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Abstra
t

Pattern mat
hing has proved an extremely powerful and durable notion in fun
tional

programming. This paper 
ontributes a new programming notation for type theory whi
h

elaborates the notion in various ways.

Firstly, as is by now quite well-known in the type theory 
ommunity, de�nition by

pattern mat
hing be
omes a more dis
riminating tool in the presen
e of dependent types,

sin
e it re�nes the explanation of types as well as values. This be
omes all the more true

in the presen
e of the ri
h 
lass of datatypes known as indu
tive families (Dybjer, 1991).

Se
ondly, as proposed by Peyton Jones (Peyton Jones, 1997) for Haskell, and indepen-

dently redis
overed by us, subsidiary 
ase analyses on the results of intermediate 
om-

putations, whi
h 
ommonly take pla
e on the right-hand side of de�nitions by pattern

mat
hing, should rather be handled on the left. In simply-typed languages, this subsumes

the trivial 
ase of Boolean guards; in our setting it be
omes yet more powerful.

Thirdly, elementary pattern mat
hing de
ompositions have a well-de�ned interfa
e given

by a dependent type; they 
orrespond to the statement of an indu
tion prin
iple for the

datatype. More general, user-de�nable de
ompositions may be de�ned whi
h also have

types of the same general form. Elementary pattern mat
hing may therefore be re
ast

in abstra
t form, with a semanti
s given by translation. Su
h abstra
t de
ompositions

of data generalize Wadler's notion of `view' (Wadler, 1987). The programmer wishing to

introdu
e a new view of a type T , and exploit it dire
tly in pattern mat
hing, may do

so via a standard programming idiom. The type theorist, looking through the Curry-

Howard lens, may see this as proving a theorem, one whi
h establishes the validity of a

new indu
tion prin
iple for T .

We develop enough syntax and semanti
s to a

ount for this high-level style of pro-

gramming in dependent type theory. It 
ulminates in the development of a type
he
ker

for the simply-typed lambda 
al
ulus, whi
h furnishes a view of raw terms as either being

well-typed, or 
ontaining an error. The implementation of this view is ipso fa
to a proof

that type
he
king is de
idable.

1 Introdu
tion

This paper is a 
ontribution to de
larative programming, in that it introdu
es a

new high-level notation for fun
tional programming on top of an existing low-level
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dependent type theory. In parti
ular, we o�er a powerful and abstra
t su

essor to

pattern mat
hing, as 
on
eived by Rod Burstall (Burstall, 1969) and, to our knowl-

edge, �rst implemented in Fred M
Bride's extension of LISP (M
Bride, 1970).

The key feature of pattern mat
hing in simply typed languages is that the stru
-

ture of an arbitrary value in a datatype is explained. Classi
ally, pattern mat
hing

analyses 
onstru
tor patterns on the left-hand sides of fun
tional equations, and

is de�ned by a subsystem of the operational semanti
s with hard-wired rules for


omputing substitutions from the pattern variables to values. For example, in Stan-

dard ML (Milner et al., 1997), one might test list membership as follows:

fun elem k [℄ = false

| elem k (l :: ls) = if (k = l) then true else elem k ls

The 
larity of the 
ode does not hinder its eÆ
ient 
ompilation; a key te
hnique here

is Augustsson's analysis in terms of hierar
hi
al swit
hing on the outermost 
on-

stru
tor symbol, 
oupled with the exposure of subexpressions (Augustsson, 1985).

This yields, for elem above, the following 
as
ade of 
ase expressions:

fun elem k ls = 
ase ls

of [℄ => true

| l :: ls' => 
ase (k = l)

of true => true

| false => elem k ls'

Pattern mat
hing has proved su
h a powerful and durable notion in fun
tional

programming, that its further development has remained �rmly on the resear
h

agenda. Peyton Jones' idea of pattern guards (Peyton Jones, 1997; Peyton Jones &

Erwig, 2000) allows de�nitions by pattern mat
hing to handle on the left-hand side

of programs, subsidiary analysis of the results of intermediate 
omputations, whi
h

are more 
ommonly, but \
lunkily" (lo
.
it.), handled on the right. For elem, we


an pull both tests to the left as follows:

elem k [℄ = False

elem k (l:ls) | True <- k == l = True

elem k (l:ls) | False <- k == l = elem k ls

Of 
ourse, Haskell's Boolean guards (Peyton Jones & Hughes, 1999) 
an already

qualify pattern mat
hes by tests like k == l, but pattern guards handle sub
om-

putations of more 
omplex types. Further, the guard expression 
an be shared via

a where 
lause and the layout rule. In our notation, you 
an a
hieve the same e�e
t

by grouping the two 
lauses in the s
ope of the 
all to k == l , as follows:
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elem k [℄ 7! false

elem k (l :: ls) j k == l

j

j true 7! true

j

j false 7! elem k ls

Dependent types add a des
riptive and expressive power whi
h makes pattern

mat
hing a more dis
riminating tool, re�ning types as well as values. Ea
h el-

ementary pattern mat
hing de
omposition has a well-de�ned interfa
e given by a

dependent type, 
orresponding to an indu
tion prin
iple for the datatype (Burstall,

1969; Nordstr�om et al., 1990). This insight 
ows from type theory's interplay be-

tween 
omputation and reasoning|usually sloganised as the `Curry-Howard 
or-

responden
e', or `propositions-as-types'. The key feature of indu
tion is that the

result type is instantiated, and hen
e further explained, by the patterns.

This observation bites all the more strongly in the presen
e of the ri
h 
lass of

datatypes known as indu
tive families (Dybjer, 1991). One su
h is So, a 
olle
tion

of types indexed by a Boolean value:

data

b : Bool

So b : ?

where

oh : So true

The point here is that So true has one element whilst So false has none. If p : So b,

then `
ase' on p tells us not only that p is oh, but also (`for free') that b must be

true. Inspe
ting p 
an instantiate b and hen
e any type whi
h depends on either!

We 
an use So to impose Boolean `pre
onditions' on programs. For example, a

program whi
h requires an argument p : So (test

1

or test

2

) need only be de�ned

under 
ir
umstan
es whi
h make one of the test expressions evaluate to true. If

su
h a program were to swit
h on the value of test

1

, say, we should somehow

`know' that p : So true in the true 
ase and that p : So test

2

otherwise, but how

might a type
he
ker make this 
onne
tion? Our j notation is motivated not just by


onvenien
e, but also to signal the abstra
tion of sub
omputations from types.

Meanwhile, Wadler's `views' proposal (Wadler, 1987; Burton et al., 1996) allows

programmers to implement new s
hemes for de
omposing values in types (abstra
t

datatypes, espe
ially), extending the syntax of mat
hing 
orrespondingly. In our

setting, user-de�nable de
ompositions|elimination operators|may be spe
i-

�ed by types resembling the stru
tural indu
tion prin
iples for datatypes, now the

primitives from whi
h higher-level analyses 
an be developed 
ompositionally.

Our notation gives a pattern-based syntax to programming with arbitrary elimina-

tors; the semanti
s is given by translation, rather than `pattern mat
hing' per se.

Further, we establish a standard idiom of �rst-order programming for equipping

a type T with a new elimination operator, by identifying a set of patterns whi
h


over the values in T ; su
h patterns may now be arbitrary expressions of type T .

The type theorist, looking through the Curry-Howard lens, may see this as proving

a new indu
tion prin
iple for T . A similar idea has emerged re
ently in Voda's
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untyped �rst-order `Clausal Language' (Voda, 2002), whi
h admits new forms of


ase analysis via theorem-proving in Peano Arithmeti
.

Although the power of dependent types is widely a
knowledged, s
epti
s rightly

argue that expressibility is one thing and a

essibility another. Programs should be

read as well as written, often on the ba
k of an envelope. Here, we address this issue

of 
larity. We 
laim that the existing notations of both fun
tional languages and

type theory fall short of what dependently typed programming demands, but also

of what it 
an supply|a language of derived forms, ri
h, intuitive and extensible.

Type theory o�ers the motive, the methods and the opportunity to ask anew what

fun
tional programming 
an aspire to be. We barely s
rat
h the surfa
e in this

paper|nevertheless, we hope to engage your enthusiasm and your imagination.

1.1 Ba
kground

We start from a type theory with indu
tive families of datatypes (Dybjer, 1991),

essentially Luo's UTT (Luo, 1994), as implemented in Oleg|the �rst author's

adaptation (M
Bride, 1999) of Polla
k's proof assistant Lego (Luo & Polla
k, 1992;

Polla
k, 1995). This type system is strongly normalizing (Goguen, 1994) and hen
e

type
he
king is de
idable. An important and distin
tive feature, whi
h we expand

upon below, is that indu
tive families embra
e data stru
tures ri
her than those

available in other 
andidate languages for dependently-typed programming su
h

as DML (Xi, 1998), or Cayenne (Augustsson, 1998): the former supports 
ompile-

time enfor
ing of �ner well-formedness 
onstraints on data whi
h is nonetheless

only Hindley-Milner typable; as to the latter, we explore an example not readily

expressible in Cayenne|well-typed �-terms over simple types|in Se
tion 7.

