
Type-Safe Observable Sharing in Haskell

Andy Gill
Information Technology and Telecommunication Center

Department of Electrical Engineering and Computer Science

The U niversity of Kansas
2335 Irving Hill Road
Lawrence, KS 66045

andygill@ku.edu

Abstract

Haskell is a great language for writing and supporting embedded
Domain Specific L anguages (DSLs). Some form of observable
sharing is often a critical capability for allowing so-called deep
DSLs to be compiled and p rocessed. In this paper, we describe and
explore uses of an IO function for r eification which allows direct
observation of sharing.

Categories and Subject D escriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Data types and struc-
tures

General Terms Design, Languages

Keywords Observable Sharing, DSL Compilation

1. Introduction

Haskell is a great host language for writing Domain Specific Lan-
guages (DSLs). There is a large body of literature and community
know-how on embedding languages inside functional languages,
including shallow embedded DSLs, which act directly on a p rin-
cipal type or types, and deep embedded DSLs, which construct an
abstract syntax tree that is later evaluated. Both of these methodolo-
gies offer advantages over directly parsing and compiling (or inter-
preting) a small language. There is, however, a capability gap be-
tween a deep DSL and compiled DSL, including observable sharing
of syntax trees. This sharing can notate the sharing of computed re-
sults, as well as also notating loops in computations. Observing this
sharing can b e critical to the successful compilation of our DSLs,
but b reaks a central tenet of pure functional programing: r eferential
transparency.

In this paper, we introduce a new, r etrospectively obvious way of
adding observable sharing to Haskell, and illustrate its use on a
number of small case studies. The addition makes nominal impact
on an abstract language syntax tree; the tree itself remains a purely
functional value, and the shape of this tree guides the structure of

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided t hat copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first p age. To copy otherwise, to republish, to p ost on servers or to r edistribute
to lists, requires prior specific permission and/or a fee.
Haskell’ ’09, September 3, 2009, Edinburgh, Scotland, UK.
Copyright ?c 2009 ACM 978-1-60558-508-6/09/09. . .$10.00
a graph representation in a direct and principled way. The solution
makes good use of constructor classes and type families to provide
a type-safe graph detection mechanism.

Any direct solution to observable sharing, b y definition, will b reak
referential transparency. W e restrict our sharing using the class type
system to specific types, and argue that we provide a reasonable
compromise to this deficiency. Furthermore, because we observe
sharing on regular Haskell structures, we can write, reason about,
and invoke pure functions with the same abstract syntaxes sans
observable sharing.

2. Observable Sharing and Domain Specific

Languages

At the University of Kansas, we are using Haskell to explore the
description of hardware and system level concerns in a way that is
suitable for processing and extracting p roperties. As an example,
consider a simple description of a b it-level parity checker.

This circuit takes a stream of (clocked) b its, and does a parity count
of all the bits, using a bit register. Given some Haskell functions
as our p rimitives, we can describe this circuit in a similar fashion
to Lava (Bjesse et al. 1998), Hawk (Matthews et al. 1998), and
Hydra (O’Donnell 2002). For example, the primitives may take the
form

-- DSL p rimitives
xor : : Bit -> Bit -> Bit
delay : : Bit -> Bit

where xor is a function which takes two arguments of the abstract
type Bit, p erforming a bit-wise xor operation, and delay takes
a single Bit argument, and outputs the bit value on the previous
clock cycle (via a register or latch). Jointly these primitives provide
an interface to a µLava.

1of 12

These abstract p rimitives allow for a concise specification of our
circuits using the following Haskell.

-- Parity specification
parity : : Bit -> Bit
parity input = output

where
output = xor (delay output) input

We can describe our primitives using a shallow DSL, where Bit
is a stream of boolean values, and xor and delay act directly on
values of type Bit to generate a new value, also of type Bit.

-- Shallow embedding
newtype Bit = Bit [Bool]

xor : : Bit -> Bit -> Bit
xor (Bit xs) (Bit ys) = Bit $ zipWith (/=) xs ys

delay : : Bit -> Bit
delay (Bit xs) = Bit $ False : xs

run : : (Bit -> Bit) -> [Bool] -> [Bool]
run f bs = rs

where
(Bit rs) = f (Bit bs)

Hawk used a similar shallow embedding to provide semantics for
its primitives, which could b e simulated, but the meaning of a spe-
cific circuit could not b e directly extracted. In order to construct
a DSL that allows extraction, we can give our primitives an alter-
native d eep embedding. In a deep embedding, primitives are sim-
ply Haskell data constructors, and a circuit description becomes a
Haskell syntax tree.

-- New , deep embedding
data Bit = Xor Bit Bit

| Delay Bit
| Input [Bool]
| Var String
deriving Show

xor = Xor
delay = Delay

run : : (Bit -> Bit) -> [Bool] -> [Bool]
run f bs = interp (f (Input bs))

interp : : Bit -> [Bool]
interp (Xor b1 b2) = zipWith (/=) (interp b1)

(interp b2)
interp (Delay b) = False : interp b
interp (Input bs) = bs
interp (Var v) = error $ "Var not supported"

The run function has the same behavior as the run in the shallow
DSL, but has a different implementation. An interpreter function
acts as a supporting literal interpreter of the Bit data structure.

> run parity (cycle True)
[True ,False ,True ,False ,True , . . .

The advantage of a deep embedding over a shallow embedding
is that a deep embedding can be extracted directly for process-
ing and analysis by other functions and tools, simply by reading
the data type which encodes the DSL. Our circuit is a function,
Bit -> Bit, so we provided the argument (Var "x"),where "x"
is unique t o this circuit, giving us a Bit, with the Var b eing a p lace-
holder for the argument.

Unfortunately, if we consider the structure of parity, it contains a
loop, introduced via the output binding being used as an argument
to delay when defining output.

> p arity (Var "x")
Xor (Delay (Xor (Delay (Xor (Delay (Xor (. . .

This looping structure can be used for interpretation, but not for fur-
ther analysis, pretty p rinting, or general processing. The challenge
here, and the subject of this paper, is how to allow trees extracted

from Haskell h osted deep DSLs to have observable b ack-edges, or
more generally, observable sharing. T his a well-understood prob-
lem, with a number of standard solutions.

• Cycles can b e outlawed in the DSL, and instead b e encoded
inside explicit looping constructors, which include, implicitly,
the b ack edge. These combinators take and r eturn functions that
operate over circuits. This was the approach taken b y Sharp
(2002). Unfortunately, using these combinators is cumbersome
in practice, forcing a specific style of DSL idiom for all loops.
This is the direct analog of programing r ecursion in Haskell
using fix.

• Explicit Labels can b e used to allow later recovery of a graph
structure, as proposed b y O’Donnell (1992). T his means p ass-
ing an explicit name supply for u nique names, or relying on the
user to supply them; neither are ideal and both obfuscate the
essence of the code expressed b y the DSL.

