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Abstrat

Pattern mathing has proved an extremely powerful and durable notion in funtional

programming. This paper ontributes a new programming notation for type theory whih

elaborates the notion in various ways.

Firstly, as is by now quite well-known in the type theory ommunity, de�nition by

pattern mathing beomes a more disriminating tool in the presene of dependent types,

sine it re�nes the explanation of types as well as values. This beomes all the more true

in the presene of the rih lass of datatypes known as indutive families (Dybjer, 1991).

Seondly, as proposed by Peyton Jones (Peyton Jones, 1997) for Haskell, and indepen-

dently redisovered by us, subsidiary ase analyses on the results of intermediate om-

putations, whih ommonly take plae on the right-hand side of de�nitions by pattern

mathing, should rather be handled on the left. In simply-typed languages, this subsumes

the trivial ase of Boolean guards; in our setting it beomes yet more powerful.

Thirdly, elementary pattern mathing deompositions have a well-de�ned interfae given

by a dependent type; they orrespond to the statement of an indution priniple for the

datatype. More general, user-de�nable deompositions may be de�ned whih also have

types of the same general form. Elementary pattern mathing may therefore be reast

in abstrat form, with a semantis given by translation. Suh abstrat deompositions

of data generalize Wadler's notion of `view' (Wadler, 1987). The programmer wishing to

introdue a new view of a type T , and exploit it diretly in pattern mathing, may do

so via a standard programming idiom. The type theorist, looking through the Curry-

Howard lens, may see this as proving a theorem, one whih establishes the validity of a

new indution priniple for T .

We develop enough syntax and semantis to aount for this high-level style of pro-

gramming in dependent type theory. It ulminates in the development of a typeheker

for the simply-typed lambda alulus, whih furnishes a view of raw terms as either being

well-typed, or ontaining an error. The implementation of this view is ipso fato a proof

that typeheking is deidable.

1 Introdution

This paper is a ontribution to delarative programming, in that it introdues a

new high-level notation for funtional programming on top of an existing low-level
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dependent type theory. In partiular, we o�er a powerful and abstrat suessor to

pattern mathing, as oneived by Rod Burstall (Burstall, 1969) and, to our knowl-

edge, �rst implemented in Fred MBride's extension of LISP (MBride, 1970).

The key feature of pattern mathing in simply typed languages is that the stru-

ture of an arbitrary value in a datatype is explained. Classially, pattern mathing

analyses onstrutor patterns on the left-hand sides of funtional equations, and

is de�ned by a subsystem of the operational semantis with hard-wired rules for

omputing substitutions from the pattern variables to values. For example, in Stan-

dard ML (Milner et al., 1997), one might test list membership as follows:

fun elem k [℄ = false

| elem k (l :: ls) = if (k = l) then true else elem k ls

The larity of the ode does not hinder its eÆient ompilation; a key tehnique here

is Augustsson's analysis in terms of hierarhial swithing on the outermost on-

strutor symbol, oupled with the exposure of subexpressions (Augustsson, 1985).

This yields, for elem above, the following asade of ase expressions:

fun elem k ls = ase ls

of [℄ => true

| l :: ls' => ase (k = l)

of true => true

| false => elem k ls'

Pattern mathing has proved suh a powerful and durable notion in funtional

programming, that its further development has remained �rmly on the researh

agenda. Peyton Jones' idea of pattern guards (Peyton Jones, 1997; Peyton Jones &

Erwig, 2000) allows de�nitions by pattern mathing to handle on the left-hand side

of programs, subsidiary analysis of the results of intermediate omputations, whih

are more ommonly, but \lunkily" (lo.it.), handled on the right. For elem, we

an pull both tests to the left as follows:

elem k [℄ = False

elem k (l:ls) | True <- k == l = True

elem k (l:ls) | False <- k == l = elem k ls

Of ourse, Haskell's Boolean guards (Peyton Jones & Hughes, 1999) an already

qualify pattern mathes by tests like k == l, but pattern guards handle subom-

putations of more omplex types. Further, the guard expression an be shared via

a where lause and the layout rule. In our notation, you an ahieve the same e�et

by grouping the two lauses in the sope of the all to k == l , as follows:
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elem k [℄ 7! false

elem k (l :: ls) j k == l

j

j true 7! true

j

j false 7! elem k ls

Dependent types add a desriptive and expressive power whih makes pattern

mathing a more disriminating tool, re�ning types as well as values. Eah el-

ementary pattern mathing deomposition has a well-de�ned interfae given by a

dependent type, orresponding to an indution priniple for the datatype (Burstall,

1969; Nordstr�om et al., 1990). This insight ows from type theory's interplay be-

tween omputation and reasoning|usually sloganised as the `Curry-Howard or-

respondene', or `propositions-as-types'. The key feature of indution is that the

result type is instantiated, and hene further explained, by the patterns.

This observation bites all the more strongly in the presene of the rih lass of

datatypes known as indutive families (Dybjer, 1991). One suh is So, a olletion

of types indexed by a Boolean value:

data

b : Bool

So b : ?

where

oh : So true

The point here is that So true has one element whilst So false has none. If p : So b,

then `ase' on p tells us not only that p is oh, but also (`for free') that b must be

true. Inspeting p an instantiate b and hene any type whih depends on either!

We an use So to impose Boolean `preonditions' on programs. For example, a

program whih requires an argument p : So (test

1

or test

2

) need only be de�ned

under irumstanes whih make one of the test expressions evaluate to true. If

suh a program were to swith on the value of test

1

, say, we should somehow

`know' that p : So true in the true ase and that p : So test

2

otherwise, but how

might a typeheker make this onnetion? Our j notation is motivated not just by

onveniene, but also to signal the abstration of subomputations from types.

Meanwhile, Wadler's `views' proposal (Wadler, 1987; Burton et al., 1996) allows

programmers to implement new shemes for deomposing values in types (abstrat

datatypes, espeially), extending the syntax of mathing orrespondingly. In our

setting, user-de�nable deompositions|elimination operators|may be spei-

�ed by types resembling the strutural indution priniples for datatypes, now the

primitives from whih higher-level analyses an be developed ompositionally.

Our notation gives a pattern-based syntax to programming with arbitrary elimina-

tors; the semantis is given by translation, rather than `pattern mathing' per se.

Further, we establish a standard idiom of �rst-order programming for equipping

a type T with a new elimination operator, by identifying a set of patterns whih

over the values in T ; suh patterns may now be arbitrary expressions of type T .

The type theorist, looking through the Curry-Howard lens, may see this as proving

a new indution priniple for T . A similar idea has emerged reently in Voda's
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untyped �rst-order `Clausal Language' (Voda, 2002), whih admits new forms of

ase analysis via theorem-proving in Peano Arithmeti.

Although the power of dependent types is widely aknowledged, septis rightly

argue that expressibility is one thing and aessibility another. Programs should be

read as well as written, often on the bak of an envelope. Here, we address this issue

of larity. We laim that the existing notations of both funtional languages and

type theory fall short of what dependently typed programming demands, but also

of what it an supply|a language of derived forms, rih, intuitive and extensible.

Type theory o�ers the motive, the methods and the opportunity to ask anew what

funtional programming an aspire to be. We barely srath the surfae in this

paper|nevertheless, we hope to engage your enthusiasm and your imagination.

1.1 Bakground

We start from a type theory with indutive families of datatypes (Dybjer, 1991),

essentially Luo's UTT (Luo, 1994), as implemented in Oleg|the �rst author's

adaptation (MBride, 1999) of Pollak's proof assistant Lego (Luo & Pollak, 1992;

Pollak, 1995). This type system is strongly normalizing (Goguen, 1994) and hene

typeheking is deidable. An important and distintive feature, whih we expand

upon below, is that indutive families embrae data strutures riher than those

available in other andidate languages for dependently-typed programming suh

as DML (Xi, 1998), or Cayenne (Augustsson, 1998): the former supports ompile-

time enforing of �ner well-formedness onstraints on data whih is nonetheless

only Hindley-Milner typable; as to the latter, we explore an example not readily

expressible in Cayenne|well-typed �-terms over simple types|in Setion 7.

Datatypes in UTT ome with no intrinsi notion of pattern mathing, by ontrast

with systems like ALF (Coquand, 1992; Magnusson, 1994). Primitive omputation

on datatypes is provided via `elimination operators' (the `introdution operators'

being onstrutors), whih behave operationally like primitive reursors, but have

types whih state strutural indution priniples.

For example, the elimination operator for the natural numbers has the following

type|ompare the Hindley-Milner type sheme for primitive reursion:

N-Elim : 8P :N ! ?:

P 0 !

(8k :N: P k ! P (sk)) !

8n :N: P n

N-PrimRe : 8T :?:

T !

(N ! T ! T ) !

N ! T

Observe that N-Elim delivers an inhabitant of a dependent funtion spae, in

this ase 8n : N: P n. This allows us to speify, via an arbitrary program P , the

`motive', di�erent outomes intended for di�erent values of n. Learning more about

n an hange the things we are able to do with it, hene we an express numerially
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indexed operations suh as matrix multipliation. By ontrast, N-PrimRe's type

allows no onnetion between the number and the purpose it serves.

The arguments of N-Elim whih explain eah ase also have more informative types

than in the Hindley-Milner version. We all these arguments methods|where

the vernaular speaks only, somewhat weakly, of `base' and `step' ases, without

naming `the argument for suh a ase'|beause they desribe how the motive is to

be pursued, depending on the value of n . Method types doument expliitly the

values for whih we use them|a possibility only when types an depend on data.

A key point of this paper is that the types of eliminators give an abstrat interfae

to pattern analysis, whatever the atual patterns are. For example, the trihotomy

priniple an be seen as an operator eliminating two natural numbers:

N-Compare : 8P : N ! N ! ?:

(8x ; y :N: P x (x + sy)) !

(8x :N: P x x ) !

(8x ; y :N: P (y + sx ) y ) !

8m;n :N: P m n

We will show in Setion 4 below how to use suh operators in general, and in Se-

tion 6 how to onstrut (a variant of) N-Compare, whih we may then use to

de�ne funtions whih in ordinary programming would be omputed by a ombi-

nation of a boolean test and subtration, where this operation is rendered safe to

perform by the outome of the test.

Elimination operators are �rst-lass values, and their types are suÆient on their

own to doument their usage in programs. Hene they may be abstrated in signa-

tures whih hide their representation without further ado. Moreover, as we shall see

below, for the lass of datatype families whih we onsider, ertain distinguished

elimination operators may be de�ned automatially.

1.2 Outline of the rest of the paper

Setion 2 desribes the basi type theory in whih we work, augmented with a

onrete syntax for programming. This is then explained by elaboration into an

extension of the basi type theory whih uses labels in terms and types to orrelate

the usage of a onrete syntax program with its elaboration.

In Setion 3 we fous upon the language of indutive families and their proper-

ties. We identify a taxonomy of possible type dependeny in ase analyses through

onsideration of a running example based on heterogeneous assoiation lists.

In Setion 4 we give a tehnial haraterization of eliminators, together with

the ( (`by') onstrut whih supports their use, whether primitive or user-de�ned.

We disuss in depth the method by whih we exploit elimination with equational

onstraints to explain the notion of patterns, as well as arbitrary strutured deom-
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position, on the left-hand sides of program de�nitions. In partiular, we onsider a

useful derived form for dealing with strutural reursion.

In Setion 5, we disuss the general situation of deomposing the results of sub-

omputations. Our j (`with') onstrut supports this, generalizing pattern guards

to the dependently-typed setting. This notation retains eonomy of expression, but

also allows deliate type distintions to be made during ase analysis: without it,

we would need expliit helper funtions with muh more omplex type signatures.

Although elimination operators are higher-order funtions, Setion 6 introdues a

�rst-order programming idiom for onstruting and working with them|this is our

aount of views.

In Setion 7, we onlude our tehnial disussion with a large example: a type-

heker for simply-typed lambda alulus with expliit type labels|`Churh-style'

(pre-)terms in Barendregt's terminology (Barendregt, 1992). The program takes

the form of a view of pre-terms as being either well-typed or ontaining an error.

The implementation of this view is a proof that typeheking is deidable.

In an epilogue, we disuss our �ndings and future work.

1.3 Some history; some ulture

Our bakground is mainly in the �eld of interative theorem proving in type theory,

using the Lego/Oleg system. Consequently, the original draft of this paper had a

very di�erent emphasis: �rstly, we foused on supporting an interative method of

programming. Indeed, whileOleg does not diretly support the notations desribed

in this paper, it does provide the tatis whih inspired them|and whih translate

them into raw type theory. We developed all our examples interatively using these

tatis.