Datatypes in UTT 
ome with no intrinsi
 notion of pattern mat
hing, by 
ontrast

with systems like ALF (Coquand, 1992; Magnusson, 1994). Primitive 
omputation

on datatypes is provided via `elimination operators' (the `introdu
tion operators'

being 
onstru
tors), whi
h behave operationally like primitive re
ursors, but have

types whi
h state stru
tural indu
tion prin
iples.

For example, the elimination operator for the natural numbers has the following

type|
ompare the Hindley-Milner type s
heme for primitive re
ursion:

N-Elim : 8P :N ! ?:

P 0 !

(8k :N: P k ! P (sk)) !

8n :N: P n

N-PrimRe
 : 8T :?:

T !

(N ! T ! T ) !

N ! T

Observe that N-Elim delivers an inhabitant of a dependent fun
tion spa
e, in

this 
ase 8n : N: P n. This allows us to spe
ify, via an arbitrary program P , the

`motive', di�erent out
omes intended for di�erent values of n. Learning more about

n 
an 
hange the things we are able to do with it, hen
e we 
an express numeri
ally



The view from the left 5

indexed operations su
h as matrix multipli
ation. By 
ontrast, N-PrimRe
's type

allows no 
onne
tion between the number and the purpose it serves.

The arguments of N-Elim whi
h explain ea
h 
ase also have more informative types

than in the Hindley-Milner version. We 
all these arguments methods|where

the verna
ular speaks only, somewhat weakly, of `base' and `step' 
ases, without

naming `the argument for su
h a 
ase'|be
ause they des
ribe how the motive is to

be pursued, depending on the value of n . Method types do
ument expli
itly the

values for whi
h we use them|a possibility only when types 
an depend on data.

A key point of this paper is that the types of eliminators give an abstra
t interfa
e

to pattern analysis, whatever the a
tual patterns are. For example, the tri
hotomy

prin
iple 
an be seen as an operator eliminating two natural numbers:

N-Compare : 8P : N ! N ! ?:

(8x ; y :N: P x (x + sy)) !

(8x :N: P x x ) !

(8x ; y :N: P (y + sx ) y ) !

8m;n :N: P m n

We will show in Se
tion 4 below how to use su
h operators in general, and in Se
-

tion 6 how to 
onstru
t (a variant of) N-Compare, whi
h we may then use to

de�ne fun
tions whi
h in ordinary programming would be 
omputed by a 
ombi-

nation of a boolean test and subtra
tion, where this operation is rendered safe to

perform by the out
ome of the test.

Elimination operators are �rst-
lass values, and their types are suÆ
ient on their

own to do
ument their usage in programs. Hen
e they may be abstra
ted in signa-

tures whi
h hide their representation without further ado. Moreover, as we shall see

below, for the 
lass of datatype families whi
h we 
onsider, 
ertain distinguished

elimination operators may be de�ned automati
ally.

1.2 Outline of the rest of the paper

Se
tion 2 des
ribes the basi
 type theory in whi
h we work, augmented with a


on
rete syntax for programming. This is then explained by elaboration into an

extension of the basi
 type theory whi
h uses labels in terms and types to 
orrelate

the usage of a 
on
rete syntax program with its elaboration.

In Se
tion 3 we fo
us upon the language of indu
tive families and their proper-

ties. We identify a taxonomy of possible type dependen
y in 
ase analyses through


onsideration of a running example based on heterogeneous asso
iation lists.

In Se
tion 4 we give a te
hni
al 
hara
terization of eliminators, together with

the ( (`by') 
onstru
t whi
h supports their use, whether primitive or user-de�ned.

We dis
uss in depth the method by whi
h we exploit elimination with equational


onstraints to explain the notion of patterns, as well as arbitrary stru
tured de
om-
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position, on the left-hand sides of program de�nitions. In parti
ular, we 
onsider a

useful derived form for dealing with stru
tural re
ursion.

In Se
tion 5, we dis
uss the general situation of de
omposing the results of sub-


omputations. Our j (`with') 
onstru
t supports this, generalizing pattern guards

to the dependently-typed setting. This notation retains e
onomy of expression, but

also allows deli
ate type distin
tions to be made during 
ase analysis: without it,

we would need expli
it helper fun
tions with mu
h more 
omplex type signatures.

Although elimination operators are higher-order fun
tions, Se
tion 6 introdu
es a

�rst-order programming idiom for 
onstru
ting and working with them|this is our

a

ount of views.

In Se
tion 7, we 
on
lude our te
hni
al dis
ussion with a large example: a type-


he
ker for simply-typed lambda 
al
ulus with expli
it type labels|`Chur
h-style'

(pre-)terms in Barendregt's terminology (Barendregt, 1992). The program takes

the form of a view of pre-terms as being either well-typed or 
ontaining an error.

The implementation of this view is a proof that type
he
king is de
idable.

In an epilogue, we dis
uss our �ndings and future work.

1.3 Some history; some 
ulture

Our ba
kground is mainly in the �eld of intera
tive theorem proving in type theory,

using the Lego/Oleg system. Consequently, the original draft of this paper had a

very di�erent emphasis: �rstly, we fo
used on supporting an intera
tive method of

programming. Indeed, whileOleg does not dire
tly support the notations des
ribed

in this paper, it does provide the ta
ti
s whi
h inspired them|and whi
h translate

them into raw type theory. We developed all our examples intera
tively using these

ta
ti
s.

Se
ondly, and perhaps more seriously, it was motivated from the `logi
al' perspe
-

tive on type theory. Regardless of the merits of this viewpoint, \dependent types"

s
ar
ely approa
hed \pra
ti
al programming" in terms of 
ontributing to a dia-

logue between 
ommunities. This is not a new phenomenon: a good illustration lies

in the papers by Bird and Paterson, and Altenkir
h and Reus, ea
h writing about

the type of de Bruijn �-terms, as a nested type in (Bird & Paterson, 1999), and as

an indu
tive family in (Altenkir
h & Reus, 1999). The two share but a single 
om-

mon referen
e|Wadler's \Theorems for Free!" (Wadler, 1989). Would that more

resear
hers had Wadler's ability to speak to both 
ommunities with equal e�e
t.

Likewise, though we were inspired by Wadler's original proposal for views, we had

worked in ignoran
e of subsequent elaborations of that idea and related develop-

ments, not least Peyton Jones' (1997) note. Quite independently, we had arrived at

essentially the same formulation, but motivated by 
onsiderations of typing, rather

than evaluation. Rod Burstall used to say to us that \Proofs are harder for stu-
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dents to understand than programs, be
ause on
e you've obtained a proof, it isn't

obvious what to do with it, or what it means to run one," in spite of what Curry-

Howard might lead one to believe. Our experien
e tea
hing students is that only

by 
onne
ting patterns to the types whi
h give rise to them, 
an the 
omputational

meaning and use of pattern mat
hing be fully grasped.
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2 Dependent type theory for fun
tional programming

This se
tion introdu
es the fun
tional 
ore of the type theory in whi
h we work|

Luo's UTT (Luo, 1994), extended with lo
al de�nitions as in (Luo & Polla
k, 1992;

Polla
k, 1995; M
Bride, 1999)|together with a 
on
rete syntax for programming.

The 
ore language of UTT is summarised in Figure 1. We expe
t readers familiar

with type theory to �nd its te
hni
al 
ontent largely unremarkable. The notation

we employ here is not standard, being orientated more towards programming, but

we hope it is nonetheless 
lear. For fun
tional programmers with less prior exposure

to this subje
t matter, we 
annot expe
t to �ll in all the blanks, but we hope that

we provide enough of an introdu
tion to give a

ess to the ideas in this paper.

Type theory's key novelty for the fun
tional programmer is the generalization from

simple fun
tion spa
es S ! T to dependent fun
tion spa
es 8x : S : T . Here T

may involve x , making the return type of the fun
tion depend on the value of the

argument. We may still write S ! T if T does not 
ontain x . Dependen
y allows

operations on ranges of types, sele
ted by a prior input, su
h as C-style printf (Au-

gustsson, 1998), or the generi
 `fold' for every 
on
rete Haskell type (Altenkir
h &

M
Bride, 2002). It also makes type theory an expressive logi
.