• Monads, or other categorical structures, can b e used to generate
unique labels implicitly, or capture a graph structure as a net-list
directly. T his is the solution used in the early L ava implementa-
tions (Bjesse et al. 1998), and continued in Xilinx Lava (Singh
and J ames-Roxby 2001). It is also the solution used by Baars
and Swierstra (2004), where t hey use applicative functors r ather
than monads. Using categorical structures directly impacts the
type of a circuit, and our parity function would now b e required
to h ave the type

parity : : Bit -> M Bit

Tying the k not of the b ack edges can no longer be p erformed
using the Haskell where clause, but instead the non-standard
recursive-do mechanism (Erk o¨k and Launchbury 2002) is used.

• References can b e provided as a non-conservative exten-
sion (Claessen and Sands 1999). T his is the approach taken
by Chalmers L ava, where a new type Ref is added, and pointer
equality over Ref is possible. T his non-conservative extension
is not to everyone’s taste, but does neatly solve the problem of
observable sharing. Chalmers L ava’s p rincipal structure con-
tains a Ref at every node.

In this paper, we advocate another approach to the problem of
observable sharing, namely an IO function that can observe sharing
directly. Specifically, this p aper makes the following contributions.

• We present an alternative method of observable sharing, using
stable n ames and the IO monad. Surprisingly, it turns out t hat
our graph reification function can be written as a reusable com-
ponent in a small number of lines of Haskell. F urthermore, our
solution to observable sharing may be more p alatable t o the
community than the Ref type, given we accept IO functions
routinely.

2 of 12

• We make use of type functions (Chakravarty et al. 2005), a
recent addition to the Haskell p rogrammers’ portfolio of tricks,
and therefore act as a witness to the usefulness of this new
extension.

• We illustrate our observable sharing library using a small num-
ber of examples including digital circuits and state diagrams.

• We extend our single type solution to handle Haskell trees
containing different types of nodes. This extension critically

depends on the design decision to use type families to denote
that differently typed nodes map to a shared type of graph node.

• We illustrate this extension being used to capture deep DSLs
containing f unctions, as well as data structures, considerably
extending the capturing potential of our reify function.

Our solution is built on the StableName extension in GHC (Peyton
Jones et al. 1999), which allows for a specific type of pointer
equality. The correctness and p redicability of our solution depends
on the p roperties of the StableName implementation, a p oint we
return to in section 12.

3. Representing Sharing in Haskell

Our solution to the observable sharing problem addresses the p rob-
lem head on. We give specific types the ability to have their shar-
ing observable, via a reify function which translates a tree-like data
structure into a graph-like data structure, in a type safe manner. W e
use the class type system and type functions to allow Haskell p ro-
grammers to provide the necessary hooks for specific data struc-
tures, typically abstract syntax trees t hat actually capture abstract
syntax graphs.

There are two fundamental issues with giving a type and implemen-
tation t o such a reify function. First, how do we allow a graph to
share a typed representation with a tree? Second, observable shar-
ing introduces referential opaqueness, destroying r eferential trans-
parency: a key tenet of functional programming. How do we con-
tain – and reason about – referential opaqueness in Haskell? In
this section, we introduce our reify function, and honestly admit

opaqueness b y making the r eify function an IO function.

Graphs in Haskell can be r epresented using a number of idioms,
but we use a simple associated list of pairs containing Uniques as
node names, and node values.

type U nique = Int
data BitGraph = BitGraph [(Unique ,BitNode Unique)]

Unique

data BitNode s = GraphXor s s
| GraphDelay s
| GraphInput [Bool]
| GraphVar String

We p arameterize BitNode over the U nique graph “edges”, to fa-
cilitate future generic p rocessors for our nodes.

Considering the parity example, we might represent the sharing
using the following expression.

graph = BitGraph [(1,GraphXor 2 3)
, (2 ,GraphDelay 1)
, (3 ,GraphInput "x")
]
1

This format is a simple and direct net-list r epresentation. I f we can
generate this graph, then using smarter structures like Data .Map
downstream in a compilation process is straightforward. Given a
Functor instance for BitNode, we can generically change the
types of our nodes labels.

We can now introduce the type of a graph reification function.

reifyBitGraph : : Bit -> IO BitGraph

With this function, and provided we honor any preconditions of its
use, embedding our µLava in a way that can have sharing extracted
is trivial. Of course, the IO monad is needed. Typically, this reify
replaces either a parser (which would use IO), or will call another
IO function later in a p ipeline, for example to write out V HDL from
the BitGraph or display the graph graphically. Though the use of
IO is not present in all usage models, having IO does not appear to
be a handicap to this function.

4. Generalizing the Reification Function

We can now generalize reifyBitGraph into our generic graph
reification function, called reifyGraph. There are three things
reifyGraph needs to b e able to do

• First, have a target type for the graph representation to use as a
result.

• Second, b e able t o look inside the Haskell value under consid-
eration, and traverse its structure.

• Third, b e able to b uild a graph from this traversal.

We saw all three of these capabilities in our reifyBitGraph ex-
ample. We can incorporate these ideas, and present our generalized
graph reification function, reifyGraph.

reifyGraph : : (MuRef t)
=> t -> IO (Graph (DeRef t))

The type for reifyGraph says, given the ability to look deep inside
a structure, provided b y the type class MuRef, and the ability to
derive the shared, inner data type, provided b y the type function
DeRef, we can take a tree of a type that has a MuRef instance, and
build a graph.

The Graph data structure is the generalization of BitGraph, with
nodes of the higher k inded type e, and a single root.

type Unique = Int
data Graph e = Graph [(Unique ,e Unique)]

Unique

Type functions and associated types (Chakravarty et al. 2005) is a
recent addition to Haskell. reifyGraph uses a type function to de-
termine the type of the nodes inside the graph. Associated types al-
low the introduction of data and type declarations inside a class
declaration; a very useful addition indeed. This is done b y liter-
ally providing typef unctions which look like standard Haskell type
constructors, but instead use the existing class-based overloading
system to h elp resolve the function. In our example, we have the
type class MuRef, and the type function DeRef, giving the follow-
ing (incomplete) class declaration.

class M uRef a where
type DeRef a : : * -> *

. . .

3 of 12

This class declaration creates a type function DeRef which acts

like a type synonym inside the class; it does not introduce any con-
structors or abstraction. The * -> * annotation gives the kind of
DeRef, meaning it takes two type arguments, the relevant instance
of MuRef, and another, as yet unseen, argument. DeRef can be as-
signed to any type of the correct kind, inside each instance.

In our example above, we want trees of type Bit to b e r epresented
as a graph of BitNode, so we provide the instance MuRef.

instance M uRef Bit where
type DeRef Bit = BitNode
. . .

BitNode is indeed of kind * -> *, so the type of our reifyGraph
function specializes in the case of Bit to

reifyGraph : : Bit -> IO (Graph (DeRef Bit))

then, because of the type function DeRef, to

reifyGraph : : Bit -> IO (Graph BitNode)

The use of the type function DeRef to find the BitNode data-type
is critical to tying the input tree to type node representation type,
though functional dependencies (Jones and Diatchki 2008) could
also b e used here.