Seondly, and perhaps more seriously, it was motivated from the `logial' perspe-

tive on type theory. Regardless of the merits of this viewpoint, \dependent types"

sarely approahed \pratial programming" in terms of ontributing to a dia-

logue between ommunities. This is not a new phenomenon: a good illustration lies

in the papers by Bird and Paterson, and Altenkirh and Reus, eah writing about

the type of de Bruijn �-terms, as a nested type in (Bird & Paterson, 1999), and as

an indutive family in (Altenkirh & Reus, 1999). The two share but a single om-

mon referene|Wadler's \Theorems for Free!" (Wadler, 1989). Would that more

researhers had Wadler's ability to speak to both ommunities with equal e�et.

Likewise, though we were inspired by Wadler's original proposal for views, we had

worked in ignorane of subsequent elaborations of that idea and related develop-

ments, not least Peyton Jones' (1997) note. Quite independently, we had arrived at

essentially the same formulation, but motivated by onsiderations of typing, rather

than evaluation. Rod Burstall used to say to us that \Proofs are harder for stu-
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dents to understand than programs, beause one you've obtained a proof, it isn't

obvious what to do with it, or what it means to run one," in spite of what Curry-

Howard might lead one to believe. Our experiene teahing students is that only

by onneting patterns to the types whih give rise to them, an the omputational

meaning and use of pattern mathing be fully grasped.

AknowledgementsWe gratefully aknowledge the support of the EPSRC, with

grants GR/N 24988 and GR/R 72259. We also thank the organisers of Dagstuhl

seminars 01141, \Semantis of Proof Searh", and 01341, \Dependent Types Meets
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referees on how to improve this paper and from our olleagues, espeially Randy

Pollak. At a late stage, Thorsten Altenkirh and Roland Bakhouse helped us out

of a tight spot with o�ee and printing failities. Our main debt, however, is to the

programmers who have inspired us: Rod Burstall, Fred MBride and Phil Wadler.

2 Dependent type theory for funtional programming

This setion introdues the funtional ore of the type theory in whih we work|

Luo's UTT (Luo, 1994), extended with loal de�nitions as in (Luo & Pollak, 1992;

Pollak, 1995; MBride, 1999)|together with a onrete syntax for programming.

The ore language of UTT is summarised in Figure 1. We expet readers familiar

with type theory to �nd its tehnial ontent largely unremarkable. The notation

we employ here is not standard, being orientated more towards programming, but

we hope it is nonetheless lear. For funtional programmers with less prior exposure

to this subjet matter, we annot expet to �ll in all the blanks, but we hope that

we provide enough of an introdution to give aess to the ideas in this paper.

Type theory's key novelty for the funtional programmer is the generalization from

simple funtion spaes S ! T to dependent funtion spaes 8x : S : T . Here T

may involve x , making the return type of the funtion depend on the value of the

argument. We may still write S ! T if T does not ontain x . Dependeny allows

operations on ranges of types, seleted by a prior input, suh as C-style printf (Au-

gustsson, 1998), or the generi `fold' for every onrete Haskell type (Altenkirh &

MBride, 2002). It also makes type theory an expressive logi.

Funtions themselves are introdued by �-terms and appliations ompute just

by �-redution. As we have loal de�nition (let x 7! s : S :t), we dispense with

substitution in the presentation. De�nitions are not reursive|the s must exist

before x is bound to it. Under the let x 7! s : S binding, x has type S and redues

to s by Æ-redution, and the binding itself will vanish when x no longer ours in

sope: we all this -redution| for `garbage'(f. (Severi & Poll, 1994)).

UTT has no speial treatment of polymorphism, but we may 8-quantify over types
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syntax

vid := x

j

j

: : :

term := vid

j

j

?

0

j

j

?

1

j

j

: : :

j

j

?

n

j

j

: : :

j

j

8vid : term: term

j

j

�vid : term: term

j

j

term term

j

j

let vid 7! term : term : term

ontext := �

j

j

ontext ; vid : term

j

j

ontext ; vid 7! term : term

validity ontext ` valid

� ` valid

� ` S : ?

i

�; x : S ` valid

� ` s : S

�; x 7! s : S ` valid

typing ontext ` term : term

� ` valid

� ` x : S

� ontains x : S or x 7! s : S

� ` valid

� ` ?

n

: ?

n+1

� ` S : ?

i

�; x : S ` T : ?

i

� ` 8x :S : T : ?

i

�; x : S ` t : T

� ` �x :S : t : 8x :S : T

� ` f : 8x :S : T � ` s : S

� ` f s : let x 7! s : S : T

�; x 7! s : S ` t : T

� ` let x 7! s : S : t : let x 7! s : S : T

� ` t : S � ` S

�

T

� ` t : T

redution ontext ` term ; term onversion ontext ` term'term

[�℄

� ` (�x :S : t) s ; let x 7! s : S : t

[Æ℄

�; x 7! s : S ; �

0

` x ; s

[℄

� ` let x 7! s : S : t ; t

x 62 t

plus ontextual losure, and ' as the equivalene losure of ;

umulativity ontext ` term

�

term

� ` S ' T

� ` S

�

T

� ` R

�

S � ` S

�

T

� ` R

�

T

� ` ?

n

�

?

n+1

� ` S

1

' S

2

�; x : S

1

` T

1

�

T

2

� ` 8x :S

1

: T

1

�

8x :S

2

: T

2

Fig. 1. Luo's UTT plus loal de�nition (funtional ore)
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(and other higher-kind objets). There is no danger of paradox|types are olleted

in a umulative hierarhy of universes ?

n

, individually losed under 8, eah inhabit-

ing and embedded in the next. These level subsripts an be managed mehanially

(Harper & Pollak, 1991), so we shall freely omit them.

Additionally, impliit syntax, a very useful mehanism also due to Pollak (Pol-

lak, 1992), allows us to omit arguments to funtions, where they may be inferred by

uni�ation. We mark in the onrete syntax for dependent funtion types whether

the argument is to be supplied or omitted by default, writing 8

x :S

: T to indiate

the latter. We do not demand omplete mehanial inferene and indeed we may

override it|if f : 8

x :S

:T , we may still write f

s

to supply the argument s ourselves.

The ore language is regulated by a system of mutually indutively de�ned judg-

ments, of whih the �rst (typeheking) and third (onversion) ontain the

most interest from a programming point of view:

� ` t : T `t has type T in ontext �': terms t are typeheked with respet to

a ontext whih ontains (at least) the delarations x : S or de�nitions x 7! s : S

of every variable whih may our free within t ;

� ` valid `� is valid': only those ontexts � make sense, whose delarations give

variables legitimate types and whose de�nitions are type-orret;

� ` S'T `S is onvertible to T in �': UTT is a a omputational theory: its

types may ontain and are identi�ed up to onversion; onversion is the usual

equivalene losure of a redution relation � ` s ; t , generated by ongru-

ene losure from a number of spei�ed one-step ontrations; ; embraes �-

redution, as well as other rules detailed below; we do not onsider �-onversion

expliitly|treatments inlude (MKinna & Pollak, 1999);

� ` S

�

T umulativity polies embedding between universe levels.

This system has a number of very strong meta-theoreti properties: all programs

terminate, so onversion is deidable, hene so too are umulativity, validity and

typeheking (Luo, 1990; Goguen, 1994; Pollak, 1995).

Remark on meta-notation and meta-operations

In addition to the above properties of the type theory, we also require a num-

ber of meta-operations. For example, + t denotes the unique normal form of t .

We typially present these in `funtional' style, writing equations in the form

de�niendum =) de�niens , employing `where' lauses, `if-then-else' et.

Inspired by de Bruijn's `telesopes' (de Bruijn, 1991), we manipulate sequenes of

bindings and of arguments, writing sequenes of terms as vetors

~

t (empty vetor

"), and iterated appliations as f

~

t . Contexts, denoted by Greek apital letters, may

stand for multiple bindings in 8-, �- and let-expressions. That is, we write 8�: T

for the dependent funtion spae formed by iteratively `disharging' � over T :
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8 � : T =) T

8�; x : S : T =) 8�: 8x :S : T

8�; x 7! s : S : T =) 8�: let x 7! s : S : T

Funtions ��: t and iterated de�nitions let � 7! ~s : t are aordingly abbreviated.

Suessive bindings with the same type, e.g. m :N;n :N, are abbreviated as m;n :N.

Finally, � may stand for the vetor of its delared variables: if � ` f : 8�:T ,

then �;� ` f� : T , even if � ontains de�nitions. (End of remark).

By the Strengthening Lemma (Luo, 1990; van Benthem Jutting et al., 1994), any

well-typed term � ` t : T arises from a minimal subontext of �, that is, there

exist ontexts �

t

, �

t

, satisfying:

� �

t

� � minimal suh that �

t

` t : T ;

� �

t

; �

t

is a permutation of �;

� �

t

; �

t

` J if and only if � ` J , for any judgment J .

We shall make frequent use of this fat in the sequel. Indeed, suh a ontext splitting

(�

t

;�

t

) may be omputed as strengthen(�; t ;T ), a meta-operation de�ned as

follows, where fv(X ) denotes the set of variables free in X :

strengthen(�; t ;T ) =) (�; �)

strengthen(x : S ; �; t ;T )

where (�

t

;�

t

) (= strengthen(�; t ;T )

=) if x 2 fv(�

t

) [ fv(t) [ fv(T )

then (x : S ; �

t

;�

t

)

else (�

t

; x : S ; �

t

)

2.1 Conrete Syntax for Programs

In this setion, we develop our notation for programming, summarised in Figure 2.

We distinguish an extended expression language expr of this programming notation

from the low-level terms of the underlying type theory. The ategory expr embraes

the basi onstruts of UTT, together with:

� names for datatypes did and their onstrutors id ;

� a ategory lhs whih forms the left-hand sides of programs;

� a distinguished subategory all of the lhs , whih omprises the allowable

invoations of funtions;

� let notation, for loal funtion de�nitions in expressions;

� view notation, whih will be explained in detail in Setion 6.

Top-level soure ode onsists of a sequene of datatype delarations (of whih

more in Setion 3 below) and de�nitions of new funtion symbols �d . These are
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expr := vid

j

j

did

j

j

id

j

j

all

j

j

expr : expr

j

j

8vid :expr : expr

j

j

?

j

j

�vid :expr : expr

j

j

expr expr

j

j

let sig [�d ℄ program : expr

j

j

view expr

program := lhs 7! expr

j

j

lhs ( expr fseq [program ℄g

j

j

lhs j expr fprogramg

del := data sig [did ℄ where sig [id ℄

�

j

j

let sig [�d ℄ program

soure := seq [del ℄

vid := x

j

j

: : :

did := D

j

j

: : :

id := 

j

j

: : :

�d := f

j

j

: : :

all := �d expr

�

lhs := all (j expr)

�

seq [thing ℄ :=

j

j

thing (; thing)

�

sig [id ℄ :=

seq [vid : expr ℄

id vid

�

: expr

Fig. 2. Conrete syntax for dependently typed programs

introdued using let, whih introdues a program with a spei�ed type signature,

given in natural dedution style:

let

�

f � : R

program

where the syntax for programs departs from the traditional prioritized list of pat-

tern mathing equations. A program is a hierarhial struture, resembling those of

Augustsson (Augustsson, 1985), whih explains how all s to the funtion f should

be exeuted|either

� `by' (() invoking an eliminator;

� or `with' (j) the result of an intermediate omputation added to the data

under srutiny;

� or returning (7!) the value of a given expression one enough analysis has

been done. `Returns' lhs 7! expr are leaves in the program struture.

To aid readability in this paper, we adopt informal spaing and layout onventions

whih are inevitably more sustainable in L

A

T

E

X than in ASCII. For example, we tend

to show the hierarhial struture of programs by indentation rather than brakets

and semiolons. Also, from time to time (e.g. in the ode for elem), we use vertial

alignment to avoid the repetition of unhanged patterns from the lhs of a program

to those of its subprograms. We shall shortly show how programs determine the

syntati struture of their subprograms, and hene that some suh onvention an

be implemented; we omit any further detailed disussion of suh pragmatis.