Fun
tions themselves are introdu
ed by �-terms and appli
ations 
ompute just

by �-redu
tion. As we have lo
al de�nition (let x 7! s : S :t), we dispense with

substitution in the presentation. De�nitions are not re
ursive|the s must exist

before x is bound to it. Under the let x 7! s : S binding, x has type S and redu
es

to s by Æ-redu
tion, and the binding itself will vanish when x no longer o

urs in

s
ope: we 
all this 
-redu
tion|
 for `garbage'(
f. (Severi & Poll, 1994)).

UTT has no spe
ial treatment of polymorphism, but we may 8-quantify over types



8 Conor M
Bride and James M
Kinna

syntax

vid := x

j

j

: : :

term := vid

j

j

?

0

j

j

?

1

j

j

: : :

j

j

?

n

j

j

: : :

j

j

8vid : term: term

j

j

�vid : term: term

j

j

term term

j

j

let vid 7! term : term : term


ontext := �

j

j


ontext ; vid : term

j

j


ontext ; vid 7! term : term

validity 
ontext ` valid

� ` valid

� ` S : ?

i

�; x : S ` valid

� ` s : S

�; x 7! s : S ` valid

typing 
ontext ` term : term

� ` valid

� ` x : S

� 
ontains x : S or x 7! s : S

� ` valid

� ` ?

n

: ?

n+1

� ` S : ?

i

�; x : S ` T : ?

i

� ` 8x :S : T : ?

i

�; x : S ` t : T

� ` �x :S : t : 8x :S : T

� ` f : 8x :S : T � ` s : S

� ` f s : let x 7! s : S : T

�; x 7! s : S ` t : T

� ` let x 7! s : S : t : let x 7! s : S : T

� ` t : S � ` S

�

T

� ` t : T

redu
tion 
ontext ` term ; term 
onversion 
ontext ` term'term

[�℄

� ` (�x :S : t) s ; let x 7! s : S : t

[Æ℄

�; x 7! s : S ; �

0

` x ; s

[
℄

� ` let x 7! s : S : t ; t

x 62 t

plus 
ontextual 
losure, and ' as the equivalen
e 
losure of ;


umulativity 
ontext ` term

�

term

� ` S ' T

� ` S

�

T

� ` R

�

S � ` S

�

T

� ` R

�

T

� ` ?

n

�

?

n+1

� ` S

1

' S

2

�; x : S

1

` T

1

�

T

2

� ` 8x :S

1

: T

1

�

8x :S

2

: T

2

Fig. 1. Luo's UTT plus lo
al de�nition (fun
tional 
ore)
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(and other higher-kind obje
ts). There is no danger of paradox|types are 
olle
ted

in a 
umulative hierar
hy of universes ?

n

, individually 
losed under 8, ea
h inhabit-

ing and embedded in the next. These level subs
ripts 
an be managed me
hani
ally

(Harper & Polla
k, 1991), so we shall freely omit them.

Additionally, impli
it syntax, a very useful me
hanism also due to Polla
k (Pol-

la
k, 1992), allows us to omit arguments to fun
tions, where they may be inferred by

uni�
ation. We mark in the 
on
rete syntax for dependent fun
tion types whether

the argument is to be supplied or omitted by default, writing 8

x :S

: T to indi
ate

the latter. We do not demand 
omplete me
hani
al inferen
e and indeed we may

override it|if f : 8

x :S

:T , we may still write f

s

to supply the argument s ourselves.

The 
ore language is regulated by a system of mutually indu
tively de�ned judg-

ments, of whi
h the �rst (type
he
king) and third (
onversion) 
ontain the

most interest from a programming point of view:

� ` t : T `t has type T in 
ontext �': terms t are type
he
ked with respe
t to

a 
ontext whi
h 
ontains (at least) the de
larations x : S or de�nitions x 7! s : S

of every variable whi
h may o

ur free within t ;

� ` valid `� is valid': only those 
ontexts � make sense, whose de
larations give

variables legitimate types and whose de�nitions are type-
orre
t;

� ` S'T `S is 
onvertible to T in �': UTT is a a 
omputational theory: its

types may 
ontain and are identi�ed up to 
onversion; 
onversion is the usual

equivalen
e 
losure of a redu
tion relation � ` s ; t , generated by 
ongru-

en
e 
losure from a number of spe
i�ed one-step 
ontra
tions; ; embra
es �-

redu
tion, as well as other rules detailed below; we do not 
onsider �-
onversion

expli
itly|treatments in
lude (M
Kinna & Polla
k, 1999);

� ` S

�

T 
umulativity poli
es embedding between universe levels.

This system has a number of very strong meta-theoreti
 properties: all programs

terminate, so 
onversion is de
idable, hen
e so too are 
umulativity, validity and

type
he
king (Luo, 1990; Goguen, 1994; Polla
k, 1995).

Remark on meta-notation and meta-operations

In addition to the above properties of the type theory, we also require a num-

ber of meta-operations. For example, + t denotes the unique normal form of t .

We typi
ally present these in `fun
tional' style, writing equations in the form

de�niendum =) de�niens , employing `where' 
lauses, `if-then-else' et
.

Inspired by de Bruijn's `teles
opes' (de Bruijn, 1991), we manipulate sequen
es of

bindings and of arguments, writing sequen
es of terms as ve
tors

~

t (empty ve
tor

"), and iterated appli
ations as f

~

t . Contexts, denoted by Greek 
apital letters, may

stand for multiple bindings in 8-, �- and let-expressions. That is, we write 8�: T

for the dependent fun
tion spa
e formed by iteratively `dis
harging' � over T :
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8 � : T =) T

8�; x : S : T =) 8�: 8x :S : T

8�; x 7! s : S : T =) 8�: let x 7! s : S : T

Fun
tions ��: t and iterated de�nitions let � 7! ~s : t are a

ordingly abbreviated.

Su

essive bindings with the same type, e.g. m :N;n :N, are abbreviated as m;n :N.

Finally, � may stand for the ve
tor of its de
lared variables: if � ` f : 8�:T ,

then �;� ` f� : T , even if � 
ontains de�nitions. (End of remark).

By the Strengthening Lemma (Luo, 1990; van Benthem Jutting et al., 1994), any

well-typed term � ` t : T arises from a minimal sub
ontext of �, that is, there

exist 
ontexts �

t

, �

t

, satisfying:

� �

t

� � minimal su
h that �

t

` t : T ;

� �

t

; �

t

is a permutation of �;

� �

t

; �

t

` J if and only if � ` J , for any judgment J .

We shall make frequent use of this fa
t in the sequel. Indeed, su
h a 
ontext splitting

(�

t

;�

t

) may be 
omputed as strengthen(�; t ;T ), a meta-operation de�ned as

follows, where fv(X ) denotes the set of variables free in X :

strengthen(�; t ;T ) =) (�; �)

strengthen(x : S ; �; t ;T )

where (�

t

;�

t

) (= strengthen(�; t ;T )

=) if x 2 fv(�

t

) [ fv(t) [ fv(T )

then (x : S ; �

t

;�

t

)

else (�

t

; x : S ; �

t

)

2.1 Con
rete Syntax for Programs

In this se
tion, we develop our notation for programming, summarised in Figure 2.

We distinguish an extended expression language expr of this programming notation

from the low-level terms of the underlying type theory. The 
ategory expr embra
es

the basi
 
onstru
ts of UTT, together with:

� names for datatypes did and their 
onstru
tors 
id ;

� a 
ategory lhs whi
h forms the left-hand sides of programs;

� a distinguished sub
ategory 
all of the lhs , whi
h 
omprises the allowable

invo
ations of fun
tions;

� let notation, for lo
al fun
tion de�nitions in expressions;

� view notation, whi
h will be explained in detail in Se
tion 6.

Top-level sour
e 
ode 
onsists of a sequen
e of datatype de
larations (of whi
h

more in Se
tion 3 below) and de�nitions of new fun
tion symbols �d . These are
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expr := vid

j

j

did

j

j


id

j

j


all

j

j

expr : expr

j

j

8vid :expr : expr

j

j

?

j

j

�vid :expr : expr

j

j

expr expr

j

j

let sig [�d ℄ program : expr

j

j

view expr

program := lhs 7! expr

j

j

lhs ( expr fseq [program ℄g

j

j

lhs j expr fprogramg

de
l := data sig [did ℄ where sig [
id ℄

�

j

j

let sig [�d ℄ program

sour
e := seq [de
l ℄

vid := x

j

j

: : :

did := D

j

j

: : :


id := 


j

j

: : :

�d := f

j

j

: : :


all := �d expr

�

lhs := 
all (j expr)

�

seq [thing ℄ :=

j

j

thing (; thing)

�

sig [id ℄ :=

seq [vid : expr ℄

id vid

�

: expr

Fig. 2. Con
rete syntax for dependently typed programs

introdu
ed using let, whi
h introdu
es a program with a spe
i�ed type signature,

given in natural dedu
tion style:

let

�

f � : R

program

where the syntax for programs departs from the traditional prioritized list of pat-

tern mat
hing equations. A program is a hierar
hi
al stru
ture, resembling those of

Augustsson (Augustsson, 1985), whi
h explains how 
all s to the fun
tion f should

be exe
uted|either

� `by' (() invoking an eliminator;

� or `with' (j) the result of an intermediate 
omputation added to the data

under s
rutiny;

� or returning (7!) the value of a given expression on
e enough analysis has

been done. `Returns' lhs 7! expr are leaves in the program stru
ture.