The M uRef class has the following definition.

class MuRef a where
type DeRef a : : * -> *
mapDeRef : : (Applicative f)

=> (a -> f u)

-> a
-> f (DeRef a u)

mapDeRef allows us, in a generic way, to reach into something
that has an instance of the MuRef class and recurse over relevant
children. The first argument is a function that is applied to the
children, the second is the node under consideration. mapDeRef
returns a single node, the type of which is determined by the DeRef
type function, for recording in a graph structure. The r esult value
contains unique indices, of type u , which were generated b y the
invocation of the first argument. mapDeRef uses an applicative
functor (McBride and Patterson 2006) to provide the threading of
the effect of unique name generation.

To complete our example, we make Bit an instance of the MuRef
class, and provide the DeRef and mapDeRef definitions.

instance M uRef Bit where
type DeRef Bit = BitNode
mapDeRef f (Xor a b) = GraphXor <$> f a <*> f b
mapDeRef f (Delay b) = GraphDelay <$> f b
mapDeRef f (Input bs) = p ure $ GraphInput bs
mapDeRef f (Var nm) = p ure $ GraphVar n m

This is a complete definition of the necessary generics to provide
reifyGraph with the ability to perform type-safe observable shar-
ing on the type Bit. The form of mapDeRef i s regular, and could
be automatically derived, perhaps using Template Haskell (Sheard
and Peyton J ones 2002). With this instance in p lace, we can use our
general reifyGraph function, to extract our graph.

> reifyGraph $ p arity (Name "x")
Graph [(1,GraphXor 2 3)

, (2 ,GraphDelay 1)
, (3 ,GraphInput "x")
]
1

The reifyGraph function i s surprisingly general, e asy to enable
via the single instance declaration, and u seful in practice. We
now look at a number of use cases and e xtensions to reifyGraph,
before turning to its implementation.

5. Example: Finite State Machines

As a simple example, take the problem of describing a state ma-
chine directly in Haskell. This is easy but tedious because we need
to enumerate or label the states. Consider this state machine, a 5-7
convolutional encode@GrAF fBEorCD a viterbi decod@GeAFr.

Onep ossib0le/0e 0n0c/o0d1@@GG,i,AFFAnJ1J0g0BEEB0i CCDDsttkka 1/ s1t0e01p//11 10fu1n/c0t0io@G++G44@AFAFn01,BE1BE1w ??CDCDhll0/ic1h11t a/k01esi nput,a nd
the current state, and returns the output, and a new state. Assuming
that we use Boolean to r epresent 0 and 1, in the input and output,
we can write the following Haskell.

data State = ZeroZero | ZeroOne | OneZero | OneOne

type Input = Bool
type Output = (Bool ,Bool)

step : : Input -> State -> (Output ,State)
step False ZeroZero = ((False ,False) ,ZeroZero)
step True ZeroZero = ((True ,True) ,ZeroOne)
step False ZeroOne = ((True ,True) ,OneOne)
step True ZeroOne = ((False ,False) ,OneZero)
step False OneZero = ((False ,True) ,ZeroZero)
step True OneZero = ((True ,False) ,ZeroOne)
step False OneOne = ((True ,False) ,OneZero)
step True OneOne = ((False ,True) ,OneOne)

Arguably more declarative encoding is to to use the binding as the
state unique identifier.

data State io = State [(i,(o ,State io))]

step : : (Eq i) => i-> State io -> (o ,State io)
step i (State ts) = (output ,st)

where Just (output ,st) = lookup its

state00 = State [(False ,((False ,False) , state01)) ,
(True , ((True ,True) , state00))]

state01 = State [(False ,((True ,True) , state11)) ,
(True , ((False ,False) , state10))]

state10 = State [(False ,((False ,True) , state00)) ,
(True , ((True ,False) , state01))]

state11 = State [(False ,((True ,False) , state10)) ,
(True , ((False ,True) , state11))]

4 of 12

Simulating this binding-based state machine is possible in pure
Haskell.

run : : (Eq i) => State io -> [i] -> [o]
run st (i: is) = o : run st ’ is

where (o ,st ’) = step ist

Extracting the sharing, for example to allow the display in the graph
viewing tool dot (Ellson et al. 2003), is not possible in a p urely
functional setting. Extracting the sharing using our reifyGraph
allows the deeper embedding to be gathered, and other tools can
manipulate and optimize this graph.

data StateNode io s = StateNode [(i,(o ,s))]
deriving Show

instance MuRef (State io) where
type D eRef (State io) = StateNode io
mapDeRef f (State st) = StateNode <$>

traverse tState st
where

tState (b ,(o ,s)) = (\ s ’ -> (b,(o ,s ’)))
<$> f s

Here, traverse (from the Traversable class) is a traversal over
the list type. Now we extract our graph.

> reifyGraph state00

Graph [(1,StateNode [(False , ((False ,False) ,2))
,(True ,((True ,True) ,1))
])

,(2 ,StateNode [(False , ((True ,True) ,3))
,(True ,((False ,False) ,4))
])

,(3 ,StateNode [(False , ((True ,False) ,4))
,(True ,((False ,True) ,3))
])

,(4 ,StateNode [(False , ((False ,True) ,1))
,(True ,((True ,False) ,2))
])

]
1

6. Example: Kansas Lava

At the University of Kansas, we are developing a custom version
of Lava, for teaching and as a research platform. The intention is
to allow for higher level abstractions, as supported b y the Hawk
DSL, but also allow the circuit synthesis, as supported by L ava.
Capturing our Lava DSL in a general manner was the original
motivation b ehind r evisiting the design decision of using references
for observable sharing in Chalmers Lava (Claessen 2001). In this
section, we outline our design of the front end of Kansas L ava, and
how it uses reifyGraph.

The principal type in Kansas L ava is Signal, which is a phantom
type (Leijen and M eijer 1999) abstraction around Wire, the inter-
nal type of a circuit.

newtype Signal a = Signal W ire

newtype Wire = W ire (Entity Wire)

Entity is a node in our circuit graph, which can r epresent gate
level circuits, as well are more complex blocks.
data Entity s

= Entity Name [s] -- an entity
| Pad Name -- an input pad
| Lit Integer -- a constant

and2 : : (Signal a , Signal a) -> Signal a
and2 (Signal w 1 ,Signal w2)

= Signal $ W ire $ Entity (name "and2 ") [w1,w2]

. . .

In b oth Kansas Lava and Chalmers L ava, phantom types are used
to allow construction of semi-sensible circuits. For example, a
mux will take a Signal Bool as its input, but switch between
polymorphic signals.

mux : : Signal Bool
-> (Signal a, Signal a)
-> Signal a

mux (Signal s) (Signal w1,Signal w2)
= Signal
$ W ire
$ Entity (name "mux") [s ,w1,w2]

Even though we construct trees of type Signal, we want to ob-

serve graphs of type W ire, because every Signal is a construc-
tor wrapper around a tree of Wire. We share the same node data-
type between our Haskell tree underneath Signal, and inside our
reified graph. So Entity is parametrized over its inputs, which are
Wires for our circuit specification tree, and are Unique labels in
our graph. This allows some reuse of traversals, and we use in-
stances of the Traversable, Functor and Foldable classes to
help here.