2.2 From Programs to UTT

We explain the onrete syntax by elaboration into the underlying type theory,

but to do this, we will have to augment the abstrat syntax of UTT (see Figure 3).
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term := : : :

j

j

did

j

j

id

j

j

hlabel : termi

j

j

all hlabeli term

j

j

return term

label := �d term

�

(j term)

�

Fig. 3. Abstrat syntax extensions for elaborating programs

The underlying funtional ore must be extended with the datatype and onstrutor

names, and to explain the distinguished alls and returns of funtions, we introdue:

� labels, label := �d term

�

(j term)

�

, whih elaborate the ategory lhs ;

� labelled alls, all hlabel i term, whih assoiate a term with an elaborated lhs ;

� and their orrespond returns, return term;

� and labelled types, hlabel : termi;

This last onstrut hl :T i is used to label a type T with a funtion invoation l

whih, when exeuted, should return a value in T . We all these labelled types

programming problems: they are solved by elaborating programs.

Digression: programming problems in Lego To give an idea of our underlying

motivation for labelled types, onsider the following trik whih you an play even

in implementations of raw type theory suh as Coq or Lego: suppose you want to

implement the addition funtion (+) : N ! N ! N. You might start with this type

as a top-level goal, and invoking N-elim, get bak the subgoals

? : N ! N

? : N ! (N ! N) ! N ! N

(the preise form of the interation is not at issue here). Whih instane of N is

whih? If you are unsure, it is rather easy to �nish the job with a well-typed term

whih does not quite add up! Suppose instead that you rephrase the goal, as follows,

via a de�ned funtion Plus whih is vauous in its arguments:

Plus 7! �x ; y :N: N : N ! N ! ?

? : 8x ; y :N: Plus x y

If you normalize the goal, you an see it is just as before. With the unredued goal,

invoking N-elim now yields two subgoals

? : 8y :N: Plus 0 y

? : 8x :N: (8z :N: Plus x z ) ! 8y :N: Plus (sx ) y

Again, the normal forms of these subgoals are as before, but unredued, they tell

you exatly whih N is whih. Eah subgoal shows you the `pattern' to whih it

orresponds: in the base ase, you are asked to solve the problem \what is 0+ y?",

and in the step ase, \what is (sx )+y?", the indutive hypothesis shows you whih

are the allowable reursive alls, in this ase x + z for any z . (End of digression).
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ontext ` label label

� ` valid

� ` f label

� ` l label � ` t : T

� ` l t label

� ` l label � ` t : T

� ` l j t label

ontext ` term : term

� ` l label � ` T : ?

n

� ` hl :T i : ?

n

� ` l label � ` t : T

� ` return t : hl :T i

� ` t : hl :T i

� ` all hli t : T

ontext ` term ; term

[�℄

� ` all hli (return t); t

Fig. 4. Typing and onversion extensions

The vauous arguments of Plus eho the use of phantom types in Haskell (Leijen

& Meijer, 1999). These arguments enrih the desriptive power of the type, giving

a more disriminating aount of the purpose of its values|not just their represen-

tation. In muh the same way, we distinguish hl :T i and T , and use this to manage

the proess of typeheking and elaborating programs by stratifying their return

types, labelling them with the funtion alls to whih they orrespond.

The elaboration proess relies on omputation within labels, so the terms they

ontain must be well-typed|this is enfored by a label well-formedness judgment,

� ` l label . We give a very simple, and intuitively appealing, operational se-

mantis to abstrat all and return, by extending the redution relation with �-

redutions (� for `return'). The new rules are shown in Figure 4.

Eah program onstrut in our notation either re�nes problems into subproblems or

solves them outright. For nontrivial problems, solving at a leaf is ahieved by `�lling

in the right-hand side' with the term whose value is to be returned. If every leaf

is solved outright, then the program suessfully elaborates. Suh a model of su-

essful elaboration lends itself to a fully-edged aount of type-direted interative

program development|with all the armoury of tehniques urrently employed in

implementations of type theory at our disposal. We will return to this point later.

We explain whih high-level programs and expressions suessfully elaborate with

these new judgment forms:

�  ` . l `left-hand side ` elaborates to label l ';

�  e . t : T `expression e elaborates to well-typed term t of type T ';

�j�  p . t : hl :T i `in global ontext �, and loal ontext � of pattern bind-

ings, program p elaborates to well-typed term t of labelled type hl :T i';

�  d . � `in ontext �, delaration d elaborates to new ontext bindings �'.
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ontext  lhs . label

�  f . f

�  ` . l �  e . t : T

�  ` e . l t

�  ` . l �  e . t : T

�  ` j e . l j t

ontext  expr . term : term

� ` valid

�  ? . ?

n

: ?

n+1

: : :

�  e . t : S � ` S

�

T

�  e . t : T

[all℄

�   . l lookup(l ;�) =) (t : hl :T i)

�   . all hli t : T

[view℄ See Setion 6

Fig. 5. Elaboration of left-hand sides and expressions (edited highlights)

ontext jontext  expr . term : hlabel : termi

�j�  p . t : hl :Si �;� ` S

�

T

�j�  p . t : hl :T i

[return℄

�;�  ` . l �;�  e . t : T

�j�  ` 7! e . return t : hl :T i

[by℄ See Setion 4 [with℄ See Setion 5

Fig. 6. Elaboration of programs

Interpretation We intend the judgments for elaboration of high-level programs

and those of the type theory to be onneted by the following soundness properties,

whih we onjeture follow by simple indution on the rules, together with the

analysis we provide below of the elaboration rules for the various onstruts:

soundness for elaboration judgment yields underlying judgment

labels �  ` . l ) � ` l label

expressions �  e . t : T ) � ` t : T

delarations �  d . � ) �;� ` valid

programs �j�  p . t : hl :T i ) �;� ` t : hl :T i

We hope to expand on suh meta-theoretial treatment in future work; for now

it suÆes to observe that we obtain a na��ve operational semantis for programs,

simply by taking normal forms of elaborated terms.

The basi strutural rules for left-hand sides and expressions are summarised in

Figure 5; we only give seleted instanes of the rules for expressions, noting that

we may inorporate into both forms the use of suh notational onvenienes as

in�x operators, Pollak-style impliit syntax and universe level inferene, and the

omission of domain types from binders where they an be inferred from usage. Of

ourse, the real work is done by the remaining rules whih explain the elaboration

of the main programming onstruts.
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ontext  del . ontext

[data℄ See Subsetion 3.2

[let℄

�  8�: R . 8�: T : ? �j�  p . t : hf �:T i

�  let

�

f � : R

p . f 7! ��: t : 8�: hf �:T i

Fig. 7. Elaboration of delarations

We explain how the elaboration of a datatype delaration extends the ontext

with new bindings, in Setion 3. Likewise, we defer the disussion of `by' until

Setion 4, as it requires some onsiderable analysis|this is the heart of our aount

of `strutured deomposition on the left'. The elaboration rule for `with' is explained

in Setion 5; in e�et it onstruts a `helper funtion' with an extended label.

Return from a all is straightforward to explain|rule [return℄, Figure 6; the elab-

orated right-hand side is returned, pakaged with the label whih elaborates the

left-hand side. Given t : T , the problem hl :T i is solved outright.

The rule for delaring a funtion (see Figure 7) whose type 8�: R and body p

suessfully elaborate, binds a new de�nition into the ontext: a �-abstrated term

whose type o�ers solutions to a lass of programming problems|those whose labels

represent alls to the funtion. For example, we may de�ne sno in terms of ++

(`append') as follows:

let

xs : ListX x : X

sno xs x : ListX

sno xs x 7! xs ++ (x :: [℄)

Here, the [return℄ rule demands that xs ++ (x :: [℄) : List X , to ensure that the

equation solves the top-level problem hsno xs x :ListX i. We ould write all our

programs this way by applying elimination operators in gory detail `on the right'.

However, our notation exists to hide this detail, treating elimination `on the left'.

Meanwhile, the [all℄ rule uses the partial (but terminating) meta-operation

lookup, to searh the ontext for a variable whih an be applied to deliver a

solution to a programming problem with a given label|as delivered by de�nition.

Similarly, whilst elaborating a reursive program via an indution priniple, the

loal ontext will ontain indutive hypotheses whih `advertise' the reursive alls

they enable via labelled types, just as in our Plus example above.

The lookup mehanism thus orresponds to a simple proof tati|like Immed in

Lego. We defer its de�nition until Subsetion 4.1, by whih time the struture of

indutive hypotheses will have been made preise. For now, we an say that if �

ontains an elaborated de�nition, f 7! � � � : 8�: hf �:T i and

~

t : �, then ertainly

lookup(f

~

t ;�) =) (f

~

t :




f

~

t :+ let � 7!

~

t : T

�

)

Stritly speaking, this permits the elaboration of alls to de�ned funtions only at

exatly the arity in their signature. However, given that this arity has been spei�ed,
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it is a simple matter for the elaborator to handle a all at any arity: alls whih are

too long beomes appliations of alls; alls whih are too short get �-expanded,

�-abstrating the extra arguments required.

3 Datatype families, eliminators and omputation

We delare families of datatypes in our language by giving type signatures for the

type onstrutor symbol and for its data onstrutors, in the format

data type-onstrutor-signature where data-onstrutor-signatures

Simple monomorphi datatypes �t this pattern. For example, Unit and Bool:

data

Unit : ?

where

() : Unit

data

Bool : ?

where

true : Bool false : Bool

Note that we write both type and data onstrutors sans serif. Signatures usually

take the form of natural dedution rules: for eah new symbol, we give the ontext

whih types its arguments above the line, and the type of the symbol applied to

those arguments below. Examples inlude Cartesian produts and lists:

data

A;B : ?

A� B : ?

where

a : A b : B

(a;b) : A� B

data

X : ?

ListX : ?

where

[℄ : List X

x : X xs : List X

x :: xs : ListX

ListX is de�ned uniformly for any X and makes reursive referenes only to ListX .

Suh a parametri delaration introdues a olletion of datatypes eah atual

instane of whih ould, more tediously, be delared by itself. Families of datatypes

(Dybjer, 1991) generalize parametri datatypes in two ways. Firstly, they are non-

uniform: eah data onstrutor targets a subset of the type onstrutor's possible

arguments|Dybjer alls these arguments indies when they are used in this non-

uniform way. The So family mentioned earlier is a simple example:

data

b : Bool

So b : ?

where

oh : So true

Seondly, datatype families are mutually delared: a onstrutor for one subset of

the indies may refer reursively to other suh subsets. A suitable example is the

family of heterogeneous assoiation lists (`a-lists') with a spei�ed domain of Labels:

data

ls : List Label

HAL ls : ?

where

hnil : HAL [℄

l : Label x : X h : HAL ls

hons

X

l x h : HAL (l :: ls)

Here, hnil represents the empty a-list, with empty domain, and hons adds a new
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assoiation, of the value x , of type X , with label l to an existing a-list h with

domain ls , yielding an a-list with domain l :: ls . Inidentally, we ould easily require

distint labels by giving hons an extra argument in So (not (elem l ls)).

More generally, we permit datatype family delarations of this general form:

data

�

D � : ?

where

�

1



1

�

1

: D ~e

1

: : :

�

n



n

�

n

: D ~e

n

(y)

The ~e

i

may di�er from � and eah other, hene a Haskell/Cayenne-style

data D x y z ... = C1 ... | ... | Cn ...

will not serve. It is also why datatype families are so powerful. Correspondingly,

ase analysis on datatype families is rather more subtle than on simple datatypes.

As with funtion type signatures, if 8�: ? . 8�: ? and 8�

i

: D ~e

i

. 8�

i

: D~s

i

, then

we obtain D : 8�: ? and 

i

: 8�

i

:D~s

i

.

Remark For readability, we adopt the typographial onvention that arguments

with inferrable types need not be delared expliitly in a type signature's premises|

e.g. X : ? and ls : ListLabel in the delaration of hons. The missing delarations are

inserted (with Pollak-style impliit quanti�ation) among the elaborated ontext

of arguments|we may subsript suh an argument in the onlusion to determine

where it goes. The signature for hons elaborates to

hons : 8

X :?

:8

ls:List Label

: 8l :Label:X ! HAL ls ! HAL (l :: ls)

This onvention is implementable, by augmenting Pollak's tehniques, but the

details are beyond the sope of this paper. (End of remark).

Dependeny in type families allows us to speify operations whih enfore additional

safety onstraints by typing alone. For example, we an ensure that projetions from

an a-list apply only to labels in its domain:

let

k : Label h : HAL ls p : So (elem k ls)

typeProj k h p : ?

� � �

let

k : Label h : HAL ls p : So (elem k ls)

valProj k h p : typeProj k h p

We develop these operations as a running example: in Subsetion 3.1 below, we

explore the impat of dependent ase analysis on the types whih arise, and in Sub-

setion 5.1, the neessary oupling between intermediate omputations and types.