To aid readability in this paper, we adopt informal spa
ing and layout 
onventions

whi
h are inevitably more sustainable in L

A

T

E

X than in ASCII. For example, we tend

to show the hierar
hi
al stru
ture of programs by indentation rather than bra
kets

and semi
olons. Also, from time to time (e.g. in the 
ode for elem), we use verti
al

alignment to avoid the repetition of un
hanged patterns from the lhs of a program

to those of its subprograms. We shall shortly show how programs determine the

synta
ti
 stru
ture of their subprograms, and hen
e that some su
h 
onvention 
an

be implemented; we omit any further detailed dis
ussion of su
h pragmati
s.

2.2 From Programs to UTT

We explain the 
on
rete syntax by elaboration into the underlying type theory,

but to do this, we will have to augment the abstra
t syntax of UTT (see Figure 3).
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term := : : :

j

j

did

j

j


id

j

j

hlabel : termi

j

j


all hlabeli term

j

j

return term

label := �d term

�

(j term)

�

Fig. 3. Abstra
t syntax extensions for elaborating programs

The underlying fun
tional 
ore must be extended with the datatype and 
onstru
tor

names, and to explain the distinguished 
alls and returns of fun
tions, we introdu
e:

� labels, label := �d term

�

(j term)

�

, whi
h elaborate the 
ategory lhs ;

� labelled 
alls, 
all hlabel i term, whi
h asso
iate a term with an elaborated lhs ;

� and their 
orrespond returns, return term;

� and labelled types, hlabel : termi;

This last 
onstru
t hl :T i is used to label a type T with a fun
tion invo
ation l

whi
h, when exe
uted, should return a value in T . We 
all these labelled types

programming problems: they are solved by elaborating programs.

Digression: programming problems in Lego To give an idea of our underlying

motivation for labelled types, 
onsider the following tri
k whi
h you 
an play even

in implementations of raw type theory su
h as Coq or Lego: suppose you want to

implement the addition fun
tion (+) : N ! N ! N. You might start with this type

as a top-level goal, and invoking N-elim, get ba
k the subgoals

? : N ! N

? : N ! (N ! N) ! N ! N

(the pre
ise form of the intera
tion is not at issue here). Whi
h instan
e of N is

whi
h? If you are unsure, it is rather easy to �nish the job with a well-typed term

whi
h does not quite add up! Suppose instead that you rephrase the goal, as follows,

via a de�ned fun
tion Plus whi
h is va
uous in its arguments:

Plus 7! �x ; y :N: N : N ! N ! ?

? : 8x ; y :N: Plus x y

If you normalize the goal, you 
an see it is just as before. With the unredu
ed goal,

invoking N-elim now yields two subgoals

? : 8y :N: Plus 0 y

? : 8x :N: (8z :N: Plus x z ) ! 8y :N: Plus (sx ) y

Again, the normal forms of these subgoals are as before, but unredu
ed, they tell

you exa
tly whi
h N is whi
h. Ea
h subgoal shows you the `pattern' to whi
h it


orresponds: in the base 
ase, you are asked to solve the problem \what is 0+ y?",

and in the step 
ase, \what is (sx )+y?", the indu
tive hypothesis shows you whi
h

are the allowable re
ursive 
alls, in this 
ase x + z for any z . (End of digression).
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ontext ` label label

� ` valid

� ` f label

� ` l label � ` t : T

� ` l t label

� ` l label � ` t : T

� ` l j t label


ontext ` term : term

� ` l label � ` T : ?

n

� ` hl :T i : ?

n

� ` l label � ` t : T

� ` return t : hl :T i

� ` t : hl :T i

� ` 
all hli t : T


ontext ` term ; term

[�℄

� ` 
all hli (return t); t

Fig. 4. Typing and 
onversion extensions

The va
uous arguments of Plus e
ho the use of phantom types in Haskell (Leijen

& Meijer, 1999). These arguments enri
h the des
riptive power of the type, giving

a more dis
riminating a

ount of the purpose of its values|not just their represen-

tation. In mu
h the same way, we distinguish hl :T i and T , and use this to manage

the pro
ess of type
he
king and elaborating programs by stratifying their return

types, labelling them with the fun
tion 
alls to whi
h they 
orrespond.

The elaboration pro
ess relies on 
omputation within labels, so the terms they


ontain must be well-typed|this is enfor
ed by a label well-formedness judgment,

� ` l label . We give a very simple, and intuitively appealing, operational se-

manti
s to abstra
t 
all and return, by extending the redu
tion relation with �-

redu
tions (� for `return'). The new rules are shown in Figure 4.

Ea
h program 
onstru
t in our notation either re�nes problems into subproblems or

solves them outright. For nontrivial problems, solving at a leaf is a
hieved by `�lling

in the right-hand side' with the term whose value is to be returned. If every leaf

is solved outright, then the program su

essfully elaborates. Su
h a model of su
-


essful elaboration lends itself to a fully-
edged a

ount of type-dire
ted intera
tive

program development|with all the armoury of te
hniques 
urrently employed in

implementations of type theory at our disposal. We will return to this point later.

We explain whi
h high-level programs and expressions su

essfully elaborate with

these new judgment forms:

� 
 ` . l `left-hand side ` elaborates to label l ';

� 
 e . t : T `expression e elaborates to well-typed term t of type T ';

�j� 
 p . t : hl :T i `in global 
ontext �, and lo
al 
ontext � of pattern bind-

ings, program p elaborates to well-typed term t of labelled type hl :T i';

� 
 d . � `in 
ontext �, de
laration d elaborates to new 
ontext bindings �'.
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ontext 
 lhs . label

� 
 f . f

� 
 ` . l � 
 e . t : T

� 
 ` e . l t

� 
 ` . l � 
 e . t : T

� 
 ` j e . l j t


ontext 
 expr . term : term

� ` valid

� 
 ? . ?

n

: ?

n+1

: : :

� 
 e . t : S � ` S

�

T

� 
 e . t : T

[
all℄

� 
 
 . l lookup(l ;�) =) (t : hl :T i)

� 
 
 . 
all hli t : T

[view℄ See Se
tion 6

Fig. 5. Elaboration of left-hand sides and expressions (edited highlights)


ontext j
ontext 
 expr . term : hlabel : termi

�j� 
 p . t : hl :Si �;� ` S

�

T

�j� 
 p . t : hl :T i

[return℄

�;� 
 ` . l �;� 
 e . t : T

�j� 
 ` 7! e . return t : hl :T i

[by℄ See Se
tion 4 [with℄ See Se
tion 5

Fig. 6. Elaboration of programs

Interpretation We intend the judgments for elaboration of high-level programs

and those of the type theory to be 
onne
ted by the following soundness properties,

whi
h we 
onje
ture follow by simple indu
tion on the rules, together with the

analysis we provide below of the elaboration rules for the various 
onstru
ts:

soundness for elaboration judgment yields underlying judgment

labels � 
 ` . l ) � ` l label

expressions � 
 e . t : T ) � ` t : T

de
larations � 
 d . � ) �;� ` valid

programs �j� 
 p . t : hl :T i ) �;� ` t : hl :T i

We hope to expand on su
h meta-theoreti
al treatment in future work; for now

it suÆ
es to observe that we obtain a na��ve operational semanti
s for programs,

simply by taking normal forms of elaborated terms.

The basi
 stru
tural rules for left-hand sides and expressions are summarised in

Figure 5; we only give sele
ted instan
es of the rules for expressions, noting that

we may in
orporate into both forms the use of su
h notational 
onvenien
es as

in�x operators, Polla
k-style impli
it syntax and universe level inferen
e, and the

omission of domain types from binders where they 
an be inferred from usage. Of


ourse, the real work is done by the remaining rules whi
h explain the elaboration

of the main programming 
onstru
ts.
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ontext 
 de
l . 
ontext

[data℄ See Subse
tion 3.2

[let℄

� 
 8�: R . 8�: T : ? �j� 
 p . t : hf �:T i

� 
 let

�

f � : R

p . f 7! ��: t : 8�: hf �:T i

Fig. 7. Elaboration of de
larations

We explain how the elaboration of a datatype de
laration extends the 
ontext

with new bindings, in Se
tion 3. Likewise, we defer the dis
ussion of `by' until

Se
tion 4, as it requires some 
onsiderable analysis|this is the heart of our a

ount

of `stru
tured de
omposition on the left'. The elaboration rule for `with' is explained

in Se
tion 5; in e�e
t it 
onstru
ts a `helper fun
tion' with an extended label.