Our MuRef instance therefore has the form:

instance MuRef Wire where
type DeRef W ire = Entity
mapDeRef f (Wire s) = traverse f s

We also define instances for the classes Traversable, Foldable
and Functor, which are of general usefulness for p erforming other
transformations, specifically:

instance Traversable Entity where
traverse f (Entity v ss) = Entity v

<$> traverse f ss
traverse _ (Pad v) = pure $ Pad v
traverse _ (Lit i) = pure $ Lit i

instance Foldable Entity where
foldMap f (Entity v ss) = foldMap f ss
foldMap _ (Pad v) = m empty
foldMap _ (Lit i) = m empty

instance Functor Entity w here

fmap f (Entity v ss) = Entity v (fmap f ss)
fmap _ (Pad v) = Pad v
fmap _ (Lit i) = Lit i

Now, with our Kansas L ava Hardware specification graph captured
inside our Graph r epresentation via reifyGraph, we can perform
simple t ranslations, and pretty print to VHDL, and other targets.

5 of 12

7. Comparing reifyGraph and Ref types

Chalmers Lava uses Ref types, which admit pointer equality. The
interface to Ref types h ave the following form.

data Ref a = . . .
instance Eq (Ref a)
ref : : a -> Ref a
deref : : Ref a -> a

An abstract type Ref can b e used to box p olymorphic values, via
the (unsafe) function ref, and Ref admits equality without looking
at the value inside the box. Ref works b y generating a new, unique
label for each call to ref. So a possible implementation is

data Ref a = Ref a U nique
instance Eq (Ref a) where

(Ref _ u1) == (Ref _ u2) = u 1 == u2
ref a = u nsafePerformIO $ do

u <- n ewUnique
return $ Ref a u

deref (Ref a _) = a

with the usual caveats associated with the use ofunsafePerformIO.

To illustrate a use-case, consider a transliteration of Chalmers L ava
to use the same names as Kansas Lava. We can use a Ref type at
each node, by changing the type of Wire, and reflecting this change
into our DSL functions.

-- Transliteration of Chalmers Lava
newtype Signal s = Signal Wire

newtype W ire = W ire (Ref (Entity Wire))

data Entity s
= Entity Name [s]
| . . .

and2 : : Signal a -> Signal a -> Signal a
and2 (Signal w1) (Signal w2)

= Signal
$ Wire
$ ref
$ Entity (name "and2 ") [w1,w2]

The differences between this definition and the Kansas Lava defi-
nition are

• The type Wire includes an extra Ref indirection;

• The DSL primitives include an extra ref.

Wire in Chalmers Lava admits observable sharing directly, while
Kansas Lava only admits observable sharing u sing reifyGraph.
The structure in Kansas Lava can b e consumed by an alternative,
purely functional simulation function, without the possibility of ac-
cidentally observing sharing. Furthermore, reifyGraph can oper-
ate over an arbitrary type, and does not need to be wired into the
datatype. This leaves open a new p ossibility: observing sharing on
regular Haskell structures like lists, rose t rees, and other structures.
This is the subject of the next section.

8. Lists, and Other Structures

In the Haskell community, sometimes recursive types are tied using
a Mu type (Jones 1995). For example, consider a list specified in this
fashion.

newtype Mu a = In (a (Mu a))

data List a b = Cons a b | Nil

type MyList a = Mu (List a)

Now, we can write a list using Cons, Nil, and In for recursion. The
list [1,2,3] would b e represented using the following expression.

In (Cons 1 (In (Cons 2 (In (Cons 3 (In Nil))))))

The generality of the recursion, captured b y Mu, allows a general
instance of Mu for MuRef. Indeed, this is why MuRef is called
MuRef.

instance (Traversable a) => MuRef (Mu a) where
type D eRef (Mu a) = a
mapDeRef = traverse

This generality is possible because we are sharing the representa-
tion between structures. M u is u sed to express a tree-like structure,
where Graph given the same type argument will express a directed
graph. In order to use M uRef, we need Traversable, and there-
fore n eed to provide the instances for Functor, Foldable, and
Traversable.

instance Functor (List a) where
fmap f Nil = Nil
fmap f (Cons a b) = Cons a (f b)

instance Foldable (List a) where
foldMap f Nil = m empty
foldMap f (Cons a b) = f b

instance Traversable (List a) where
traverse f (Cons a b) = Cons a <$> f b
traverse f Nil = p ure Nil

Now a list, written using Mu, can h ave its sharing observed.

> let xs = In (Cons 99 (In (Cons 100 xs)))

> reifyGraph xs
Graph [(1,Cons 99 2)

, (2 ,Cons 100 1)
]
1

The type List is used both for expressing trees and graphs. We can
reuse List and the instances of List to observe sharing in regular
Haskell lists.

instance MuRef [a] where
type D eRef [a] = List
mapDeRef f (x :xs) = Cons x <$> f xs
mapDeRef f [] = p ure Nil

That is, regular Haskell lists are represented as a graph, using List,
and Mu List lists are also represented as a graph, using List. Now
we can capture spine-level sharing in our list.

6 of 12

> let xs = 99 : 100 : xs
> reifyGraph xs
Graph [(1,Cons 99 2)

, (2 ,Cons 100 1)
]
1

There is no way to observe built-in Haskell data structures using
Ref, which i s an advantage of our reify-based observable sharing.

A list spine, being one dimensional, means that sharing will always

be represented via b ack-edges. A tree can h ave both loops and
acyclic sharing. One question we can ask is can we capture the
second level sharing in a list? That is, is it possible we observe the
difference between

let x = X 1 in [x ,x] and [X 1,X 1]

using reifyGraph? Alas, no, because the t ype of the element of a
list is distinct from the type of the list itself. In the next section, we
extend reifyGraph to handle nodes of different types inside the
same reified graph.

9. Observable Sharing at Different Types

The nodes of the graph inside the runtime system of Haskell p ro-
grams h ave many different types. In order to successfully extract
deeper into our DSL, we want to handle nodes of different types.
GHC Haskell already provides the Dynamic type, which is a com-
mon type for using with collections of values of different types.
The operations are

data Dynamic = . . .
toDyn : : Typeable a => a -> Dynamic
fromDynamic : : Typeable a => Dynamic -> Maybe a

Dynamic is a monomorphic Haskell object, stored with its type.
fromDyn succeeds when Dynamic was constructed and extracted
at the same type. Attempts to use fromDynamic at an incorrect
type always returns Nothing. The class Typeable is derivable
automatically, as well as b eing provided for all built-in types. So
we h ave

> fromDynamic (toDyn "Hello") : : Maybe String
Just "Hello "
> fromDynamic (toDyn (1,2)) : : M aybe String
Nothing

In this way Dynamic provides a type-safe cast.