It is worth noting that there are other presentations of heterogeneous a-lists: we

ould index them by signatures in List (Label� ?), or we ould index signatures by

domain, then a-lists by signatures. Indeed, this example takes its ue from problems

originally enountered by Pollak in his odings of reords in whih later �eld types

depend on earlier �eld values (Pollak, 2000). In all of these variations, we �nd the

same problems|and the same solutions.
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3.1 Working with datatype families

In this setion, we examine the interation between ase analysis and types|learly

nontrivial where a funtion's return type depends on its argument, but still more

interesting one datatype families beome involved. Although not yet de�ned, we

use our high-level notation to failitate the disussion of our examples. Our purpose

here is to examine the phenomena whih arise in these programs, and whih must

be addressed in the design of any notation for them.

For many simple programs, there is no interation between ase analysis and types,

just as in standard funtional programming. The familiar elem funtion ontains

two ase-splits (on a List Label and on a Bool) neither of whih a�ets types:

let

k : Label ls : List Label

elem k ls : Bool

elem k [℄ 7! false

elem k (l :: ls) j k == l

j

j true 7! true

j

j false 7! elem k ls

Examining a value from an indexed datatype family is just as straightforward if

its indies may vary freely. In a funtion with type 8�: 8x :D �: T , x ould ome

from any onstrutor. If T does not depend on � or x , it will be una�eted. For

example, we may ompute a signature from a heterogeneous a-list:

let

h : HAL ls

hSig : List (Label� ?)

hSig hnil 7! [℄

hSig (hons

X

l x h

0

) 7! (l ;X ) :: (hSig h

0

)

One a funtion spae depends even on a simply-typed argument, ase analysis

an hange the return type|a phenomenon new to funtional programming. For

example, given a value and a list of labels, we an ompute the a-list binding eah

label to the value:

let

x : X ls : List Label

repeat x ls : HAL ls

repeat x [℄ 7! hnil

repeat x (l :: ls) 7! hons l x (repeat x ls)

The return type is indexed by the list, so the more we learn about the list, the more

we know about what to return. In the [℄ ase, the right-hand side must have type

HAL [℄|hnil is the only andidate; in the step ase, we need a HAL (l :: ls), whih

suggests applying hons l . No onstrutor makes a HAL ls for unknown ls , but the

more of ls we an see on the left, the more we an do on the right.

When analysing values from a datatype family, onstraining the hoie of indies

an rule out some ases. For example, we may shorten a nonempty a-list:

let

h : HAL (l :: ls)

hTail h : HAL ls

hTail (hons l x h

0

) 7! h

0

Why is there no ase for hnil? Beause there is no way hnil an make an inhabitant
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�

�

1



1

�

1

: D~s

1

~s

1

�

2



2

�

2

: D~s

2

~s

2

�

3



3

�

3

: D~s

3

~s

3

�

4



4

�

4

: D~s

4

~s

4

�

x : D

~

t

~

t

Fig. 8. Constrained ase analysis on a datatype family

of HAL (l :: ls)! The type disipline ensures that we need only return values for

onstrutors delivering elements whose indies lie in the subset under srutiny.

Further, a onstrutor may deliver suitable elements only from a portion of its

domain. More generally, suppose we are writing a funtion f whose type is

f : 8�: 8x :D

~

t : T

by ase analysis on x , where family D� : ? has onstrutors 

i

�

i

: D~s

i

. As Coquand

observes in (Coquand, 1992), we need onsider not the whole of D�, nor even the

whole of D

~

t , but the intersetion between D

~

t and eah of the D ~s

i

in turn, as

illustrated in Figure 8.

In this hypothetial example, onstrutor 

4

is ruled out, just as hnil was for hTail,

whilst every value returned by 

2

lies within D

~

t , as was the ase with hons.

However, we need only onsider 

1

�

1

for a subset of its possible arguments|those

�

1

whih make ~s

1

oinide with

~

t|and similarly for 

3

. Moreover, for eah 

i

, we

need only onsider instanes of �|f 's arguments|whih make

~

t oinide with ~s

i

.

This is a real departure for funtional programming. Analysing one input x an not

only deliver a restrited set of onstrutor patterns with some of their arguments

already determined; it an also have a non-loal impat, determining the values

of other inputs on whih the type of x depends. These instantiations may in turn
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hange the types of still other inputs, and possibly even the return type of the

funtion. Examples of these phenomena are found in our de�nition of typeProj:

let

k : Label h : HAL ls p : So (elem k ls)

typeProj k h p : ?

typeProj k hnil p ( So-ase p

typeProj k (hons

X

l x h

0

) p j k == l

j

j true 7! X

j

j false 7! typeProj k h

0

p

Analysing the h : HAL ls argument gives two ases. In the ase where h is hnil, we

also learn|by typing, not testing|that ls is [℄. Hene p's type in this ase is really

So false. The notation ( So-ase p, introdued formally in Setion 4, then invokes

ase analysis of p revealing no possible onstrutor|k annot our in [℄, so there

is no projetion to de�ne!

The hons ase is still more interesting: the `information for free' here is that the

domain must be l :: ls

0

, and the tail h

0

: HAL ls

0

. Moreover, p : So (elem k (l :: ls

0

)).

Now, elem k (l :: ls

0

) is omputed by testing the result of an intermediate all to

k == l . Hene, when typeProj analyses k == l , it learns, again for free, yet more

about the type of p. In the true ase, this does not matter as label k has been found;

in the false ase, p's type beomes So (elem k ls

0

)|exatly the prerequisite for the

reursive all, typeProj k h

0

p.

As you an see, some areful horeography is required to keep the testing performed

by typeProj in step with the testing performed by its type. The `j k == l ' lause

not only makes the result of the test available for analysis, it abstrats that result

from the type of p. We give the exat details of its elaboration in Setion 5.

The valProj funtion arries out exatly the same analyses as typeProj:

let

k : Label h : HAL ls p : So (elem k ls)

valProj k h p : typeProj k h p

valProj k hnil p ( So-ase p

valProj k (hons l x h

0

) p j k == l

j

j true 7! x

j

j false 7! valProj k h

0

p

This is no idle oinidene. Eah ase-split in valProj also instantiates the return

type omputed by typeProj. This is unremarkable in the hnil ase: p's type is

empty anyway, just as before. For the hons ase, the subsequent analysis of k == l

now delivers the value not only of the same test in the type of p, but also in the

typeProj all, by whih the return type is omputed. Correspondingly, where x

is returned in the true ase, the return type really is X . In the false ase, we must

return an element of typeProj k h

0

p, whih is exatly the type of valProj k h

0

p.

We may summarize the interations between ase-splits and types observed in this

setion, by means of the following table. We ategorize the examples, �rstly by the
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type of the argument being analysed and seondly by the degree of dependeny in

the funtion spae where the analysis ours. In eah meaningful ategory, we name

an example with the stated dependeny and give the argument type.

arg's type simple D free D � onstrained D

~

t

dependeny

none [elem℄ List Label [hSig℄ HAL ls [typeProj℄ So false

on indies not appliable [typeProj℄ HAL ls [hTail℄ HAL (l :: ls)

on arg itself [repeat℄ List Label [valProj℄ HAL ls [valProj℄ So false

Programming in Hindley-Milner systems never strays beyond the top left orner of

this table. Reent experiments with polymorphi reursion on nested types (Bird &

Meertens, 1998) begin to stray into the seond row, although the indies a�eted are

always type parameters rather than atual data arguments. Further, the uniform

`dataD� = : : :' style of family means that onstrutors an never be ruled out by

analysing a onstrained D

~

t , nor an a partiular hoie of onstrutor tell us more

about the indies

~

t , as the intersetion of the whole set � with

~

t is just

~

t itself.

As we work towards the more powerful tehniques and programs inhabiting the

bottom right orner, we must onfront a number of new issues:

� How do we handle the e�ets of analysing one argument on other arguments

and on types?

� How do we handle the potential omplexity of the intersetions between non-

trivial argument types D

~

t and nontrivial onstrutor ranges D~s

i

?

� How do we handle the impat on types of analysing the result of an interme-

diate omputation?

The notation we introdue in this paper is a step towards addressing these questions.

However, before we present the elaboration of the programming onstruts, let us

be preise about the presentation of datatype families in the underlying type theory.

3.2 Elaborating data delarations

These `data' delarations (y) of Setion 3 elaborate to ontext extensions by the

rules in Figure 9; the new bindings delare the type- and data-onstrutors, together

with the elimination operator D-elim, speifying whih reursive omputations

are permitted over instanes of D �. The meta-operation hyps(P ;�) omputes

the appropriate ontexts of indutive hypotheses. Elimination operators aquire

omputational behaviour by extending the onversion judgment of the type theory

with the `�-redution' sheme.

As observed in (Callaghan & Luo, 2000), �-redution need not be implemented by

na��ve pattern mathing (as it is in Lego (Pollak, 1994)). A simple swith on the

onstrutor 

i

, in the style of Augustsson (Augustsson, 1985), suÆes for the safe

exeution of well-typed programs.
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ontext  del . ontext

[data℄

�  8�:? . 8�:? : ?

�; D : 8�:?  8�

i

: D ~e

i

. 8�

i

: D~s

i

: ? (1 � i � n)

for eah x : T in eah �

i

; if D 2 T then for some ~u; T is D ~u

�  data

�

D � : ?

where

�

1



1

�

1

: D ~e

1

: : :

�

n



n

�

n

: D ~e

n

. D : 8�: ?; 

1

: 8�

1

: D~s

1

; : : : ; 

n

: 8�

n

: D~s

n

;

D-elim : 8

�

; x : D�: targets

8P :8

�

; x : D�: ? : motive

8m

1

:8�

1

; hyps(P ;�

1

): P (

1

~s

1

):

.

.

.

8m

n

:8�

n

;hyps(P ;�

n

): P (

n

~s

n

):

9

>

=

>

;

methods

P x

where hyps(P ; �) =) �

hyps(P ; r : D ~u; �) =) r

0

: P r ; hyps(P ;�)

hyps(P ; a : A; �) =) hyps(P ;�) otherwise

ontext ` term ; term

[�℄

�;D-elim : : : : ; �

0

` D-elim (

i

�

i

) P ~m ; m

i

�

i

res(P ; ~m;�

i

)

where res(P ; ~m;�

i

) : hyps(P ;�

i

)

res(P ; ~m; �) =) "

res(P ; ~m; r : D ~u; �) =) (D-elim r P ~m); res(P ; ~m;�)

res(P ; ~m; a : A; �) =) res(P ; ~m;�) otherwise

Fig. 9. Elaboration of datatype delarations

For N, delared by data

N : ?

where

0 : N

n : N

sn : N

, we obtain

N : ?; 0 : N; s : N ! N;

N-elim : 8x :N: 8P :N ! ?: P 0 ! (8n :N: P n ! P (sn)) ! P x

N-elim 0 P m

0

m

s

; m

0

N-elim (sn) P m

0

m

s

; m

s

n (N-elim n P m

0

m

s

)

For all the examples in this paper, it is suÆient to ignore the possibility of higher-

order reursive onstrutors and presume that all onstrutor argument types men-

tioning D have form D~u. Looser reursion regimes are now standard, as are mutual

de�nitions, but we prefer not to ompliate the presentation beyond what is needed

to support the present paper. Moreover it suÆes to treat datatype parameters (like

the X in ListX ) the same way we treat indies: a possible optimization is to abstrat

them one at the outside, rather than repeatedly in the motive and methods.
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4 The `by' onstrut: generalized elimination

In this setion, we develop the tools we need to deploy not merely the mahine-

generated elimination operators for datatype families, but any funtion whose type

has a suitable shape. We say that a term e is a �j�-eliminator and we all its

type a �j�-eliminator type if, for any �;�

i

;~s

i

;

~

t ,

�;� ` e : 8P : (8�: ?): (8�

1

: P ~s

1

) ! � � � ! (8�

n

: P ~s

n

) ! P

~

t

and �;� ` valid

and �; P : (8�: ?) ;�

i

` P s

i

: ? (1 � i � n)

It is this entral de�nition, and its abstrat haraterization of the type-shape whih

drives the generalization of the primitive elimination operators in type theory. We

all an eliminator's �rst argument its motive|it shows what is to be gained by

the elimination; the remaining arguments, we all methods|they show how the

motive is to be ahieved in eah ase.