Return from a 
all is straightforward to explain|rule [return℄, Figure 6; the elab-

orated right-hand side is returned, pa
kaged with the label whi
h elaborates the

left-hand side. Given t : T , the problem hl :T i is solved outright.

The rule for de
laring a fun
tion (see Figure 7) whose type 8�: R and body p

su

essfully elaborate, binds a new de�nition into the 
ontext: a �-abstra
ted term

whose type o�ers solutions to a 
lass of programming problems|those whose labels

represent 
alls to the fun
tion. For example, we may de�ne sno
 in terms of ++

(`append') as follows:

let

xs : ListX x : X

sno
 xs x : ListX

sno
 xs x 7! xs ++ (x :: [℄)

Here, the [return℄ rule demands that xs ++ (x :: [℄) : List X , to ensure that the

equation solves the top-level problem hsno
 xs x :ListX i. We 
ould write all our

programs this way by applying elimination operators in gory detail `on the right'.

However, our notation exists to hide this detail, treating elimination `on the left'.

Meanwhile, the [
all℄ rule uses the partial (but terminating) meta-operation

lookup, to sear
h the 
ontext for a variable whi
h 
an be applied to deliver a

solution to a programming problem with a given label|as delivered by de�nition.

Similarly, whilst elaborating a re
ursive program via an indu
tion prin
iple, the

lo
al 
ontext will 
ontain indu
tive hypotheses whi
h `advertise' the re
ursive 
alls

they enable via labelled types, just as in our Plus example above.

The lookup me
hanism thus 
orresponds to a simple proof ta
ti
|like Immed in

Lego. We defer its de�nition until Subse
tion 4.1, by whi
h time the stru
ture of

indu
tive hypotheses will have been made pre
ise. For now, we 
an say that if �


ontains an elaborated de�nition, f 7! � � � : 8�: hf �:T i and

~

t : �, then 
ertainly

lookup(f

~

t ;�) =) (f

~

t :




f

~

t :+ let � 7!

~

t : T

�

)

Stri
tly speaking, this permits the elaboration of 
alls to de�ned fun
tions only at

exa
tly the arity in their signature. However, given that this arity has been spe
i�ed,
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it is a simple matter for the elaborator to handle a 
all at any arity: 
alls whi
h are

too long be
omes appli
ations of 
alls; 
alls whi
h are too short get �-expanded,

�-abstra
ting the extra arguments required.

3 Datatype families, eliminators and 
omputation

We de
lare families of datatypes in our language by giving type signatures for the

type 
onstru
tor symbol and for its data 
onstru
tors, in the format

data type-
onstru
tor-signature where data-
onstru
tor-signatures

Simple monomorphi
 datatypes �t this pattern. For example, Unit and Bool:

data

Unit : ?

where

() : Unit

data

Bool : ?

where

true : Bool false : Bool

Note that we write both type and data 
onstru
tors sans serif. Signatures usually

take the form of natural dedu
tion rules: for ea
h new symbol, we give the 
ontext

whi
h types its arguments above the line, and the type of the symbol applied to

those arguments below. Examples in
lude Cartesian produ
ts and lists:

data

A;B : ?

A� B : ?

where

a : A b : B

(a;b) : A� B

data

X : ?

ListX : ?

where

[℄ : List X

x : X xs : List X

x :: xs : ListX

ListX is de�ned uniformly for any X and makes re
ursive referen
es only to ListX .

Su
h a parametri
 de
laration introdu
es a 
olle
tion of datatypes ea
h a
tual

instan
e of whi
h 
ould, more tediously, be de
lared by itself. Families of datatypes

(Dybjer, 1991) generalize parametri
 datatypes in two ways. Firstly, they are non-

uniform: ea
h data 
onstru
tor targets a subset of the type 
onstru
tor's possible

arguments|Dybjer 
alls these arguments indi
es when they are used in this non-

uniform way. The So family mentioned earlier is a simple example:

data

b : Bool

So b : ?

where

oh : So true

Se
ondly, datatype families are mutually de
lared: a 
onstru
tor for one subset of

the indi
es may refer re
ursively to other su
h subsets. A suitable example is the

family of heterogeneous asso
iation lists (`a-lists') with a spe
i�ed domain of Labels:

data

ls : List Label

HAL ls : ?

where

hnil : HAL [℄

l : Label x : X h : HAL ls

h
ons

X

l x h : HAL (l :: ls)

Here, hnil represents the empty a-list, with empty domain, and h
ons adds a new
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asso
iation, of the value x , of type X , with label l to an existing a-list h with

domain ls , yielding an a-list with domain l :: ls . In
identally, we 
ould easily require

distin
t labels by giving h
ons an extra argument in So (not (elem l ls)).

More generally, we permit datatype family de
larations of this general form:

data

�

D � : ?

where

�

1




1

�

1

: D ~e

1

: : :

�

n




n

�

n

: D ~e

n

(y)

The ~e

i

may di�er from � and ea
h other, hen
e a Haskell/Cayenne-style

data D x y z ... = C1 ... | ... | Cn ...

will not serve. It is also why datatype families are so powerful. Correspondingly,


ase analysis on datatype families is rather more subtle than on simple datatypes.

As with fun
tion type signatures, if 8�: ? . 8�: ? and 8�

i

: D ~e

i

. 8�

i

: D~s

i

, then

we obtain D : 8�: ? and 


i

: 8�

i

:D~s

i

.

Remark For readability, we adopt the typographi
al 
onvention that arguments

with inferrable types need not be de
lared expli
itly in a type signature's premises|

e.g. X : ? and ls : ListLabel in the de
laration of h
ons. The missing de
larations are

inserted (with Polla
k-style impli
it quanti�
ation) among the elaborated 
ontext

of arguments|we may subs
ript su
h an argument in the 
on
lusion to determine

where it goes. The signature for h
ons elaborates to

h
ons : 8

X :?

:8

ls:List Label

: 8l :Label:X ! HAL ls ! HAL (l :: ls)

This 
onvention is implementable, by augmenting Polla
k's te
hniques, but the

details are beyond the s
ope of this paper. (End of remark).

Dependen
y in type families allows us to spe
ify operations whi
h enfor
e additional

safety 
onstraints by typing alone. For example, we 
an ensure that proje
tions from

an a-list apply only to labels in its domain:

let

k : Label h : HAL ls p : So (elem k ls)

typeProj k h p : ?

� � �

let

k : Label h : HAL ls p : So (elem k ls)

valProj k h p : typeProj k h p

We develop these operations as a running example: in Subse
tion 3.1 below, we

explore the impa
t of dependent 
ase analysis on the types whi
h arise, and in Sub-

se
tion 5.1, the ne
essary 
oupling between intermediate 
omputations and types.

It is worth noting that there are other presentations of heterogeneous a-lists: we


ould index them by signatures in List (Label� ?), or we 
ould index signatures by

domain, then a-lists by signatures. Indeed, this example takes its 
ue from problems

originally en
ountered by Polla
k in his 
odings of re
ords in whi
h later �eld types

depend on earlier �eld values (Polla
k, 2000). In all of these variations, we �nd the

same problems|and the same solutions.
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3.1 Working with datatype families

In this se
tion, we examine the intera
tion between 
ase analysis and types|
learly

nontrivial where a fun
tion's return type depends on its argument, but still more

interesting on
e datatype families be
ome involved. Although not yet de�ned, we

use our high-level notation to fa
ilitate the dis
ussion of our examples. Our purpose

here is to examine the phenomena whi
h arise in these programs, and whi
h must

be addressed in the design of any notation for them.

For many simple programs, there is no intera
tion between 
ase analysis and types,

just as in standard fun
tional programming. The familiar elem fun
tion 
ontains

two 
ase-splits (on a List Label and on a Bool) neither of whi
h a�e
ts types:

let

k : Label ls : List Label

elem k ls : Bool

elem k [℄ 7! false

elem k (l :: ls) j k == l

j

j true 7! true

j

j false 7! elem k ls

Examining a value from an indexed datatype family is just as straightforward if

its indi
es may vary freely. In a fun
tion with type 8�: 8x :D �: T , x 
ould 
ome

from any 
onstru
tor. If T does not depend on � or x , it will be una�e
ted. For

example, we may 
ompute a signature from a heterogeneous a-list:

let

h : HAL ls

hSig : List (Label� ?)

hSig hnil 7! [℄

hSig (h
ons

X

l x h

0

) 7! (l ;X ) :: (hSig h

0

)

On
e a fun
tion spa
e depends even on a simply-typed argument, 
ase analysis


an 
hange the return type|a phenomenon new to fun
tional programming. For

example, given a value and a list of labels, we 
an 
ompute the a-list binding ea
h

label to the value:

let

x : X ls : List Label

repeat x ls : HAL ls

repeat x [℄ 7! hnil

repeat x (l :: ls) 7! h
ons l x (repeat x ls)

The return type is indexed by the list, so the more we learn about the list, the more

we know about what to return. In the [℄ 
ase, the right-hand side must have type

HAL [℄|hnil is the only 
andidate; in the step 
ase, we need a HAL (l :: ls), whi
h

suggests applying h
ons l . No 
onstru
tor makes a HAL ls for unknown ls , but the

more of ls we 
an see on the left, the more we 
an do on the right.