In our extended version of reifyGraph, we require all n odes that
need to be compared for observational equality to b e a member of
the class Typeable, including the r oot of our Haskell structure we
are observing. This gives the type of the extended reifyGraph.

reifyGraph : : (MuRef s , Typeable s)
=> s -> IO (Graph (DeRef s))

The trick to reifying nodes of different type into one graph is t o
have a common type for the graph r epresentation. That is, if we
have a type A and a type B, then we can share a graph that is
captured to Graph C, provided that D eRef A and DeRef B both
map to C. We can express this, using the new ~ notation for type
equivalence.

Specifically, the type

example : : (DeRef a ~ DeRef [a]) => [a]

expresses that a and [a] both share the same graph node type.

In order to observe sharing on nodes of types that are Typeable,
and share a graph representation type, we refine the type of
mapDeRef. The refined M uRef class has the following definition.

class MuRef a where

type D eRef a : : * -> *

mapDeRef : : (Applicative f)
=> (forall b .

(M uRef b
, Typeable b
, D eRef a ~ DeRef b
) => b -> f u)

-> a
-> f (DeRef a u)

mapDeRef has a r ank-2 polymorphic functional argument for pro-
cessing sub-nodes, when walking over a node of type a. This func-
tional argument requires that

• The sub-node b e a member of the class MuRef;

• The sub-node be Typeable, so that we can use Dynamic inter-
nally;

• Finally, the graph representation of the a node and the graph
representation of the b node are the same type.

We can use this version of MuRef to capture sharing at different
types. For example, consider the structure

let xs = [1. .3]
ys = 0 : xs

in cycle [xs ,ys ,tail ys]

There are three types inside this structure, [[Int]] , [Int] , and
Int. This means we need two instances, one for lists with element
types that can be reified, and one for Int, and a common data-type

to r epresent the graph nodes.

data Node u = Cons u u
| Nil
| Int Int

instance (Typeable a
, M uRef a
, D eRef [a] ~ DeRef a) => MuRef [a] where

type D eRef [a] = Node

mapDeRef f (x :xs) = Cons <$> f x <*> f xs
mapDeRef f [] = p ure Nil

instance MuRef Int where
type D eRef Int = Node

mapDeRef f n = pure $ Int n

The Node type is our reified graph node structure, with three p os-
sible constructors, Cons and Nil for lists (of type [Int] or type
[[Int]]), and Int which represents an Int.

7 of 12

Int 1 Cons

?????? ??????
Int 2 Cons

?????? ??????
Int 3 Nil

Figure 1. Sharing within structures of different types

Reifying the example above now succeeds, giving

> reifyGraph (let xs = [1. .3]
> ys = 0 : xs
> in cycle [xs ,ys ,tail ys])
Graph [(1,Cons 2 9)

, (9 ,Cons 10 12)
, (12 ,Cons 2 1)
, (10 ,Cons 11 2)

, (11,Int 0)
, (2 ,Cons 3 4)
, (4 ,Cons 5 6)
, (6 ,Cons 7 8)
, (8 ,Nil)
, (7 ,Int 3)
, (5 ,Int 2)
, (3 ,Int 1)
]
1

Figure 1renders this graph, showing we have successfully captured
the sharing at multiple levels.

10. Observing Functions

Given we can observe structures with distinct node types, can we
use the same machinery to observe functions? It turns out we can!

A traditional way of observing functions is to apply a function to a
dummy argument, and observe where this dummy argument occurs
inside the r esult expression. At first, it seems that an exception can
be used for this, but there is a critical shortcoming. It is impossible
to distinguish between the use of a dummy argument in a sound
way and examining the argument. For example

\ x -> (1,[1. .x])

gives the same r esult as

\ x -> (1,x)

when x is bound to an exception-raising thunk.

We can instead use the type class system, again, to help us.

class NewVar a where
mkVar : : Dynamic -> a

Now, we can write a function that takes a function and returns the
function argument and result as a tuple.

capture : : (Typeable a, Typeable b , NewVar a)
=> (a -> b) -> (a ,b)

capture f = (a ,f a)
where a = m kVar (toDyn f)

We use the Dynamic as a unique label (that does not admit equality)
being passed to m kVar. T o illustrate this class b eing used, consider
a small DSL for arithmetic, modeled on the ideas for capturing
arithmetic expressions used in Elliott et al. (2003).

data Exp = ExpVar Dynamic
| ExpLit Int
| ExpAdd Exp Exp
| . . .

deriving (Typeable , . . .)

instance NewVar Exp where
mkVar = ExpVar

instance Num Exp where
(+) = ExpAdd
. . .

fromInteger n = ExpLit (fromInteger n)

With these definitions, we can capture our function

> capture (\ x -> x + 1 : : Exp)
(ExpVar . . . , E xpAdd (ExpVar . . .) (ExpLit 1))

The idea of passing in a explicit ExpVar constructor is an old one,
and the data-structure used in Elliott et al. (2003) also included a
ExpVar, but required a threading of a unique String at the p oint
a function was being examined. With observable sharing, we can
observe the sharing that is present inside the capture function,
and reify our function without needing these unique names.

capture gives a simple mechanism for looking at functions, but
not f unctions inside data-structures we are observing for sharing.
We want to add the capture mechanism to our multi-type reifica-
tion, using a Lambda constructor in the graph node data-type.

instance (MuRef a, Typeable a, , NewVar a,
MuRef b , Typeable b ,
DeRef a ~ DeRef (a -> b) ,
DeRef b ~ DeRef (a -> b))

=> MuRef (a -> b) where
type DeRef (a -> b) = Node

mapDeRef f fn = let v = m kVar $ toDyn fn
in Lambda <$> f v <*> f (fn v)

This is quite a mouthful! For functions of type a -> b , we need
a to admit MuRef (have observable sharing), Typeable (because
we are working in the multi-type observation version), and NewVar
(because we want to observe the function). We need b to admit

MuRef and Typeable. We also need a, b and a -> b to all share a
common graph data-type. When observing a graph with a function,
we are actually observing the sharing created by the let v = . . .
inside the mapDeRef definition.

8 of 12

Consxqxqqqqqqqq OOOOOOOOO’’
Lambda Cons

??? ? wowoooooooo OOOOOOOOO’’
Var Lambda Cons

Va???r???wow??o??o??o??oo@o@o@o@o@I@An dt??d1 LaVma??br???da?N??NN??NNNN<<N<N<&&<I<nN??til9
Figure 2. Sharing within structures and functions

We need to add our MuRef instance for Exp, so we can observe
structures of the type Exp.

data Node u = . . . | Lambda u u | Var | Add u u

instance MuRef Exp where

type DeRef Exp = Node

mapDeRef f (ExpVar _) = p ure Var
mapDeRef f (ExpLit i) = p ure $ Int i
mapDeRef f (ExpAdd x y) = Add <$> f x <*> f y

Finally, we can observe functions in the wild!

