt2, ef n v→2) = f a (T id) Empty
in Result m2 rb env2

Unfortunately the new data type Trafo2 is not really an Arrow,
because the type variables a and b are of kind ∗ → ∗ instead

24
of ∗ . We can however provide an Arrow-style interface for
progr∗amm. W ineg wcanithh othwe e tyvepre Trrovafiod2e, a bnyA Amrrakoiwng-s tity einsi tnatnercefa coef tfoher
following class:

class Arrow2 arr where
arr2 :: (∀s . a s → b s) → arr a b
(>>>>) :: :: a(∀rrs .a ab s→→ arb r s b) c→ →a arrar ab c
first2 :: :: aarrrr aa bb →→ aarrrr (bPc a→i r aa rcr) a(Pc air b c)
second2 :: :: aarrrr aa bb →→ aarrrr ((PPaaiirr ca ca)) ((PPaaiirr cb cb))
(s*ec*o*n*d) :: arr a bb →→ arr (aP0 ab0i

:→: a arr (P b a→ir a raa0) (Pair b b0)
(&&&&) :: arr a bP →air arr a b0 → arr a (Pair b b0)

newtype Pair a b s = P (a s, b s)

Although the combinators above do not define a real Arrow, p ro-
gramming with them is the same as p rogramming with Arrows, ex-
cept that one cannot use the special Arrow syntax (Paterson 2001).
This is u nfortunate, because the special syntax make p rogramming
with Arrows a lot easier.

6. Conclusion

We have shown how t o use the Haskell type system and its exten-
sions to perform a fully t yped program t ransformation. Doing so
we have used a wide variety of type system concepts: placing ex-
istentials precisely at the p ositions where needed, making things
polymorphic where needed, u sing loop combinators to feed back
the result of the computation into the computation inside the scope
of an existential, u sing GADTs to t ype the environments we con-

struct, scoped type variables, splitting the type labels of the envi-
ronment into a use and a def p art and thus temporarily decoupling
the types of the occurring references and the t ypes associated with
the terms in the environment being constructed. We introduced an
arrow like style for composing the transformations. Besides t his we
make use of lazy evaluation in order to get computed information
to the right p laces to be used.

We think that studying the algorithm and its approaches t o
the various subproblems is indispensable for anyone who wants
to program similar transformation-based algorithms in a strongly
typed setting. Some might w onder why the approach taken may
be necessary at all, and why not r esort to off-line techniques, and
they h ave a p oint. It is often easier to work in an untyped setting,
only to check the generated result afterwards for type correctness.
On the other hand one can see the added complexity as a partial
correctness proof of the transformation, and as we all know p roofs
of correct lemmas are superfluous.

We believe t hat the arrow-based library w ill t urn out to b e u seful
in building programs that t ransform typed abstract syntax, and t hat
the pattern we have followed in t his p aper w ill b e followed in many
more interesting applications to come.

It is unfortunate t hat GHC does not support lazy pattern match-
ing on data constructors with existential t ypes. We hope this w ill be
supported in the future. Until then, a user of the library is posed the
following dillema: either have an unsafeCoerce in the implemen-
tation of runTrafo, or use the alternative Trafo type, but loose the
convenience of the Arrow-notation.

References

Arthur Baars and S. Doaitse Swierstra. Typed transformations of typed
abstract syntax. U U-CS 21, Utrecht University, 2008.

Arthur I. Baars and S. Doaitse Swierstra. Typing dynamic typing. In
S. Peyton Jones, editor, P roceedings of the seventh A CMS IGPLAN
international conference on F unctionalp rogramming, p ages 157–166.
ACM P ress, 2002. ISBN 1-581 13-487-8.

Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self-inspecting code.
In Haskell ’04: P roceedings of the 2004 A CMS IGPLAN workshop on
Haskell, p ages 69–79, New York, NY, USA, 2004. ACM Press. ISBN
1-581 13-850-4.

Arthur I. Baars, S. Doaitse Swierstra, and M arcos V iera. TTTAS
HackageDB package. URL h ttp : //hackage .haskell .org/
cgi-bin/hackage- scripts/package/TTTAS.

Chiyan Chen and Hongwei Xi. Implementing typeful program
transformations. In PEPM’03, 2003.

James Cheney and RalfH inze. First-Class Phantom Types. Technical
report TR2003-1901, Cornell U niversity, 2003.
http ://techreports . library .cornell . edu :
8081/Dienst/UI/1 .0/Display/cul .c%is/TR2003- 1901.

EHC. Essential haskell compiler. URL
http ://www . cs .uu .nl/wiki/Ehc.

GHC. Glasgow haskell compiler. URL
http ://www .haskell .org/ghc/.

Hackage. Hackage. URL http : //hackage .haskell .org/.

John Hughes. Generalising monads t o arrows. Science of Computer
Programming, 37:67–1 11, 2000.

Hugs. Hugs. URL http : //www .haskell . org/hugs/.

John Launchbury and Simon L. Peyton J ones. Lazy functional state
threads. In SIGPLAN Conference on P rogramming Language D esign
and I mplementation, pages 24–35, 1994. URL
citeseer . ist .psu .edu/article/launchbury93lazy .html.