When analysing values from a datatype family, 
onstraining the 
hoi
e of indi
es


an rule out some 
ases. For example, we may shorten a nonempty a-list:

let

h : HAL (l :: ls)

hTail h : HAL ls

hTail (h
ons l x h

0

) 7! h

0

Why is there no 
ase for hnil? Be
ause there is no way hnil 
an make an inhabitant
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1

�

1

: D~s

1

~s

1

�
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2

�

2

: D~s

2

~s

2

�
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3

�

3

: D~s

3

~s

3

�

4




4

�

4

: D~s

4

~s

4

�

x : D

~

t

~

t

Fig. 8. Constrained 
ase analysis on a datatype family

of HAL (l :: ls)! The type dis
ipline ensures that we need only return values for


onstru
tors delivering elements whose indi
es lie in the subset under s
rutiny.

Further, a 
onstru
tor may deliver suitable elements only from a portion of its

domain. More generally, suppose we are writing a fun
tion f whose type is

f : 8�: 8x :D

~

t : T

by 
ase analysis on x , where family D� : ? has 
onstru
tors 


i

�

i

: D~s

i

. As Coquand

observes in (Coquand, 1992), we need 
onsider not the whole of D�, nor even the

whole of D

~

t , but the interse
tion between D

~

t and ea
h of the D ~s

i

in turn, as

illustrated in Figure 8.

In this hypotheti
al example, 
onstru
tor 


4

is ruled out, just as hnil was for hTail,

whilst every value returned by 


2

lies within D

~

t , as was the 
ase with h
ons.

However, we need only 
onsider 


1

�

1

for a subset of its possible arguments|those

�

1

whi
h make ~s

1


oin
ide with

~

t|and similarly for 


3

. Moreover, for ea
h 


i

, we

need only 
onsider instan
es of �|f 's arguments|whi
h make

~

t 
oin
ide with ~s

i

.

This is a real departure for fun
tional programming. Analysing one input x 
an not

only deliver a restri
ted set of 
onstru
tor patterns with some of their arguments

already determined; it 
an also have a non-lo
al impa
t, determining the values

of other inputs on whi
h the type of x depends. These instantiations may in turn
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hange the types of still other inputs, and possibly even the return type of the

fun
tion. Examples of these phenomena are found in our de�nition of typeProj:

let

k : Label h : HAL ls p : So (elem k ls)

typeProj k h p : ?

typeProj k hnil p ( So-
ase p

typeProj k (h
ons

X

l x h

0

) p j k == l

j

j true 7! X

j

j false 7! typeProj k h

0

p

Analysing the h : HAL ls argument gives two 
ases. In the 
ase where h is hnil, we

also learn|by typing, not testing|that ls is [℄. Hen
e p's type in this 
ase is really

So false. The notation ( So-
ase p, introdu
ed formally in Se
tion 4, then invokes


ase analysis of p revealing no possible 
onstru
tor|k 
annot o

ur in [℄, so there

is no proje
tion to de�ne!

The h
ons 
ase is still more interesting: the `information for free' here is that the

domain must be l :: ls

0

, and the tail h

0

: HAL ls

0

. Moreover, p : So (elem k (l :: ls

0

)).

Now, elem k (l :: ls

0

) is 
omputed by testing the result of an intermediate 
all to

k == l . Hen
e, when typeProj analyses k == l , it learns, again for free, yet more

about the type of p. In the true 
ase, this does not matter as label k has been found;

in the false 
ase, p's type be
omes So (elem k ls

0

)|exa
tly the prerequisite for the

re
ursive 
all, typeProj k h

0

p.

As you 
an see, some 
areful 
horeography is required to keep the testing performed

by typeProj in step with the testing performed by its type. The `j k == l ' 
lause

not only makes the result of the test available for analysis, it abstra
ts that result

from the type of p. We give the exa
t details of its elaboration in Se
tion 5.

The valProj fun
tion 
arries out exa
tly the same analyses as typeProj:

let

k : Label h : HAL ls p : So (elem k ls)

valProj k h p : typeProj k h p

valProj k hnil p ( So-
ase p

valProj k (h
ons l x h

0

) p j k == l

j

j true 7! x

j

j false 7! valProj k h

0

p

This is no idle 
oin
iden
e. Ea
h 
ase-split in valProj also instantiates the return

type 
omputed by typeProj. This is unremarkable in the hnil 
ase: p's type is

empty anyway, just as before. For the h
ons 
ase, the subsequent analysis of k == l

now delivers the value not only of the same test in the type of p, but also in the

typeProj 
all, by whi
h the return type is 
omputed. Correspondingly, where x

is returned in the true 
ase, the return type really is X . In the false 
ase, we must

return an element of typeProj k h

0

p, whi
h is exa
tly the type of valProj k h

0

p.

We may summarize the intera
tions between 
ase-splits and types observed in this

se
tion, by means of the following table. We 
ategorize the examples, �rstly by the
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type of the argument being analysed and se
ondly by the degree of dependen
y in

the fun
tion spa
e where the analysis o

urs. In ea
h meaningful 
ategory, we name

an example with the stated dependen
y and give the argument type.

arg's type simple D free D � 
onstrained D

~

t

dependen
y

none [elem℄ List Label [hSig℄ HAL ls [typeProj℄ So false

on indi
es not appli
able [typeProj℄ HAL ls [hTail℄ HAL (l :: ls)

on arg itself [repeat℄ List Label [valProj℄ HAL ls [valProj℄ So false

Programming in Hindley-Milner systems never strays beyond the top left 
orner of

this table. Re
ent experiments with polymorphi
 re
ursion on nested types (Bird &

Meertens, 1998) begin to stray into the se
ond row, although the indi
es a�e
ted are

always type parameters rather than a
tual data arguments. Further, the uniform

`dataD� = : : :' style of family means that 
onstru
tors 
an never be ruled out by

analysing a 
onstrained D

~

t , nor 
an a parti
ular 
hoi
e of 
onstru
tor tell us more

about the indi
es

~

t , as the interse
tion of the whole set � with

~

t is just

~

t itself.

As we work towards the more powerful te
hniques and programs inhabiting the

bottom right 
orner, we must 
onfront a number of new issues:

� How do we handle the e�e
ts of analysing one argument on other arguments

and on types?

� How do we handle the potential 
omplexity of the interse
tions between non-

trivial argument types D

~

t and nontrivial 
onstru
tor ranges D~s

i

?

� How do we handle the impa
t on types of analysing the result of an interme-

diate 
omputation?

The notation we introdu
e in this paper is a step towards addressing these questions.

However, before we present the elaboration of the programming 
onstru
ts, let us

be pre
ise about the presentation of datatype families in the underlying type theory.

3.2 Elaborating data de
larations

These `data' de
larations (y) of Se
tion 3 elaborate to 
ontext extensions by the

rules in Figure 9; the new bindings de
lare the type- and data-
onstru
tors, together

with the elimination operator D-elim, spe
ifying whi
h re
ursive 
omputations

are permitted over instan
es of D �. The meta-operation hyps(P ;�) 
omputes

the appropriate 
ontexts of indu
tive hypotheses. Elimination operators a
quire


omputational behaviour by extending the 
onversion judgment of the type theory

with the `�-redu
tion' s
heme.

As observed in (Callaghan & Luo, 2000), �-redu
tion need not be implemented by

na��ve pattern mat
hing (as it is in Lego (Polla
k, 1994)). A simple swit
h on the


onstru
tor 


i

, in the style of Augustsson (Augustsson, 1985), suÆ
es for the safe

exe
ution of well-typed programs.
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ontext 
 de
l . 
ontext

[data℄

� 
 8�:? . 8�:? : ?

�; D : 8�:? 
 8�

i

: D ~e

i

. 8�

i

: D~s

i

: ? (1 � i � n)

for ea
h x : T in ea
h �

i

; if D 2 T then for some ~u; T is D ~u

� 
 data

�

D � : ?

where

�

1




1

�

1

: D ~e

1

: : :

�

n




n

�

n

: D ~e

n

. D : 8�: ?; 


1

: 8�

1

: D~s

1

; : : : ; 


n

: 8�

n

: D~s

n

;

D-elim : 8

�

; x : D�: targets

8P :8

�

; x : D�: ? : motive

8m

1

:8�

1

; hyps(P ;�

1

): P (


1

~s

1

):

.