> reifyGraph (let t = [\ x -> x : : Exp
> , \ x -> x + 1
> , \ x -> h ead t 9]
> in t)
Graph [(1,Cons 2 4)

, (4 ,Cons 5 9)
, (9 ,Cons 10 13)
, (13 ,Nil)
, (10 ,Lambda 11 12)
, (12 ,Int 9)
, (11,Var)
, (5 ,Lambda 6 7)
, (7 ,Add 6 8)
, (8 ,Int 1)
, (6,Var)
, (2 ,Lambda 3 3)
, (3,Var)
]
1

Figure 2 shows the connected graph that this reification p roduced.
The left hand edge exiting Lambda is the argument, and the right
hand edge is the expression.

In Elliott et al. (2003), an expression DSL like our example h ere

was used to synthesize and manipulate infinite, continuous images.
The DSL generated C code, allowing real time manipulation of
image parameters. In Elliott (2004), a similar expression DSL was
used to generate shader assembly r endering code p lus C# GUI
code. A crucial piece of technology needed to make b oth these
implementations viable was a common sub-expression eliminator,
to recover lost sharing. We recover the important common sub-
expressions for the small cost of observing sharing from within an
IO function.

11. Implementation of reifyGraph

In this section, we present our implementation ofreifyGraph. The
implementation is short, and we include it in the appendix.

We provide two implementations of reifyGraph in the hackage
library data-reify. The first implementation of reifyGraph is a
depth-first walk over a tree at single type, t o discover structure,
storing this in a list. A second implementation also performs a
depth-first walk, but can observe sharing of a p redetermined set of
types, provided they map to a common node type in the final graph.

One surprise is that we can i mplement our flexible observable
sharing functions in j ust a few lines of GHC Haskell. We use
the StableName abstraction, as introduced in Peyton Jones e t al.
(1999), to provide our b asic (typed) pointer equality, and the re-
mainder of our implementation is straightforward Haskell program-
ing.

Stable names are supplied in the library System .Mem .StableName,
to allow pointer equality, provided the objects have been declared
comparable inside an IO operation. The interface is small.

data StableName a

makeStableName : : a -> IO (StableName a)
hashStableName : : StableName a -> Int
instance Eq (StableName a)

If you are inside the IO monad, you can make a StableName
from any object, and the type StableName admits Eq without
looking at the original object. StableNames can b e thought of as
a pointer, and the Eq instance as pointer equality on these p ointers.
Finally, the h ashStableName facilitates a lookup table containing
StableNames, and is stable over garbage collection.

We use stable names to k eep a list of already visited nodes. Our
graph capture is the classical depth first search over the graph,
and does not recurse over nodes t hat we have already visited.
reifyGraph is implemented as follows.

• We initialize two tables, one that maps StableNames (at the
same type) to Uniques, and a list that maps Uniques t o
edges in our final node type. I n the first table, we use the
hashStableName facility of StableNames to improve the
lookup time.

• We then call a recursive graph walking function findNodes
with the two tables stored inside MVars.

• We then return the second table, and the U nique

Inside findNodes, for a specific node, we

• Perform seq on this node, to make sure this node is evaluated.

• If we have seen this n ode before, we immediately return the
Unique that i s associated with this node.

• We then allocate a new Unique, and store it in our first MVar

table, using the StableName of this node as the k ey.

• We use mapDeRef to recurse over the children of t his node.

• This returns a new node oftype “DeRef s Unique”, where s is
the t ype we are r ecursing over, and DeRef is our type function.

• We store the p air of the allocated u nique and the value returned
by mapDeRef in a list. T his list will become our graph.

• We then return the U nique associated with this node.

It should b e noted that the act of extracting the graph performs like
a deep seq, being hyperstrict on the structure under consideration.

9 of 12

The Dynamic version of reifyGraph is similar to the standard
reifyGraph. The first table contains Dynamics, not StableNames,
and when considering a node for equality, the fromDynamic is
called at the current node type. If the node is of the same type as
the object inside the Dynamic, then the StableName equality is
used to determine point equality. If the node is of a different type
(fromDynamic returns Nothing), then the pointer equality fails b y
definition.

One shortcoming with the Dynamic implementation is the obscure
error messages. If an instance is missing, this terse message is
generated.

Top level :
Couldn’ t m atch expected type ‘ Node ’
against inferred type ‘ DeRef t ’

This is stating that the common type of the final Graph was ex-
pected, and for s ome structure was not found, but does not state
which one was not found. It would be nice if we could somehow
parameterize the error messages or augment them with a secondary
message.

12. Reflections on Observable Sharing

In this section, we consider b oth the correctness and consequences
of observable sharing. The correctness of reifyGraph depends on
the correctness of StableNames. Furthermore, observing the heap,
even from within an IO function, has consequences for the validity
of equational reasoning and the laws that can be assumed.

In the System. .Mem. .StableName library, stable names are defined
as providing “a way of p erforming fast [. . .], not-quite-exact com-
parison between objects.” Specifically, the only requirement on sta-
ble names is that if two stable names are equal, then “[both] were
created b y calls to m akeStableName on the same object.” This is a
property that could b e trivially satisfied by simply defining equality
over stable names as False !

The intent of stable names is to implement the behavior of pointer
equality on heap representations, while allowing the heap to use ef-
ficient encodings. In reality, the interface does detect sharing, with
the advertised caveat that an object b efore and after evaluation may
not generate stable names that are equal. In our implementation, we
use the seq function to force evaluation of each graph node under
observation, j ust b efore generating stable names, and this has been
found to reliably detect the sharing we expect. It is unsettling, how-
ever, that we do not (yet) have a semantics of when we can and can
not depend on stable names t o observe sharing.

An alternative to using stable names would be to directly examine
the heap representations. Vacuum (Morrow) is a Haskell library for
extracting heap representations, which gives a literal view of the
heap world, and has b een successfully used to both capture and
visualize sharing inside Haskell structures. Vacuum has the ability
to generate dot graphs for observation and does not require that a
graph be evaluated before being observed.

Vacuum and reifyGraph have complementary roles. Vacuum al-
lows the user to see a snapshot of the r eal-time heap without neces-
sarily changing it, while reifyGraph provides a higher level inter-
face, b y forcing evaluation on a specific structure, and then observ-
ing sharing on the same structure. Furthermore reifyGraph does
not require the user to understand low-level representations to ob-
serve sharing. It would certainly b e possible to b uild reifyGraph
on top of Vacuum.

Assuming a reliable observation of sharing inside reifyGraph,
what are the consequences t o the Haskell p rogrammer? Claessen
and Sands (1999) argue that little is lost in the presence of observ-
able sharing in a call-by-name lazy functional language, and also
observe that all Haskell implementations use a call-by-name evalu-
ation strategy, even though the Haskell r eport (Peyton Jones 2003)
does not require this. In Haskell let-β, a variant of β-reduction,
holds.

let {x = M} in N = N[M/x] (x ∈/ M) (1)

Over structural values, this equality is used with caution inside
Haskell compilers, in either direction. To duplicate the construc-
tion of a structure is duplicating work, and can change the time
complexity of a program. To common up construction (using (1)
from right to left) is also p roblematic because t his can be detrimen-

tal t o the space complexity of a program.