Emir Pasalic and N athan Linger. Meta-programming w ith typed
object-language representations. In Generative P rogramming and

Component E ngineering (GPCE’ ’04), volume L NCS 3286, p ages 136 –

167, October 2004.

Ross Paterson. A new notation for arrows. In I nternational Conference o n
Functional P rogramming, p ages 229–240. ACM Press, September
2001.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for gadts.
SIGPLANN ot., 4 1(9):50–61, 2006. ISSN 0362-1340.

Marcos Viera, S. Doaitse Swierstra, and Eelco Lempsink. Haskell do you
read me? constructing and composing efficient top-down parsers at
runtime. In A. Gill, editor, Haskell Symposium. A CM, 2008.

Stephanie Weirich. Type-safe cast. In P roceedings of the fifth ACM
SIGPLAN international conference on F unctionalp rogramming, p ages
58–67. ACM p ress, 2000. ISBN 1-581 13-202-6.

A. Transformation library
A.1 Data types

data Equal :: ∗ → ∗ → ∗ where
Etqa :E E: Equqaula: l: :a∗ ∗a

data Ref a env where

Zero :: Ref a (env0, a)
Suc :: Ref a env0 → Ref a (env0, b)

data Env term use def where

Empty :: Env t use ()
Ext :: Env t use def0 → t a use

→ Env t use (def0→, →a)t

type FinalEnv t usedef = Env t usedef usedef

data Result m t b
= ∀ s . Result (m s) (b s) (FinalEnv t s)

newtype T e s = T{ unT :: ∀ x . Ref x e → Ref x s }

data Unit s = Unit

data Trafo m t s a b =
Trafo (∀env1 . m env1 → TrafoE m t s a b env1)

daTtara fTora (f∀oeEnv m1 .t ms ae nbv e1nv →1 T=r

∀env2 . TrafoE

((am → enT v2)env2s → E nvt s e nv1
a→→ (b T, Te evn2v1 s s, E Ennvv vtt tss e ennvv21)

)
A.2 Functions

match :: Ref a env → Ref b env → Maybe (Equal a b)

lookupEnv :: Ref a env → Env t s env → t a s

updateEnv :: (t a s → t a s) → Ref a env
→ :: (Etn av st s→ ent v a → s) E→nRv te fs aee nvn

newSRef :: Trafo Unit t s (t a s) (Ref a s)

extEnv :: t a s → T (e, a) s → Env t s e
:→: t (a R sef→ →a s, (Te ,ea s, sE→n v Et nsv (et , s sae))

castSRef :: Ref a env
→ (x → T env s → Env t s env
→→ ((Rxef a s , TT eennvv ss , EEnnvv tt ss eennvv))

runTrafo :: (∀s . Trafo m t s a (b s)) → m () → a
→ :: R(∀essu. lTt mraf to mb

A.3 Arrow interface

arr :: (a → b) → Trafo m t s a b

(>>>) :: Trafo m t s a b → Trafo m t s b c
:→: T rTarfaofom mmt ts sa aab c→

first :: Trafo m t s a b → Trafo m t s (a, c) (b, c)

second :: Trafo m t s b c → Trafo m t s (d, b) (d, c)

(***) :: Trafo m t s b c → Trafo m t s b0 c0
→ :: TTrraaffoo mm tt ss (bbc , b→ 0) (Tcr,a cf0o)

(&&&) :: Trafo m t s b c → Trafo m t s b c0
→ :: TTrraaffoo mm tt ss bb (cc→ , →c0T)

loop :: Trafo m t s (a, x) (b, x) → Trafo m t s a b

A.4 Trafo2

data Trafo2 m t a b =
Trafo2 (∀env1 . m env1 → TrafoE2 m t a b env1)

daTtara fTor2afo(∀Ee2n m1 .t am be nevn1v1→ →=T

∀env2 . TrafoE2

((m∀s. en av2s)→ T env2 s→ E nv ts e nv1

) a→s →(b sT ,Te ne vn2v1s s→,EE nnvvt t s s e e nnvv21)

newSRef2 :: Trafo2 m t (t a) (Ref a)

25

runTrafo2 :: Trafo2 m t a b → m () → (∀s . a s)
→ :: RTerasufolt2 mm mtt ba

class Arrow2 arr where
arr2 :: (∀s . a s → b s) → arr a b
(>>>>) :: :: a(∀rrs .a ab s→→ arb r s b) c→ →a arrar ab c
first2 :: :: aarrrr aa bb →→ aarrrr (bPc a→i r aa rcr) a(Pc air b c)
second2 :: :: aarrrr aa bb →→ aarrrr ((PPaaiirr ca ca)) ((PPaaiirr cb cb))
(s*ec*o*n*d) :: arr a bb →→ arr (aP0 bai0r

:→: a arr (P b a→ir a raa0) (Pair b b0)
(&&&&) :: arr a bP →air arr a b0 → arr a (Pair b b0)

newtype Pair a b s = P (a s, b s)