.

.

8m

n

:8�

n

;hyps(P ;�

n

): P (


n

~s

n

):

9

>

=

>

;

methods

P x

where hyps(P ; �) =) �

hyps(P ; r : D ~u; �) =) r

0

: P r ; hyps(P ;�)

hyps(P ; a : A; �) =) hyps(P ;�) otherwise


ontext ` term ; term

[�℄

�;D-elim : : : : ; �

0

` D-elim (


i

�

i

) P ~m ; m

i

�

i

re
s(P ; ~m;�

i

)

where re
s(P ; ~m;�

i

) : hyps(P ;�

i

)

re
s(P ; ~m; �) =) "

re
s(P ; ~m; r : D ~u; �) =) (D-elim r P ~m); re
s(P ; ~m;�)

re
s(P ; ~m; a : A; �) =) re
s(P ; ~m;�) otherwise

Fig. 9. Elaboration of datatype de
larations

For N, de
lared by data

N : ?

where

0 : N

n : N

sn : N

, we obtain

N : ?; 0 : N; s : N ! N;

N-elim : 8x :N: 8P :N ! ?: P 0 ! (8n :N: P n ! P (sn)) ! P x

N-elim 0 P m

0

m

s

; m

0

N-elim (sn) P m

0

m

s

; m

s

n (N-elim n P m

0

m

s

)

For all the examples in this paper, it is suÆ
ient to ignore the possibility of higher-

order re
ursive 
onstru
tors and presume that all 
onstru
tor argument types men-

tioning D have form D~u. Looser re
ursion regimes are now standard, as are mutual

de�nitions, but we prefer not to 
ompli
ate the presentation beyond what is needed

to support the present paper. Moreover it suÆ
es to treat datatype parameters (like

the X in ListX ) the same way we treat indi
es: a possible optimization is to abstra
t

them on
e at the outside, rather than repeatedly in the motive and methods.
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4 The `by' 
onstru
t: generalized elimination

In this se
tion, we develop the tools we need to deploy not merely the ma
hine-

generated elimination operators for datatype families, but any fun
tion whose type

has a suitable shape. We say that a term e is a �j�-eliminator and we 
all its

type a �j�-eliminator type if, for any �;�

i

;~s

i

;

~

t ,

�;� ` e : 8P : (8�: ?): (8�

1

: P ~s

1

) ! � � � ! (8�

n

: P ~s

n

) ! P

~

t

and �;� ` valid

and �; P : (8�: ?) ;�

i

` P s

i

: ? (1 � i � n)

It is this 
entral de�nition, and its abstra
t 
hara
terization of the type-shape whi
h

drives the generalization of the primitive elimination operators in type theory. We


all an eliminator's �rst argument its motive|it shows what is to be gained by

the elimination; the remaining arguments, we 
all methods|they show how the

motive is to be a
hieved in ea
h 
ase.

An elimination operator is a fun
tion f : 8�: E in �, su
h that E is a �j�-

eliminator type. We say that the � are f 's targets|they explain what is to be

eliminated. Our de�nition thus in
ludes, but is not restri
ted to the basi
 D-elim

operators whi
h 
ome with datatype families.

Note that the traditional presentation of indu
tion prin
iples (as in Subse
tion 1.1)

orders the arguments: motive, methods, targets. We put the targets �rst, so that

an elimination operator is a fun
tion from targets to eliminators. The (-
onstru
t

splits a programming problem into subproblems given an arbitrary eliminator. Of


ourse, if �;� ` x : D

~

t , then D-elim x is a �j�-eliminator.

The [by℄ rule explains how this splitting pro
eeds, dire
ted by the eliminator's type.

It is shown, with other asso
iated de�nitions, in Figure 10. The main work is done

by the meta-operation split, 
omputing the 
ombinator g with whi
h to re
ombine

the elaborated subprograms. The a

ount whi
h we give here is a simpli�ed version

of those in (M
Bride, 1999; M
Bride, 2002), adequate for all the examples in this

paper. Extensions 
overing more 
omplex rules or more 
omplex 
ombinations of

re
ursion are routine, but require more 
areful bookkeeping than is justi�ed here.

We shall explain what happens, with the help of a worked example|de�ning htail

let

h : HAL (l :: ls)

hTail h : HAL ls

hTail h ( HAL-elim h

hTail (h
ons l x h

0

) 7! h

0

where (showing the indi
es, but omitting other inferrable information to save spa
e):

HAL-elim

(l::ls)

h : 8P : 8

ls

: HAL ls ! ?:

P

[℄

hnil !

(8

X ;ls

0

: 8l ; x ; h

0

: P

ls

0

h

0

! P

(l::ls

0

)

(h
ons l x h

0

)) !

P

(l::ls)

h

For P , we need a motive su
h that P

(l::ls)

h delivers an element of hhTail h :HAL lsi.
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Heterogeneous Equality

a : A b : B

a

A

=

B

b : ? re
 a : a = a

q : a

A

=

A

a

0

P : 8

a

0

:A

: a = a

0

! ? m : P

a

(re
 a)

= -elim q P m : P

a

0

q


ontext ` term ; term

[�℄

� ` = -elim (re
 a) P m ; m

let

q : a

A

=

A

a

0

P : A ! ?

subst q P : P a ! P a

0

subst q P 7!= -elim q (�

x :A

: � :a = x : P x )

let

q : a

A

=

A

a

0

sym q : a

0

A

=

A

a

sym q 7! subst q (�x :A: x = a) (re
 a)

Simpli�
ation for a method

dm : 8�: t = t ! M e

=) dm

0

: 8�:M e;

m 7! ��: �q :m

0

�

dm : 8�: 
halk~s = 
halk

~

t ! M e

=) dm

0

: 8�: ~s =

~

t ! M e;

m 7! ��: �q : inje
t q (m

0

�)

dm : 8�: 
halk~s = 
heese

~

t ! M e where 
halk 6= 
heese

=) m 7! ��: �q : 
onfli
t q M

dm : 8�: x = s ! M e where x 2 dom�; s 62 dom�

=) dm

0

: 8�: s = x ! M e;

m 7! ��: �q :m

0

� (sym q)

dm : 8�: 


~

t = x ! M e where x � 


~

t

=) m 7! ��: �q : 
y
li
 q M

dm : 8�: t =

T

x ! M e where (�

t

; �

x

t

; x : T ;�

x

) (= strengthen(�; t ;T )

=) dm : +8�

t

; �

x

t

; x 7! t : T ; �

x

:M e

m 7! ��: �q : subst q (�x : 8�

x

:M ) (m

0

�

t

�

x

t

) �

x

dm : M e =) m

Simpli�
ation for a 
ontext of methods

d�e =) �

d	;m : Me =) d	e; dm : Me

Splitting a problem

split(�; hl :T i ;E as 8P : (8�: ?): 8	: P

~

t)

=) let P 7! ��: 8�:� =

~

t ! hl :T i :

(�d	e: ��: �e :E : e P 	� (re


~

t)

: 8d	e: 8�: E ! hl :T i)


ontext j
ontext 
 expr . term : hlabel : termi

[by℄

�;� 
 ` . l �;� 
 e . t : E for E a �j�-eliminator type

split(�; hl :T i ;E) =) g : (8�

1

: hl

1

:S

1

i)! � � � ! (8�

k

: hl

k

:S

k

i)

! 8�: E ! hl :T i

�j�

i


 p

i

. s

i

: hl

i

:S

i

i (1 � i � k)

�j� 
 `( e fp

1

; : : : ; p

k

g . g (��

1

: s

1

) : : : (��

k

: s

k

) � t : hl :T i

Fig. 10. The [by℄ rule and related de�nitions.
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The problem is that although P is applied here to a nonempty environment, it must

still abstra
t over every environment, empty or not. This is an old problem for in-

du
tive theorem proving (for example in proving `generation lemmas' (Barendregt,

1992; M
Kinna & Polla
k, 1993; M
Kinna & Polla
k, 1999)) and for logi
 program

transformation (Clark, 1978; Tamaki & Sato, 1984). How do we apply an indu
tion

prin
iple (or an unfolding) to a 
onstrained instan
e of a relation?