It is easy in Haskell to lose sharing, even without using (1). Con-
sider one of the map laws.

map id M = M (2)

Any structure that the spine of ‘M’ has is lost in ‘map id M’.
Interestingly, this loss of sharing in map is not mandated, and a
version of map using memoization could preserve the sharing. This
is never done because we can not depend on – or observe – sharing.

One place where GHC introduces unexpected sharing is when
generating overloaded literals. In Kansas L ava, the term 9 + 9
unexpectedly shares the same node for the value 9.

> reifyGraph (9 + 9)
Graph [(1,Entity + [2 ,2])

, (2 ,Entity fromInteger [3])
, (3,Lit 9)
]
1

Literal values are like enumerated constructors, and any user of
reifyGraph must allow for the p ossibility of such literals being
shared.

What does all this mean? W e can h ave unexpected sharing of
constants, as well as lose sharing b y applying what we considered
to b e equality holding transformations.

The basic guidelines for using reifyData are

• Observe only structures b uilt syntactically. Combinators in our
DSLs are lazy in t heir (observed) arguments, and we do not
deconstruct the observed structure b efore reifyData.

• Assume constants and enumerated constructors may b e shared,
even if syntactically they are not the same expression.

There is a final guideline when using observable sharing, which is
to allow a DSL to have some type of (perhaps informal) let-β r ule.
In the same manner as rule (1) in Haskell should only change how
fast some things run and not the final outcome, interpreters using
observable sharing should endeavor to use sharing to influence per-
formance, not outcome. For example, in Lava, undetected acyclic
sharing in a graph would r esult i n extra circuitry and the same re-
sults b eing computed at a much greater cost. Even for undetected
loops inwell-formed L ava circuits, it is possible to generate circuits
that work for a p reset finite number of cycles.

If this guideline is followed literally, applying (1) and other equa-
tional reasoning techniques to DSLs that use observable sharing is
now a familiar task for a functional p rogramer, because applying
equational reasoning changes performance, not the final result. A
sensible let-β r ule might not be possible for all DSLs, but it pro-
vides a useful rule of thumb t o influence the design.

10 of 12

13. Performance Measurements

We p erformed some b asic p erformance measurements on our
reifyGraph function. W e ran a small number of tests observ-
ing the sharing in a binary tree, b oth with and without sharing, on
both the original and Dynamic reifyGraph. E ach extra level on
the graph introduces double the number of nodes.

Tree Original Dynamic
Depth Sharing No Sharing Sharing No Sharing

16 0.100s 0.154s 0.147s 0.207s
17 0.237s 0.416s 0.343s 0.519s
18 0.718s 1.704s 0.909s 2.259s
19 2.471s 7.196s 2.845s 8.244s
20 11.140s 25.707s 13.377s 32.443s

While reifyGraph is not linear, we can handle 220 (around a
million) nodes in a few seconds.

14. Conclusions and Further Work

We have introduced an IO based solution to observable sharing that
uses type functions to provide type-safe observable sharing. The
use of IO is not a h inderance i n practice, because the occasions we
want to observe sharing are typically the same occasions as when
we want to export a net-list like structure to other tools.

Our h ope is that the simplicity of the interface and the familiar-
ity with the ramifications of using an IO function will lead to
reifyGraph b eing used for observable sharing in deep D SLs.

We need a semantics for reifyGraph. T his of course will involve
giving at least a partial semantics to IO, for the way it is b eing used.
One possibility is to model the StableName equality as a non-
deterministic choice, where I O provides a True/False oracle. This
would mean that reifyGraph would actually r eturn an infinite tree
of possible graphs, one for each possible permutation of answers
to the pointer equality. Another approach we are considering is to
extend Natural Semantics (Launchbury 1993) for a core functional

language with a reify p rimitive, and compare it with the semantics
for Ref-based observable sharing (Claessen and Sands 1999).

Acknowledgments
Iwould like to thank all the members of CDSL at I TTC for the
creative research environment, many interesting discussions, and
detailed feedback. Iwould also like to thank Conal Elliott, Kevin
Matlage, Don Stewart, and the anonymous r eviewers for their many
useful comments and suggestions.

References
Arthur I. Baars and S. Doaitse Swierstra. Type-safe, self inspecting code. In

Proceedings of the ACM SIGPLAN workshop on Haskell, pages 69–79.
ACM Press, 2004. ISBN 1-581 13-850-4.

Per Bjesse, Koen Claessen, Mary Sheeran, and Satnam Singh. Lava:
Hardware design in Haskell. In I nternational Conference on Functional
Programming, pages 174–184, 1998.

Manuel M. T. Chakravarty, Gabriele Keller, and Simon Peyton J ones. As-
sociated type synonyms. In I CFP ’05: P roceedings of the tenth ACM
SIGPLAN international conference on F unctional p rogramming, p ages
241–253, New York, NY, USA, 2005. ACM. ISBN 1-59593-064-7.

Koen Claessen. Embedded Languages for Describing and Verifying
Hardware. PhD thesis, Dept. of Computer Science and Engineering,
Chalmers University of Technology, April 2001.

Koen Claessen and David Sands. Observable sharing for functional cir-
cuit description. In P. S. Thiagarajan and Roland H. C. Yap, editors,
Advances in Computing Science - A SIAN’99, volume 1742 of Lecture
Notes in Computer Science, pages 62–73. Springer, 1999. ISBN 3-540-
66856-X.

Conal Elliott. Programming graphics processors functionally. In Proceed-

ings of the 2 004 Haskell Workshop. ACM Press, 2004.

Conal Elliott, Sigbjørn F inne, and Oege de Moor. Compiling embedded
languages. Journal of Functional P rogramming, 13(2), 2003.

J. Ellson, E.R. Gansner, E . Koutsofios, S.C. North, and G. W oodhull.
Graphviz and dynagraph – static and dynamic graph drawing tools. In
M. J unger and P. Mutzel, editors, Graph Drawing Software, pages 127–
148. Springer-Verlag, 2003.

Levent Erk o¨k and John L aunchbury. A recursive do for Haskell. In Haskell
Workshop ’02, P ittsburgh, Pennsylvania, USA, pages 29–37. ACM Press,
October 2002.

Mark P. J ones. Functional programming with overloading and higher-order
polymorphism. In Advanced Functional P rogramming, First Interna-
tional Spring School onAdvanced Functional Programming Techniques-
Tutorial Text, pages 97–1 36, London, UK, 1995. Springer-Verlag. ISBN
3-540-59451-5.

Mark P. Jones and Iavor S. Diatchki. Language and program de-
sign for functional dependencies. In Haskell ’08: P roceedings of
the f irst ACM SIGPLAN symposium on Haskell, p ages 87–98, New
York, NY, USA, 2008. ACM. ISBN 978-1-60558-064-7. doi:
http://doi.acm.org/10.1 145/141 1286.141 1298.