An elimination operator is a funtion f : 8�: E in �, suh that E is a �j�-

eliminator type. We say that the � are f 's targets|they explain what is to be

eliminated. Our de�nition thus inludes, but is not restrited to the basi D-elim

operators whih ome with datatype families.

Note that the traditional presentation of indution priniples (as in Subsetion 1.1)

orders the arguments: motive, methods, targets. We put the targets �rst, so that

an elimination operator is a funtion from targets to eliminators. The (-onstrut

splits a programming problem into subproblems given an arbitrary eliminator. Of

ourse, if �;� ` x : D

~

t , then D-elim x is a �j�-eliminator.

The [by℄ rule explains how this splitting proeeds, direted by the eliminator's type.

It is shown, with other assoiated de�nitions, in Figure 10. The main work is done

by the meta-operation split, omputing the ombinator g with whih to reombine

the elaborated subprograms. The aount whih we give here is a simpli�ed version

of those in (MBride, 1999; MBride, 2002), adequate for all the examples in this

paper. Extensions overing more omplex rules or more omplex ombinations of

reursion are routine, but require more areful bookkeeping than is justi�ed here.

We shall explain what happens, with the help of a worked example|de�ning htail

let

h : HAL (l :: ls)

hTail h : HAL ls

hTail h ( HAL-elim h

hTail (hons l x h

0

) 7! h

0

where (showing the indies, but omitting other inferrable information to save spae):

HAL-elim

(l::ls)

h : 8P : 8

ls

: HAL ls ! ?:

P

[℄

hnil !

(8

X ;ls

0

: 8l ; x ; h

0

: P

ls

0

h

0

! P

(l::ls

0

)

(hons l x h

0

)) !

P

(l::ls)

h

For P , we need a motive suh that P

(l::ls)

h delivers an element of hhTail h :HAL lsi.
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Heterogeneous Equality

a : A b : B

a

A

=

B

b : ? re a : a = a

q : a

A

=

A

a

0

P : 8

a

0

:A

: a = a

0

! ? m : P

a

(re a)

= -elim q P m : P

a

0

q

ontext ` term ; term

[�℄

� ` = -elim (re a) P m ; m

let

q : a

A

=

A

a

0

P : A ! ?

subst q P : P a ! P a

0

subst q P 7!= -elim q (�

x :A

: � :a = x : P x )

let

q : a

A

=

A

a

0

sym q : a

0

A

=

A

a

sym q 7! subst q (�x :A: x = a) (re a)

Simpli�ation for a method

dm : 8�: t = t ! M e

=) dm

0

: 8�:M e;

m 7! ��: �q :m

0

�

dm : 8�: halk~s = halk

~

t ! M e

=) dm

0

: 8�: ~s =

~

t ! M e;

m 7! ��: �q : injet q (m

0

�)

dm : 8�: halk~s = heese

~

t ! M e where halk 6= heese

=) m 7! ��: �q : onflit q M

dm : 8�: x = s ! M e where x 2 dom�; s 62 dom�

=) dm

0

: 8�: s = x ! M e;

m 7! ��: �q :m

0

� (sym q)

dm : 8�: 

~

t = x ! M e where x � 

~

t

=) m 7! ��: �q : yli q M

dm : 8�: t =

T

x ! M e where (�

t

; �

x

t

; x : T ;�

x

) (= strengthen(�; t ;T )

=) dm : +8�

t

; �

x

t

; x 7! t : T ; �

x

:M e

m 7! ��: �q : subst q (�x : 8�

x

:M ) (m

0

�

t

�

x

t

) �

x

dm : M e =) m

Simpli�ation for a ontext of methods

d�e =) �

d	;m : Me =) d	e; dm : Me

Splitting a problem

split(�; hl :T i ;E as 8P : (8�: ?): 8	: P

~

t)

=) let P 7! ��: 8�:� =

~

t ! hl :T i :

(�d	e: ��: �e :E : e P 	� (re

~

t)

: 8d	e: 8�: E ! hl :T i)

ontext jontext  expr . term : hlabel : termi

[by℄

�;�  ` . l �;�  e . t : E for E a �j�-eliminator type

split(�; hl :T i ;E) =) g : (8�

1

: hl

1

:S

1

i)! � � � ! (8�

k

: hl

k

:S

k

i)

! 8�: E ! hl :T i

�j�

i

 p

i

. s

i

: hl

i

:S

i

i (1 � i � k)

�j�  `( e fp

1

; : : : ; p

k

g . g (��

1

: s

1

) : : : (��

k

: s

k

) � t : hl :T i

Fig. 10. The [by℄ rule and related de�nitions.
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The problem is that although P is applied here to a nonempty environment, it must

still abstrat over every environment, empty or not. This is an old problem for in-

dutive theorem proving (for example in proving `generation lemmas' (Barendregt,

1992; MKinna & Pollak, 1993; MKinna & Pollak, 1999)) and for logi program

transformation (Clark, 1978; Tamaki & Sato, 1984). How do we apply an indution

priniple (or an unfolding) to a onstrained instane of a relation?

Fortunately, there is also an old solution whih has been exploited for many years,

either by hand or mehanially, in these settings: transform `this onstrained in-

stane' to `any instane whih satis�es these onstraints', where the onstraints are

expressed by equations :

If we ould take P 7! �

ks

: �h

0

:HAL ks : ks = l :: ls ! hhTail h :HAL lsi

then we would have P

(l::ls)

h ' l :: ls = l :: ls ! hhTail h :HAL lsi

This is what we need, at the ost of supplying a trivial proof. Meanwhile, the

methods required would have types

m

1

: [℄ = l :: ls ! hhTail h :HAL lsi

m

2

: 8

X ;ls

0

: 8l

0

; x : 8h

0

:HAL ls

0

:

(ls

0

= l :: ls ! hhTail h :HAL lsi) !

l

0

:: ls

0

= l :: ls ! hhTail h :HAL lsi

For the hnil ase,m

1

, we have a false equation, hene the method should be supplied

vauously. For m

2

, we have an equation whih implies that ls

0

= ls , and hene that,

`morally', the exposed tail h

0

is an aeptable return.

We an mehanize this idea in type theory, yielding the key tehnique for expressing

high-level programs via elimination operators, hene we reprise it here. In order

to do so, our type theory needs a suitable notion of equality|the heterogeneous

equality shown in Figure 10. This presentation (MBride, 1999) is not yet standard

in type theory: it allows the formation of heterogeneous equations between elements

of any two types, and hene equations between vetors in a given ontext. We

expand ~a =

~

b as a ontext of equational onstraints q

1

: a

1

= b

1

; : : : ; q

k

: a

k

= b

k

,

and orrespondingly, re

~

t as the vetor re t

1

; : : : ; re t

k

.

Cruially, however, the elimination operator (with �-redution

1

), whih gives us

that equality is a ongruene, only applies to homogeneous equations: we may only

substitute elements of the same type. It is not the operator whih a data delaration

would generate for =, but it still overs all anonial proofs of equations.

Now, in the general ase, we have a programming problem 8�: hl :T i and an elim-

inator with type 8P : (8�: ?): 8	: P

~

t . The split meta-operation hooses

P 7! ��: 8�:� =

~

t ! hl :T i

1

� being a nod to those authors, who have studied an additional onstant K whih, for the usual

indutively de�ned equality in type theory, yields power equivalent to our notion (Streiher,

1993; Hofmann & Streiher, 1994)
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Now (in sope of this de�nition) if we an �nd methods 	 where

	 is m

1

: 8�

1

; �; ~s

1

=

~

t : hl :T i ;

.

.

.

m

n

: 8�

n

; �; ~s

n

=

~

t : hl :T i

we will have

��: �e :E : e P 	� (re

~

t) : 8�: E ! hl :T i

This is the general form of the tehnique we used in the hTail example, turning a

partiular

~

t into equational onstraints on a freely hosen � desribed above. The

instantiated onstraints haraterize the intersetions ~s

i

=

~

t in whih the indies of

interest lie. Further, in any indutive hypotheses given by expanding P in �

i

, the

equations give the onditions for making a reursive all. Quantifying over � within

the motive P ensures that suh indutive hypotheses are as liberal as possible. For

hTail, the motive and the method types|now a little less tidy|are as follows:

P 7! �

ks

: �h

0

:HAL ks : 8

l;ls

: 8h :HAL (l :: ls):

ks = l :: ls ! h

0

= h ! hhTail h :HAL lsi

m

1

: 8

l;ls

: 8h :HAL (l :: ls):

[℄ = l :: ls ! hnil = h ! hhTail h :HAL lsi

m

2

: 8

X ;ls

0

: 8l

0

; x : 8h

0

:HAL ls

0

:

(8

l;ls

: 8h :HAL (l :: ls):ls

0

= l :: ls ! h

0

= h ! hhTail h :HAL lsi) !

8

l;ls

: 8h :HAL (l :: ls):

l

0

:: ls

0

= l :: ls ! hons l

0

x h

0

= h ! hhTail h :HAL lsi

These methods m

i

will ultimately give rise to the subproblems solved by the sub-

programs, but �rst they are simpli�ed by �rst-order uni�ation, as in (MBride,

1998; MBride, 1999; MBride, 2002), and one again here.

We present uni�ation in Figure 10 as a meta-operation on a method binding,

dm : M e, returning a ontext in whih m still has type M , but may now be de�ned,

either in terms of a simpli�ed method m

0

: M

0

(with the equations redued), or

without further assumption (if the equations are demonstrably absurd). Eah lause

of the de�nition explains how to simplify a homogeneous equational hypothesis and

thus takes the form dm : 8�: s = t ! M e =) � � �. In order to resolve ambiguity,

we prioritize the rules from top to bottom and shorter andidates for � over longer.

For reasons of brevity, we omit the expliit enforement of homogeneity and the

repetition of the input method's type.

The meta-operations injet and onflit deploy proofs that a datatype family

has the `no onfusion' property. Meanwhile, yli exploits the relevant family's

`no yles' property: the ondition x � 

~

t , (x is onstrutor-guarded in 

~

t), holds

if either x ' t

i

or x � t

i

for some i. These properties are derived automatially

when eah datatype family is delared: we do not repeat the onstrution here, but

refer the interested reader to (MBride, 1999).
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In the penultimate lause, strengthen is used to ensure that t is a suitable an-

didate to instantiate x , whose binding must fall amongst those not needed to type-

hek t|this subsumes the traditional our-hek. Moreover, omputing out the

new de�nition instantiates x with t in the method's label.

What an we say about this uni�ation algorithm? Our prioritization ensures that it

is deterministi. Further, for methods dm : 8�: hl :T ie, the usual indution (�rst on

the number of non-equational hypotheses in �, then on the number of onstrutor

symbols in the equations) shows that the algorithm terminates.

We an readily iterate this proess aross a ontext of methods, d	e. For hTail,

we get something of the following form, with the hnil ase solved outright, and the

patterns in the hons ase redued to those the subprogram requires:

d	e =)

m

1

7! �

l;ls

: �h: �q : [℄ = l :: ls :

onflit q (hnil = h ! hhTail h :HAL lsi);

m

0

2

: 8

X ;ls

: 8l ; x : 8h :HAL ls :

(8

l;ls

: 8h :HAL (l :: ls): ls

0

= l :: ls ! h

0

= h ! hhTail h :HAL lsi) !

hhTail (hons l x h) :HAL lsi ;

m

3

2

7! :: subst ::m

0

2

; m

2

2

7! :: subst ::m

3

2

; m

1

2

7! :: subst ::m

2

2

;

m

2

7! :: injet ::m

1

2

Cruially, d	e still binds every method in 	, so the split operation used in the [by℄-

rule is well-de�ned: the ombinator it omputes just abstrats over the simpli�ed

problems, but passes the terms derived for the k � n unsimpli�ed methods to the

eliminator, solving the original problem. The [by℄ rule heks that these simpli�ed

problems are solved by the subprograms.

4.1 Derived eliminators

As has often been observed, many `obviously' terminating funtions do not diretly

�t the pattern of omputation supported by D-elim operators|one step of ase

analysis, with reursion on the immediately exposed subterms. Some, suh as the

Fibonai funtion, require aess more than one step bak down the ourse of

values. Others, suh as MBride's dependently typed implementation of �rst-order

uni�ation (MBride, 2001), perform ase analysis on a datatype family (the terms),

but reursion on an index of that family (the number of unsolved variables).

One remedy, ertainly adequate for these two examples, is to follow Coquand's

suggestion and separate ase analysis from reursion. Gim�enez ahieves this in

Coq (Gim�enez, 1994; Gim�enez, 1998) by equipping the type theory with primitive

Case and Fix onstruts. The latter permits reursion on any onstrutor-guarded

subterm (.f. the previous Setion) of the argument it addresses.

One does not need the full mahinery of an extension by �xpoint onstruts, how-
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ever; the �rst author's version of the same idea is to derive separate ase analysis

and reursion operators automatially, given the primitive elimination operator.

The type of the ase analysis operator is omputed simply by disarding the indu-

tive hypotheses from the primitive elimination operator:

D-ase : 8

�

; x : D�: 8P : (8

�

; x : D�: ?):

8m

1

:8�

1

: P (

1

~s

1

): : : : 8m

n

:8�

n

: P (

n

~s

n

): P x

The intrinsi ation of �-redution on onstrutor-headed arguments is harnessed

to aount for onstrutor-guarded reursion, via a memoization tehnique:

D-re : 8

�

; x : D�: 8P : (8

�

; x : D�: ?):

(8

�

; x : D�:D-memoP x ! P x ) !

P x

The prediate transformer D-memo omputes a `ourse-of-values' data struture

storing a value in P y for every y struturally smaller than the given x . This

struture is just a big tuple, omputed by primitive reursion over x . We write

D-memo informally in pattern mathing style|these laws hold as onversions|

but the eliminator translation is straightforward.

D-memoP (

i

�

i

) ' �(hyps(D-memoP ;�

i

); hyps(P ;�

i

))

where �(x

1

:T

1

; : : : ; x

n

:T

n

) denotes the Cartesian produt T

1

� : : :�T

n

. We take

�� to be Unit. For N, this gives

N-memo P 0 ;

�

Unit

N-memo P (sn);

�

( +N-memo P n)� P n

The term justifying D-ase is trivial to onstrut; that for D-re is a little more

omplex|we refer the interested reader to (MBride, 1999). We may use D-ase x

repeatedly, or other means, to instantiate D-memoP x with onstrutor-pre�xed

terms, allowing it to unfold and reveal hypotheses for the guarded subterms. The

meta-operation lookup must therefore be able to searh these tuples in order to

projet out the solutions to the programming problems orresponding to reursive

alls. Consider, for example, the Fibonai funtion:

let

x : N

�b x : N

�b x ( N-re x

�b x ( N-ase x

�b 0 7! 0

�b (sx

0

) ( N-ase x

0

�b (s0) 7! s0

�b (s(sx

00

)) 7! �b x

00

+ �b (sx

00

)

Here, the initial( N-re x will selet the following motive and add the orrespond-

ing memo-struture to the ontext:

P 7! �n: 8x : n = x ! h�b x :Ni

memo

x

: N-memo P x
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lookup(l ; �; x 7! s : S) =) try unpak(�; ("; "); x ; +S)

before lookup(l ;�)

lookup(l ; �; x : S) =) try unpak(�; ("; "); x ; +S)

before lookup(l ;�)

where

unpak(�; (~s ;

~

t); x ; hl

0

:T i) where (� 7! ~u) uni�es l

0

with l and ~s with

~

t

�;� 7! ~u ` x : hl :T i

=) ( + let � 7! ~u: x : + let � 7! ~u: hl :T i)

unpak(�; (~s ;

~

t); f ; 8x :S : T ) where x 2 T

=) unpak(�; x : S ; (~s;

~

t); f x ;T )

unpak(�; (~s ;

~

t); qf ; s = t ! T ) =) unpak(�; (~s;s;

~

t ;t); qf (re s);T )

unpak(�; (~s ;

~

t); xy ;X �Y ) =) try unpak(�; (~s;

~

t); snd xy ;Y )

before unpak(�; (~s;

~

t); fst xy ;X )

Fig. 11. The lookup meta-operation

In the reursive ase, x has been instantiated, and the memo-struture beomes

memo

x

: N-memo P (s(sx

00

)) ;

�

(( +N-memo P x

00

) �

(8x : x

00

= x ! h�b x :Ni)) �

(8x : sx

00

= x ! h�b x :Ni)

So, lookup must handle more than just the bindings, f 7! � � � : 8�: hf �:T i,

yielded by the [let℄ rule; it must extrat solutions from hypotheses tupled or on-

strained by equations. We de�ne it in Figure 11, giving only the patterns whih

lead to progress|if the math fails, so does the operation.

For eah binding in �, lookup inspets the normal form of its type to hek if it an

math the required label l . The real work is done by the auxiliary meta-operation

unpak(�; (~s ;

~

t); x ;X ), whih builds a andidate solution x , whilst aumulating

a ontext � whih must be instantiated, and a pair of vetors (~s ;

~

t) whih must

be equal, for the andidate to sueed with type X . This X determines the searh

strategy: if it is 8-quanti�ed, try appliation; if it demands an equation, try a

reexive proof; if it is a pair, try eah projetion in turn. Eventually, if unpak

reahes a andidate for a programming problem hl

0

:T i, it heks that l

0

subsumes

l by unifying the labels and the aumulated onstraints, then typeheking the

instantiated andidate: we use ordinary �rst-order uni�ation on normalized terms.

For the �b example, lookup does indeed �nd that

snd (fstmemo

x

) x

00

(re x

00

) : h�b x

00

:Ni

sndmemo

x

(sx

00

) (re (sx

00

)) : h�b (sx

00

) :Ni

This de�nition of lookup is ertainly adequate to unpak the solutions to pro-

gramming problems exposed by D-ase in the memo-strutures installed by D-re.

However, the latter are just partiular instanes of the general notion of elimination

operator, de�ned in Setion 4, and ould have been de�ned by a programmer us-

ing D-elim; but sine they may be generated automatially, we may take them as

given. They apture an important lass of allowable reursions; user-de�ned elimi-
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nation operators whih apture other interesting reursive all patterns have been

onsidered elsewhere (MKinna, 2002) and remain the subjet of ongoing study.

Of ourse, htail and �b, as presented in full above, have rather more bulky ode

than funtional programmers normally expet to write. Espeially annoying is the

fat that the alls we eventually write on either side already arry the evidene of the

ase analysis and strutural reursion whih explain them|onstrutor symbols.

We an alleviate this problem somewhat by taking a ombination of outer D-re

and inner D-ase appliations to be the default explanation of a non-empty blok of

programs wherever a single program is expeted. The onstrutor patterns in these

programs bound the depth of the splitting whih an possibly produe them, and

there are only �nitely many ways to ombine reursions lexiographially, hene

there is at least a lumsy elaboration method. More sophistiated approahes may

be found in (Cornes, 1997; Abel & Altenkirh, 2000).

As a onsequene of this defaulting strategy, we may suppress the(-lause in htail,

reovering our earlier statement of the program

let

h : HAL (l :: ls)

hTail h : HAL ls

hTail (hons l x h

0

) 7! h

0

We may also remove all but the three equations from the program for �b, yielding

the more familiar

let

n : N

�b n : N

�b 0 7! 0

�b (s0) 7! s0

�b (s(sn

00

)) 7! �b n

00

+ �b (sn

00

)

Indeed, in the general ase, the only -ase-splits whih we must retain are those

whih yield no ases! The undeidability of type inhabitation obliges us to be expliit

in suh situations. In the absene of evidene in the form of a onstrutor pattern,

whih points to a partiular argument type being empty, there is no basis on whih

to reonstrut the orret -ase-term. Examples of this arise with the ourrene

of So false in the hnil branhes of typeProj and valProj.

With the derived ase analysis and reursion operators, and using this onvention,

our type theory an support|by elaboration into large and unreadable terms|

every program admitted by Coquand's proposed pattern mathing language (Co-

quand, 1992), as partially implemented in ALF (Magnusson, 1994). Suh is the

prinipal result of the �rst author's PhD thesis (MBride, 1999), in whih the orig-

inal objetive had been to dispense with eliminators in favour of pattern mathing.

With hindsight, we would reommend exatly the opposite. In our terms, Coquand's

system hard-wires splitting as if by D-ase (with intersetions omputed by a uni-

�ation orale) and presents reursion only as if by D-re.

We onlude this setion with a simple example using a non-standard eliminator|

the `target-�rst' variant of N-Compare from the Introdution, of type
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N-ompare : 8m;n :N: 8P : N ! N ! ?:

(8x ; y :N: P x (x + sy)) !

(8x :N: P x x ) !

(8x ; y :N: P (y + sx ) y ) !

P m n

With it, we may de�ne the `absolute di�erene' funtion for N:

let

m;n : N

absDi� m n : N

absDi� m n ( N-ompare m n

absDi� x (x + sy) 7! sy

absDi� x x 7! 0

absDi� (y + sx ) y 7! sx

In the original spirit of pattern mathing, a testing operation, omparison, has

been safely and learly ombined with a seletion operation, subtration. We shall

present more sophistiated examples in Setion 6, where we develop an idiom for

onstruting non-standard eliminators by �rst-order programming.

5 Abstrating Intermediate Computations

In this setion, we introdue our analogue to the proposed pattern guard no-

tation in Haskell (Peyton Jones, 1997; Peyton Jones & Erwig, 2000)|the with

onstrut, lhs j expr fprogramg. Pattern guards allow an intermediate omputation

to be mathed against a single aeptable pattern|if the subsidiary math fails,

ontrol passes to the next line of the program. For example, pattern guards provide

a onvenient way to unpak a reursively omputed tuple:

unzip [℄ = ([℄, [℄)

unzip ((x,y):xys) | (xs,ys) <- unzip xys = (x:xs,y:ys)

The basi funtion of `j e' is to add the result of e to the olletion of values under

srutiny on the left. Subsequent `mathing' omes from the( onstrut (impliitly,

for standard -ase operators) as usual. The e�et is similar to de�ning a helper

funtion over all the original `pattern variables' together with the extra value, but

the j is muh more ompat. With our layout onvention, the above beomes:

let

xys : List (A� B)

unzip xys : ListA � List B

unzip [℄ 7! ([℄; [℄)

unzip ((x ; y) :: xys) j unzip xys

j

j (xs ; ys) 7! (x :: xs; y :: ys)

One we have an intermediate value, we an onsider more than one ase of it, as in

our version of elem. Haskell's guards also redue the tendeny of programs whih

mix analysis of their arguments and intermediate values to degenerate into gangling
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right-hand sides built by if and ase. This funtion, ounting the number of times

a given tree ours within another, shows but the tip of the ieberg:

ount s t = if s == t then 1

else ase t of

Leaf -> 0

t1 :^: t2 -> ount s t1 + ount s t2

To onnet ount's arguments with the analysis on the right, we must observe the

reurrene of t. Longer trails of repeated identi�ers an easily beome onfusing,

and ertainly make it harder to tell at a glane what a program does. Here, even a

Boolean guard is enough to reonnet the program, expressing its analysis learly

and onisely on the left:

ount s t | s == t = 1

ount s Leaf = 0

ount s (t1 :^: t2) = ount s t1 + ount s t2

Even without speial sugar for booleans or `fall-through', our notation tabulates

exatly the analysis performed: its `laws' are as lear as its mehanism.

let

s ; t : tree

ount s t : N

ount s t j s == t

j

j true 7! s0

leaf

j

j false 7! 0

(t

1

node t

2

)

j

j false 7! ount s t

1

+ ount s t

2

5.1 Abstrating from types

Clarity notwithstanding, type dependeny provides a seond motivation for treating

subomputations on the left|their impat on types. We have already observed this

informally with the elem, typeProj, valProj example. In order to onnet the

intermediate label tests in typeProj and valProj with the elem omputations at

the type level, we must abstrat the tests from types as well as in the patterns.

Our `with' notation orresponds diretly to an established tehnique in theorem

proving|generalizing a goal by abstrating a subexpression, perhaps to strengthen

an indution|as implemented by the Pattern tati in Coq (Coq, 2001). Its elab-

oration rule is shown in Figure 12.

Using the meta-operation abst (whose obvious de�nition as an inverse to substi-

tution is omitted), the elaborator omputes abstrations (l

x

, on labels, and �

x

on

ontexts): these abstrations must be typeheked again, to ensure that replaing

the elaborated term s by a variable has not ompromised validity. The elaborator

then onstruts a helper funtion t from subprogram p, with an extended label|the

main program alls the helper. The normalization of elem k (l :: ls), goes thus:
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ontext jontext  expr . term : hlabel : termi

[with℄

�;�  ` . l

s

�;�  e . s : S

(�

s

;�

s

) (= strengthen(�; s; S)

l

x

(= abst(s; x ; l

s

) �

x

(= abst(s; x ;�

s

)

�;�

s

; x : S ; �

x

` hl

x

j x :T i : ?