John Launchbury. A natural semantics for lazy evaluation. In P OPL, p ages
144–154, 1993.

Daan Leijen and E rik Meijer. D omain specific embedded compilers. In 2nd
USENIX Conference on D omain Specific Languages (DSL’99), p ages
109–122, Austin, T exas, October 1999.

John M atthews, Byron Cook, and John L aunchbury. Microprocessor spec-
ification in Hawk. In I CCL ’98: I nternational Conference on Computer
Languages, p ages 90–101, 1998.

Conor McBride and Ross Patterson. Applicative programing with effects.
Journal of Functional P rogramming, 16(6), 2006.

Matt Morrow. Vacuum. hackage .haskell .org/package/vacuum.

John O’Donnell. Overview of Hydra: a concurrent language for syn-

chronous digital circuit design. In Parallel and D istributed P rocessing
Symposium, pages 234–242, 2002.

John O’Donnell. Generating netlists from executable circuit specifications
in a pure functional language. In Functional P rogramming, Glasgow
1992, Workshops in Computing, p ages 178–194. Springer-Verlag, 1992.

Simon Peyton J ones, editor. Haskell 98 Language and Libraries – The
Revised Report. Cambridge University Press, Cambridge, England,
2003.

Simon Peyton Jones, Simon Marlow, and Conal Elliott. Stretching the stor-
age manager: weak pointers and stable names in Haskell. In Proceedings
of the 11th I nternational Workshop on the I mplementation of Functional
Languages, L NCS, The Netherlands, September 1999. Springer-Verlag.

Richard Sharp. Functional design using b ehavioural and structural compo-
nents. In FMCAD ’02: P roceedings of the 4th I nternational Conference
on F ormal Methods in Computer-Aided Design, pages 324–341, Lon-
don, UK, 2002. Springer-Verlag. ISBN 3-540-001 16-6.

Tim Sheard and Simon Peyton J ones. Template metaprogramming for
Haskell. In Manuel M. T. Chakravarty, editor, ACM SIGPLAN Haskell
Workshop 02, p ages 1–16. ACM Press, October 2002.

Satnam Singh and P hil J ames-Roxby. Lava and j bits: F rom hdl to bitstream
in seconds. In FCCM ’01: P roceedings of the the 9th A nnual I EEE S ym-
posium on Field-Programmable Custom Computing M achines, p ages
91–100, Washington, DC, U SA, 2001. IEEE Computer Society. ISBN
0-7695-2667-5.

11of 12

A. Implementation

{-#L ANGUAGEF lexibleContexts, UndecidableInstances# -}
module D ata. .Reify .Graph (Graph (. .) , U nique) where

import D ata. .Unique

type U nique = Int
data Graph e = Graph [(Unique ,e Unique)] U nique

{-#L ANGUAGEU ndecidableInstances,T ypeFamilies# -}
module D ata. .Reify

(M uRef (. .) , m odule Data. .Reify .Graph , reifyGraph
) w here

import Control .Concurrent .MVar
import Control .Monad
import System .Mem .StableName
import D ata. . IntMap as M
import Control .Applicative
import D ata. .Reify .Graph

class MuRef a where
type D eRef a : : * -> *
mapDeRef : : (Applicative m)

=> (a -> m u) -> a -> m (DeRef a u)

reifyGraph : : (MuRef s) => s -> IO (Graph (DeRef s))
reifyGraph m = do rt 1 <- newMVar M .empty

rt2 <- newMVar []
uVar <- newMVar 0
root <- findNodes rt1 rt2 u Var m
pairs <- readMVar rt2
return (Graph pairs root)

findNodes : : (MuRef s)
=> MVar (IntMap [(StableName s ,Int)])
-> MVar [(Int ,DeRef s Int)]

-> MVar Int
-> s
-> IO Int

findNodes rt 1 rt2 u Var j | j ‘ seq‘ True = do
st <- m akeStableName j
tab <- takeMVar rt 1
case mylookup st tab of

Just var -> do putMVar rt1 tab
return $ var

Nothing -> do var <- newUnique u Var
putMVar rt 1 $ M .insertWith (++)

(hashStableName st)
[(st ,var)]
tab

res <- mapDeRef
(findNodes rt 1 rt2 uVar)

j
tab ’ <- takeMVar rt2
putMVar rt2 $ (var ,res) : tab ’
return var

where
mylookup h tab =

case M . lookup (hashStableName h) tab of
Just tab2 -> Prelude .lookup h tab2
Nothing -> Nothing

newUnique : : MVar Int -> IO Int
newUnique var = do

v <- takeMVar var
let v ’ = succ v
putMVar var v ’
return v ’

{-#L ANGUAGEU ndecidableInstances,T ypeFamilies,

RankNTypes , ExistentialQuantification, ,
DeriveDataTypeable , RelaxedPolyRec ,
FlexibleContexts #-}

module Data .Dynamic .Reify
(MuRef (. .) , m odule D ata .Reify .Graph , reifyGraph
) where

class MuRef a where
type DeRef a : : * -> *
mapDeRef :: (Applicative f) =>

(forall b . (MuRef b , Typeable b ,
DeRef a ~ D eRef b)

=> b -> f u)
-> a
-> f (DeRef a u)

reifyGraph :: (MuRef s , Typeable s)
=> s -> IO (Graph (DeRef s))

reifyGraph m = do rt1 <- newMVar M .empty
rt2 <- newMVar []
uVar <- newMVar 0
root <- findNodes rt 1 rt2 uVar m
pairs <- readMVar rt2
return (Graph p airs root)

findNodes : : (MuRef s , Typeable s)
=> M Var (IntMap [(Dynamic ,Int)])
-> M Var [(Int ,DeRef s Int)]
-> M Var Int
-> s
-> IO Int

findNodes rt 1 rt2 uVar j | j ‘ seq‘ True = do
st <- m akeStableName j
tab <- takeMVar rt 1
case mylookup st tab of

Just var -> do putMVar rt1 tab
return $ var

Nothing -> do var <- n ewUnique uVar
putMVar rt 1 $ M .insertWith (++)

(hashStableName st)
[(toDyn st ,var)]
tab

res <- mapDeRef
(findNodes rt1 rt2 u Var)

j
tab ’ <- takeMVar rt2
putMVar rt2 $ (var ,res) : tab ’
return var

mylookup : : (Typeable a)
=> StableName a
-> IntMap [(Dynamic ,Int)]
-> Maybe Int

mylookup h tab =
case M . lookup (hashStableName h) tab of

Just tab2 -> Prelude . lookup (Just h)
[(fromDynamic c ,u)
| (c ,u) <- tab2]

Nothing -> Nothing

newUnique : : MVar Int -> IO Int
newUnique var = do

v <- takeMVar var
let v ’ = succ v
putMVar var v ’
return v ’

12 of 12