�j�

s

; x : S ; �

x

 p . t : hl

x

j x :T i

�j�  ` j e fpg . let x 7! s : S : return (all hl

x

j x i t) : hl

s

: let x 7! s : S :T i

Fig. 12. Elaboration of `with' notation

all helem k (l :: ls)i List-re : : :

;

�

all helem k (l :: ls)i return (all helem k (l :: ls) j (all hk == li : : :)i : : :)

; all helem k (l :: ls) j (all hk == li : : :)i : : :

Correspondingly, when heking typeProj k (hons

X

l x h)p jk == l f: : :g, we start

in the ontext

k ; l : Label; : : : ; p : So (all helem k (l :: ls) j (all hk == li : : :)i : : :)

The term being abstrated, k == l , elaborates to the same (all hk == li : : :) as is

found in the type of p, so the subprogram is heked in the ontext

k ; l : Label; b : Bool; : : : ; p : So (all helem k (l :: ls) j bi : : :)

Of ourse, the hk == li all is abstrated from the term implementing the helem : : :i

all, not just from the label. The subsequent analysis of b then allows the type of

p to redue further. The [with℄ rule gives the orret behaviour for valProj too,

with abstration from types working even harder to our bene�t.

6 Views: a programming idiom

We have shown how abstrating an intermediate omputation an have useful e�ets

on types whih depend on it. Case analysis on an intermediate value an also

instantiate other patterns, if that value omes from a dependent family. In this

setion, we will illustrate this possibility, and show how it leads to an aount of

views, as proposed by Wadler (Wadler, 1987).

It is a ommonplae to equip a datatype with an ordering by implementing a binary

operator returning an element of the enumeration Ordering, given by flt; eq; gtg. For

N, we might write

let

m;n : N

mpm n : Ordering

mp 0 0 7! eq

mp 0 (sn) 7! lt

mp (sm) 0 7! gt

mp (sm) (sn) 7! mpm n

We might then write the absDi� funtion, by inspeting the result of an interme-

diate omparison:
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let : : : absDi� m n j mpm n

j

j lt 7! n �m

j

j eq 7! 0

j

j gt 7! m � n

A minor problem with this approah is that subtration for N must return bogus

answers when its seond argument is the larger, in order to be a total funtion.

More annoying is the fat that mp has basially done the subtration, but thrown

the answer away. We ould get around this by extending Ordering with di�erene

information, but datatype families o�er a more subtle approah.

We an de�ne a binary relation on N, with three anonial ways to show that two

given numbers are omparable:

data

x ; y : N

Compare x y

where

lt x y : Compare x (x + sy)

eq x : Compare x x

gt x y : Compare (y + sx ) y

Of ourse, every two numbers are omparable in one of these three ways. We an

prove this by writing a program not muh more omplex than mp above:

let

ompare x y : Compare x y

ompare 0 0 7! eq 0

ompare 0 (sn) 7! lt 0 n

ompare (sm) 0 7! gtm 0

ompare (sm) (sn) j omparem n

ompare (sx ) (s(x + sy))

j

j lt x y 7! lt (sx ) y

ompare (sx ) (sx )

j

j eq x 7! eq (sx )

ompare (s(y + sx )) (sy)

j

j gt x y 7! gt x (sy)

What has happened here? For the base ases, it is easy to hoose the appropriate

onstrutor and its arguments. To ompare sm with sn, however, we must `update'

the result of omparing m with n, hene we abstrat it. But when we analyse a

value in the datatype Comparem n, the arguments m and n beome instantiated

via the more informative onstrutor types. Inspeting an intermediate value has

simultaneously told us more about the arguments from whih it was omputed.

Analysing the value of omparem n now does the job of omparison, subtration,

max and min. We an now write

let : : : absDi� m n j omparem n

absDi� x (x + sy)

j

j lt x y 7! sy

absDi� x x

j

j eq x 7! 0

absDi� (y + sx ) y

j

j gt x y 7! sx

The instantiated patterns now make quite lear the relationship between the inputs
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and the outputs in eah ase. We emphasize again that the nonlinear and `+'

patterns do not require any ingenious operational behaviour: this is just a learer

way to write programs with basially the same operation as mp.

One an perhaps imagine other suites of related testing and seletion funtions being

ombined into more general analysis methods whih deliver informative patterns:

Haskell's takeWhile, dropWhile, exists, all, . . . eah extrat di�erent funtion-

ality from the ommon proess of applying a test suessively to the elements of a

list until it sueeds (or fails). By giving that proess a type whih shows whether

and how the list is split at a partiular point, all of these funtions, together with

partiular instanes like elem, an be ombined. We leave this as an exerise.

The urious thing about omparem n is that one we have seen the patterns it

yields for m and n, we no longer are about its atual value! The olumn of patterns

with lt, and so on, in absDi� is unneessary noise. We an tidy up this idiom of

testing and seletion by examining ase analysis over an indutively de�ned relation.

6.1 From relations to views

Wadler's original views proposal (Wadler, 1987) �ts well with the notion of user-

de�ned elimination operators. He suggests that any (possibly abstrat) datatype T

may be equipped with a notion of pattern mathing by de�ning an isomorphism

between T and a datatype D: elements of T may be mathed against or built by

D's onstrutors d

1

; : : : ; d

n

, with the ompiler inserting either omponent of the

isomorphism, out : T ! D or in : D ! T , as required. Of ourse, there is no

guarantee that in and out are either total or mutually inverse. In our setting, suh

a view may be expressed by replaing out with an elimination operator,

T -view : 8t :T : 8P :T ! ?:

(8~x

1

:

~

X

1

: P (d

1

~x

1

)) !

.

.

.

(8~x

n

:

~

X

n

:P (d

n

~x

n

)) !

P t

where d

i

is the de�ned operation by whih in interprets d

i

. Moreover, this type

makes it lear that the t we put in is exatly the (d

i

~x

i

) we get out.

It is easy to extrat these eliminators from programs like ompare above. To see

how, examine the following two typed terms:

N-ompare m n :

8P : N ! N ! ?:

(8x ; y : P x (x + sy)) !

(8x : P x x ) !

(8x ; y : P (y + sx ) y ) !

P m n

Compare-ase (omparem n) :

8P

0

:8

m

: 8

n

:Comparem n ! ?:

(8x ; y : P

0

x

(x+sy)

(lt x y) ) !

(8x : P

0

x x

(eq x ) ) !

(8x ; y : P

0

(y+sx)

y

(gt x y) ) !

P

0

m n

(omparem n)
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ontext  expr . term : term

[view℄

�  e . t : D

~

t

� ` D-ase t : 8P

0

: (8

�

: D� ! ?): : : : (8�

i

: P

0

~s

i

(

i

�

i

)) ! : : : ! P

0

t

�  view e . �P :8�: ? : D-ase t (�

�

: � :D �: P �)

: 8P :8�: ? : : : : (8�

i

: P ~s

i

) ! : : : ! P

~

t

Fig. 13. Elaboration of view

These are almost the same, exept that P

0

(on the right) takes an extra argument|

the atual value from the Compare family. However, given a andidate motive P for

N-ompare, we an hoose to instantiate P

0

with

P

0

7! �

m;n

: � :Comparem n: P m n

This motive ignores its Compare argument and applies P to just the indies|the

patterns we wish to keep. Observe then that the following judgment holds:

�P : 8m;n :N: ? :

Compare-ase (omparem n)

(�

m;n

: � :Comparem n: P m n)

: 8P : N ! N ! ?:

(8x ; y : P x (x + sy)) !

(8x : P x x ) !

(8x ; y : P (y + sx ) y ) !

P m n

We have just built N-ompare! This onstrution is just what we mean by the

onrete syntax view omparem n. Figure 13 shows the elaboration rule.

There is a general reipe for establishing that a type T an be viewed via patterns

p

1

(over �

1

) to p

n

(over �

n

)|it readily extends to views of vetors of values. First,

delare the relation

data

t : T

View�T t : ?

where

�

1



1

�

1

: View�T p

1

� � �

�

n



n

�

n

: View�T p

n

Seond, write the overing funtion whih shows that the view applies to all of T :

let

view-T t : View�T t

: : :

The view may be invoked in a funtion using the `by' onstrut,

lhs ( view view-T t fprogramsg

Indeed, as view t is meaningful for any t whih belongs to a datatype, we an, in

partiular, use view to show the e�et on patterns of the overing funtion's own

reursive alls. The atual ode for ompare in Figure 14 demonstrates this.

What we have done is to explain non-standard `pattern mathing' via the re�nement

of index information whih naturally aompanies the standard notion of ase anal-

ysis for datatype families, whilst hiding their atual onstrutors. We hope that the

intermediate data strutures we oneal when a view is invoked an also be elim-
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let

omparem n : Comparem n

ompare 0 0 7! eq 0

ompare 0 (sn) 7! lt 0 n

ompare (sm) 0 7! gtm 0

ompare (sm) (sn) ( view omparem n

ompare (sx ) (s(x + sy)) 7! lt (sx ) y

ompare (sx ) (sx ) 7! eq (sx )

ompare (s(y + sx )) (sy) 7! gt x (sy)

Fig. 14. Comparison of natural numbers

inated from ompiled ode by deforestation, a tehnique for whih we also have

Wadler to thank (Wadler, 1990).

Wadler oneived his view notation as syntati sugar for the insertion of mutually

inverse oerions between datatypes, one of whih admits pattern-mathing, the

other potentially abstrat. The idea that a signature for an abstrat data struture

might hide its atual representation, but nonetheless export a notion of `pattern

deomposition', overomes a genuine problem in the engineering of modular ode.

Programming with suh programmer-de�nable patterns is exatly what the( on-

strut permits, with the bonus that the interfae is given by a type whih an be

required of an exported method in the usual way. Moreover, this type preisely wit-

nesses the `no junk' diretion of the bijetion: Wadler is fored by an inexpressive

type system to trust the programmer.

The presentation of views through datatype families also makes it easy to state a

`no onfusion' property, by stipulating that the overing funtion view-T delivers

the only possible value in eah ase. We desribe a view for whih this property

holds as unambiguous. To prove that suh a property holds, we write a program

with the following signature:

let

x : View�T t

view-T -unique x : view-T t = x

� � �

7 An extended example: typeheking

This setion shows views in ation. We develop a typeheker for Churh-style pre-

terms in simply-typed �-alulus. Our language of simple type expressions has a

base type and funtion spaes:

data

TExp : ?

where

o : TExp

S ;T : TExp

S ) T : TExp

Contexts are represented (bak-to-front) by lists � : List TExp of suh. We use

a de Bruijn index (de Bruijn, 1972) representation of variables, rendered in type

theory as usual by the datatype family Fin : N ! ?, where Fin n has n elements.
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data

n : N

Fin n : ?

where

� : Fin sn

i : Fin n

" i : Fin sn

Our soure language, Exprn, is the datatype of well-soped but untyped expressions

with n free variables, the pre-terms. This is quite lose to the representation of

untyped terms in (Bird & Paterson, 1999).

data

n : N

Expr n : ?

where

i : Fin n

eVar i : Expr n

f ; s : Expr n

eApp f s : Expr n

S : TExp t : Expr (sn)

eLam S t : Expr n

Our aim is to write a typeheker for pre-terms, relative to a given ontext �, of

length j�j; we implement the typeheker for expressions in Expr j�j, by de�ning

three views respetively:

� for looking up variables in the ontext;

� for testing equality of simple types;

� for typeheking pre-terms.

Eah of these views has a similar avour: they apture the extration of strutured

data (like well-typed terms or error diagnostis) from less strutured data (like

pre-terms) by showing that the latter an be viewed as the forgetful image of the

former. Let us warm up by onsidering variables.

7.1 The �nd view

We may de�ne the membership relation of a list indutively as follows:

data

xs : ListX x : X

In xs x : ?

where

� : In (x :: xs) x

i : In xs y

" i : In (x :: xs) y

An element of In xs x enodes a referene to a partiular x in a list xs. We think

of suh a referene as a de Bruijn index into a list, labelled by the x to whih it

points, whih is why we have overloaded the onstrutors. We shall use In � S to

represent variables of type S over ontexts � in our de�nition of well-typed terms.

There is an obvious forgetful map ji j

x

from In to Fin, whih strips the label. We

usually overload suh forgetful maps as j�j, supersripting what the map forgets,

if we ourselves wish to remember it.

let

i : In xs x

ji j

x

: Fin jxs j

j�j

x

7! �

j" i j

x

7! " ji j

x

If we have an unlabelled index in Fin jxsj, we an look it up in xs by `unforgetting'

the label. That is, we explain how every unlabelled index arises as the forgetful

image of a labelled index, by means of the following view :
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data

xs : ListX i : Fin jxsj

Find xs i : ?

where

i : In xs x

found x i : Find xs ji j

x

let

�nd xs i : Find xs i

�nd (x :: xs) � 7! found x �

�nd (x :: xs) (" i) ( view �nd xs i

(" ji j

x

) 7! found x (" i)

This program fragment shows how we use this view:

hek � (eVar i) ( view �nd � i

(eVar ji j

S

) 7! � � �

7.2 The type of well-typed terms

Now that we an represent typed variables, let us de�ne the well-typed terms, in a

similar fashion to (Altenkirh & Reus, 1999):

data

� : List TExp T : TExp

Term � T : ?

where

i : In � S

var i : Term � S

t : Term (S :: �) T

lam S t : Term � (S ) T )

f : Term � (S ) T ) s : Term � S

app f s : Term � T

These onstrutors just give the typing rules in syntax-direted form. There is an

obvious forgetful map from Term to Expr:

let

t : Term � T

jt j

T

: Expr j�j

jvar i j

S

7! eVar ji j

S

jlam S t j

S)T

7! eLam S jt j

T

japp f s j

T

7! eApp jf j

S)T

js j

S

7.3 The eq? view

Imagine we are in the proess of typeheking an appliation. On one hand, we have

a funtion, whih we have heked has an )-type: that is, we have some jf j

S)T

.

On the other, we have an argument, whih is some well-typed term js j

A

. What we

do not yet know is whether S and A are the same. How will we �nd out?

We ould ompute the value of S == A, the usual Boolean equality test. If false,

the appliation is ill-typed, so we an rejet it. But if true, whilst we may know

that == tests equality the typeheker just knows that S ;A : TExp; true : Bool. A

suessful == test does not tell the typeheker that S and A are the same, hene

we annot yet build app f s . The trouble is that a Bool is a bit uninformative. We

an remedy this by presenting equality via a view.

As usual, we delare a relation
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The positive ases of eq?

let

eq? S T : Eq? S T

eq? o o 7! same

eq? o (S

2

) T

2

) 7! di� ?

1

eq? (S

1

) T

1

) o 7! di� ?

2

eq? (S

1

) T

1

) (S

2

) T

2

) ( view eq? S

1

S

2

eq? (S ) T

1

) (S ) T

2

) ( view eq? T

1

T

2

eq? (S ) T ) (S ) T ) 7! same

eq? (S ) T ) (S ) T

0

nT ) 7! di� ?

3

eq? (S ) T

1

) (S

0

nS ) T

2

) 7! di� ?

4

Filling in the negative ases

data

S : TExp

Isnt S : ?

where let

T : Isnt S

TnS : TExp

[?

1

℄

isnto S

2

T

2

: Isnt o

isnto S

2

T

2

n o 7! S

2

) T

2

[?

2

℄

isnt) S

1

T

1

: Isnt (S

1

) T

1

)

isnt) S

1

T

1

n (S

1

) T

1

) 7! o

[?

3

℄

T

0

: Isnt T

isntRT

0

: Isnt (S ) T )

isntRT

0

n (S ) T ) 7! S ) T

0

nT

[?

4

℄

S

0

: Isnt S T

2

: TExp

isntL S

0

T

2

: Isnt (S ) T

1

)

isntL S

0

T

2

n (S ) T

1

) 7! S

0

nS ) T

2

Fig. 15. The equality view

data

S ;T : TExp

Eq? S T : ?

where

same : Eq? S S

T : Isnt S

di� T : Eq? S (TnS )

The �rst onstrutor is lear enough, but what is this Isnt S , and what is (SnT )?

The former is a type representing evidene of di�erene from S , and the latter is

its forgetful map bak to TExp (whih binds more tightly than )). We do not

write jT j

S

, to avoid lashing with the forgetful map for Term. There are many

ways to de�ne Isnt. One obvious andidate is to use existential quanti�ation (or

dependent pairs).

Isnt S 7! 9T : TExp: S = T ! ? (T ; p)nS 7! T

Another possibility is to de�ne Isnt by reursion on S . We shall delare it as a

datatype family, but we defer the de�nition until after our �rst attempt to write

the overing funtion, eq?. At the top of Figure 15, we write what we an without

fully delaring Isnt.

Now, we need elements of Isnt types in four plaes|two for `di�erent onstrutors',

and two for di�erenes left or right of). The easiest way to de�ne Isnt is just to give

it onstrutors for these ases, paking up exatly the information available where

they are used. The onstrutor forms delared at the bottom of Figure 15 go in the

`holes in the program' as indiated. Or rather, the onstrutor forms ome from
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The positive ases of hek

data

� : List TExp e : Expr j�j

Chek � e : ?

where

t : Term � T

term T t : Chek � jt j

T

err : Error �

error err : Chek � jerr j

let

hek � e : Chek � e

hek � (eVar i ) ( view �nd � i

hek � (eVar ji j

S

) 7! term S (var i)

hek � (eLam S t ) ( view hek (S :: �) t

hek � (eLam S jt j

T

) 7! term (S ) T ) (lam S t)

hek � (eLam S jerr j) 7! error ?

1

hek � (eApp f s ) ( view hek � f

hek � (eApp jf j

o

s ) 7! error ?

2

hek � (eApp jf j

S)T

s ) ( view hek � s

hek � (eApp jf j

S)T

jsj

A

) ( view eq? S A

hek � (eApp jf j

S)T

jsj

S

) 7! term T (app f s)

hek � (eApp jf j

S)T

jsj

AnS

) 7! error ?

3

hek � (eApp jf j

S)T

jerr j ) 7! error ?

4

hek � (eApp jerr j s ) 7! error ?

5

Filling in the negative ases

data

� : List TExp

Error � : ?

where let

e : Error �

jej : Expr j�j

[?

1

℄

err : Error (S :: �)

bodyE S err : Error �

jbodyE S err j 7!

eLam S jerr j

[?

2

℄

f : Term � o s : Expr j�j

notFunE f s : Error �

jnotFunE f sj 7!

eApp jf j

o

s

[?

3

℄

f : Term � (S ) T ) s : Term � (AnS)

mismathE f s : Error �

jmismathE f sj 7!

eApp jf j

S)T

jsj

AnS

[?

4

℄

f : Term � (S ) T ) err : Error �

argE f err : Error �

jargE f err j 7!

eApp jf j

S)T

jerr j

[?

5

℄

err : Error � s : Expr j�j

funE err s : Error �

jfunE err sj 7!

eApp jerr j s

Fig. 16. The typeheking view

the holes in the program as indiated. The forgetful map is generated aordingly.

We see no reason why, in an interative setting, we annot extrat the `remainder'

family from the unsolved programming problems.

We are now ready to write the typeheker.
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7.4 The hek view

We de�ne typeheking as a view Chek � e on ontexts and pre-terms, expressing

any e : Expr j�j as the forgetful image either of a Term, or of an Error. Again, we

shall defer giving the onstrutors of Error until we have identi�ed the holes in the

program hek � e whih establishes the view. At the top of Figure 16, we develop

the algorithm as usual, by ase analysis on e, followed by reursive alls to hek:

� in the eVar ase, there is nothing further to do, as variables are well-soped;

it suÆes to look up the type from the ontext, using the �nd view;

� in the eLam ase, we typehek the body in an extended ontext;

� in the eApp ase, we suessively hek �rst the funtion, then the argument,

and �nally math the omputed types using the eq? view.

The view of eah reursive all on hek, yields two ases, aording as typeheking

sueeds or fails; in the ase of suess, the pattern lays bare preisely the data

required for the next all. As with the equality view, we now hoose onstrutors

and de�ne a forgetful map for Error with whih we an �ll in the �ve remaining holes,

paking up the information exposed by eah of the possible soures of typeheking

failure|see the bottom of Figure 16.

The funtion hek is not just a program: it is a proof that typeheking is deidable

for the pre-terms. It does not merely say `yes' or `no', but rather explains eah pre-

term as deriving, by a forgetful map, either from a well-typed term or an error

term. Its type guarantees that the term being heked really is the term it is given.

Its analysis is onisely stated and imposes the onditions for well-typedness (and

its omplement) just as they are expressed by the typing rules.

Moreover, as its reursive alls show, it represents these two possibilities in a `pat-

tern mathing' style, visibly delivering either a well-typed term whih may be passed

to an exeption-free interpreter in the style of Augustsson and Carlsson (Augusts-

son & Carlsson, 1999), or a useful error diagnosti. The latter loates the leftmost

type error in a pre-term. It ould easily be adapted to �nd every appliation of a

well-typed non-funtion or mismathed appliation between two well-typed terms|

useful information not only for error reporting, but also for type debugging and

repair, as investigated by MAdam (1999).

Epilogue

The main disovery we have made in the light of this researh is how little is known,

not least by ourselves, about funtional programming with dependent types. It is no

longer redible to oneive of dependently typed programming merely as a means to

relegitimize programs whih were lost to us when we moved from untyped languages

to the Hindley-Milner system. We take its inherent omplexity as an opportunity,
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rather than a problem, and in so doing, we see emerging a very di�erent possibility

for delarative programming, whih we have barely begun to explore.

This paper has introdued a spei� programming notation on top of an existing

type theory, and shown in detail, through examples and a skeletal formal de�nition

whih explains how the main onstruts are translated, some of the power, as well

as weight, that is available in this new world. We have extended the notion of

`pattern mathing' to embrae any user-de�nable strutured deomposition of data

on the left, inluding the use of, and interplay with, intermediate omputations and

result types. We have further related our work spei�ally to two proposals in the

funtional programming ommunity for extensions to the lassial notion of pattern

mathing, Peyton Jones' pattern guards (1997), and Wadler's views (1987).

The former remarks that the potential uses of pattern guards are, an, and should

be ubiquitous, as they allow \a useful lass of programs to be written muh more

elegantly". We would ertainly argue that this is all the more surely the ase in our

setting|with the greater expressivity available with dependent types, that lass of

programs beomes muh more interesting. And in our notation, we would argue,

without any loss of that elegane. Neither we, nor anyone else for that matter, have

even begun to exhaust the possibilities of programming in suh a style.

As to the latter, we have given a thorough analysis of how views may be pre-

sented using dependent types, as well as variety of examples of views, and uses

of views not previously onsidered in the literature. Our general piture allows us

to onsider partial and ambiguous views, to explore trade-o�s between reursive

and non-reursive views, as well as looking at termination proofs and varieties of

reursion indution (Bove & Capretta, 2001).

More generally, we take the explosion of power whih dependent types bring to

programming, as delineated in Setion 3 as a ue to re-evaluate design hoies

about the language within whih we express programs, the tools with whih we

onstrut programs, and the programs we hoose to write in the �rst plae. This

inludes reassessing the interfaes and implementations of standard data strutures

and algorithms, no less than any other programs.

We believe that suh new languages, tools and libraries as emerge in the future

will also pro�t onsiderably from the experiene gained in the wider domain of

interative problem-solving with dependent types. While we have downplayed that

aspet of our researh in this paper, our new analysis of the left-hand sides of

funtional programs is strongly rooted in logial onsiderations and the tehniques

whih are supported by existing interative proof assistants based on type theory.

We intend in future work to elaborate on these aspets, and the ontribution our

notation may make to delarative proof.

There is muh work to do here in building suh a future|in Durham, we have

dubbed our programme of researh Epigram, embraing language, meta-theory,

implementation and appliations. The �rst author's experimental extensions to
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Lego (1999; 2002) provided tatis for indutive proof supporting the onstru-

tions whih underpin the [by℄ and [with℄ elaboration rules. These tatis are suÆ-

ient to develop the examples in this paper, but do not support a onrete syntax

for programs as suh.

This paper lays the groundwork for a formal language de�nition for Epigram;

we are now working on a new prototype implementation based on this de�nition.

Clearly many interesting issues remain to be explored, not least at the run-time

level, studying the operational behaviour of elaborated programs.

In losing, we return to Wadler, rediting him with the insight that, by onstruting

views, we an and should hoose to adapt our pereptions of data to math our

oneptions of data. We are able to reify his views diretly, by using dependent

types, and by our treatment of the left. So hurrah for Wadler! Welome to the new

programming.
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