Fortunately, there is also an old solution whi
h has been exploited for many years,

either by hand or me
hani
ally, in these settings: transform `this 
onstrained in-

stan
e' to `any instan
e whi
h satis�es these 
onstraints', where the 
onstraints are

expressed by equations :

If we 
ould take P 7! �

ks

: �h

0

:HAL ks : ks = l :: ls ! hhTail h :HAL lsi

then we would have P

(l::ls)

h ' l :: ls = l :: ls ! hhTail h :HAL lsi

This is what we need, at the 
ost of supplying a trivial proof. Meanwhile, the

methods required would have types

m

1

: [℄ = l :: ls ! hhTail h :HAL lsi

m

2

: 8

X ;ls

0

: 8l

0

; x : 8h

0

:HAL ls

0

:

(ls

0

= l :: ls ! hhTail h :HAL lsi) !

l

0

:: ls

0

= l :: ls ! hhTail h :HAL lsi

For the hnil 
ase,m

1

, we have a false equation, hen
e the method should be supplied

va
uously. For m

2

, we have an equation whi
h implies that ls

0

= ls , and hen
e that,

`morally', the exposed tail h

0

is an a

eptable return.

We 
an me
hanize this idea in type theory, yielding the key te
hnique for expressing

high-level programs via elimination operators, hen
e we reprise it here. In order

to do so, our type theory needs a suitable notion of equality|the heterogeneous

equality shown in Figure 10. This presentation (M
Bride, 1999) is not yet standard

in type theory: it allows the formation of heterogeneous equations between elements

of any two types, and hen
e equations between ve
tors in a given 
ontext. We

expand ~a =

~

b as a 
ontext of equational 
onstraints q

1

: a

1

= b

1

; : : : ; q

k

: a

k

= b

k

,

and 
orrespondingly, re


~

t as the ve
tor re
 t

1

; : : : ; re
 t

k

.

Cru
ially, however, the elimination operator (with �-redu
tion

1

), whi
h gives us

that equality is a 
ongruen
e, only applies to homogeneous equations: we may only

substitute elements of the same type. It is not the operator whi
h a data de
laration

would generate for =, but it still 
overs all 
anoni
al proofs of equations.

Now, in the general 
ase, we have a programming problem 8�: hl :T i and an elim-

inator with type 8P : (8�: ?): 8	: P

~

t . The split meta-operation 
hooses

P 7! ��: 8�:� =

~

t ! hl :T i

1

� being a nod to those authors, who have studied an additional 
onstant K whi
h, for the usual

indu
tively de�ned equality in type theory, yields power equivalent to our notion (Strei
her,

1993; Hofmann & Strei
her, 1994)
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Now (in s
ope of this de�nition) if we 
an �nd methods 	 where

	 is m

1

: 8�

1

; �; ~s

1

=

~

t : hl :T i ;

.

.

.

m

n

: 8�

n

; �; ~s

n

=

~

t : hl :T i

we will have

��: �e :E : e P 	� (re


~

t) : 8�: E ! hl :T i

This is the general form of the te
hnique we used in the hTail example, turning a

parti
ular

~

t into equational 
onstraints on a freely 
hosen � des
ribed above. The

instantiated 
onstraints 
hara
terize the interse
tions ~s

i

=

~

t in whi
h the indi
es of

interest lie. Further, in any indu
tive hypotheses given by expanding P in �

i

, the

equations give the 
onditions for making a re
ursive 
all. Quantifying over � within

the motive P ensures that su
h indu
tive hypotheses are as liberal as possible. For

hTail, the motive and the method types|now a little less tidy|are as follows:

P 7! �

ks

: �h

0

:HAL ks : 8

l;ls

: 8h :HAL (l :: ls):

ks = l :: ls ! h

0

= h ! hhTail h :HAL lsi

m

1

: 8

l;ls

: 8h :HAL (l :: ls):

[℄ = l :: ls ! hnil = h ! hhTail h :HAL lsi

m

2

: 8

X ;ls

0

: 8l

0

; x : 8h

0

:HAL ls

0

:

(8

l;ls

: 8h :HAL (l :: ls):ls

0

= l :: ls ! h

0

= h ! hhTail h :HAL lsi) !

8

l;ls

: 8h :HAL (l :: ls):

l

0

:: ls

0

= l :: ls ! h
ons l

0

x h

0

= h ! hhTail h :HAL lsi

These methods m

i

will ultimately give rise to the subproblems solved by the sub-

programs, but �rst they are simpli�ed by �rst-order uni�
ation, as in (M
Bride,

1998; M
Bride, 1999; M
Bride, 2002), and on
e again here.

We present uni�
ation in Figure 10 as a meta-operation on a method binding,

dm : M e, returning a 
ontext in whi
h m still has type M , but may now be de�ned,

either in terms of a simpli�ed method m

0

: M

0

(with the equations redu
ed), or

without further assumption (if the equations are demonstrably absurd). Ea
h 
lause

of the de�nition explains how to simplify a homogeneous equational hypothesis and

thus takes the form dm : 8�: s = t ! M e =) � � �. In order to resolve ambiguity,

we prioritize the rules from top to bottom and shorter 
andidates for � over longer.

For reasons of brevity, we omit the expli
it enfor
ement of homogeneity and the

repetition of the input method's type.

The meta-operations inje
t and 
onfli
t deploy proofs that a datatype family

has the `no 
onfusion' property. Meanwhile, 
y
li
 exploits the relevant family's

`no 
y
les' property: the 
ondition x � 


~

t , (x is 
onstru
tor-guarded in 


~

t), holds

if either x ' t

i

or x � t

i

for some i. These properties are derived automati
ally

when ea
h datatype family is de
lared: we do not repeat the 
onstru
tion here, but

refer the interested reader to (M
Bride, 1999).
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In the penultimate 
lause, strengthen is used to ensure that t is a suitable 
an-

didate to instantiate x , whose binding must fall amongst those not needed to type-


he
k t|this subsumes the traditional o

ur-
he
k. Moreover, 
omputing out the

new de�nition instantiates x with t in the method's label.

What 
an we say about this uni�
ation algorithm? Our prioritization ensures that it

is deterministi
. Further, for methods dm : 8�: hl :T ie, the usual indu
tion (�rst on

the number of non-equational hypotheses in �, then on the number of 
onstru
tor

symbols in the equations) shows that the algorithm terminates.

We 
an readily iterate this pro
ess a
ross a 
ontext of methods, d	e. For hTail,

we get something of the following form, with the hnil 
ase solved outright, and the

patterns in the h
ons 
ase redu
ed to those the subprogram requires:

d	e =)

m

1

7! �

l;ls

: �h: �q : [℄ = l :: ls :


onfli
t q (hnil = h ! hhTail h :HAL lsi);

m

0

2

: 8

X ;ls

: 8l ; x : 8h :HAL ls :

(8

l;ls

: 8h :HAL (l :: ls): ls

0

= l :: ls ! h

0

= h ! hhTail h :HAL lsi) !

hhTail (h
ons l x h) :HAL lsi ;

m

3

2

7! :: subst ::m

0

2

; m

2

2

7! :: subst ::m

3

2

; m

1

2

7! :: subst ::m

2

2

;

m

2

7! :: inje
t ::m

1

2

Cru
ially, d	e still binds every method in 	, so the split operation used in the [by℄-

rule is well-de�ned: the 
ombinator it 
omputes just abstra
ts over the simpli�ed

problems, but passes the terms derived for the k � n unsimpli�ed methods to the

eliminator, solving the original problem. The [by℄ rule 
he
ks that these simpli�ed

problems are solved by the subprograms.

4.1 Derived eliminators

As has often been observed, many `obviously' terminating fun
tions do not dire
tly

�t the pattern of 
omputation supported by D-elim operators|one step of 
ase

analysis, with re
ursion on the immediately exposed subterms. Some, su
h as the

Fibona

i fun
tion, require a

ess more than one step ba
k down the 
ourse of

values. Others, su
h as M
Bride's dependently typed implementation of �rst-order

uni�
ation (M
Bride, 2001), perform 
ase analysis on a datatype family (the terms),

but re
ursion on an index of that family (the number of unsolved variables).

One remedy, 
ertainly adequate for these two examples, is to follow Coquand's

suggestion and separate 
ase analysis from re
ursion. Gim�enez a
hieves this in

Coq (Gim�enez, 1994; Gim�enez, 1998) by equipping the type theory with primitive

Case and Fix 
onstru
ts. The latter permits re
ursion on any 
onstru
tor-guarded

subterm (
.f. the previous Se
tion) of the argument it addresses.

One does not need the full ma
hinery of an extension by �xpoint 
onstru
ts, how-
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ever; the �rst author's version of the same idea is to derive separate 
ase analysis

and re
ursion operators automati
ally, given the primitive elimination operator.

The type of the 
ase analysis operator is 
omputed simply by dis
arding the indu
-

tive hypotheses from the primitive elimination operator:

D-
ase : 8

�

; x : D�: 8P : (8

�

; x : D�: ?):

8m

1

:8�

1

: P (


1

~s

1

): : : : 8m

n

:8�

n

: P (


n

~s

n

): P x

The intrinsi
 a
tion of �-redu
tion on 
onstru
tor-headed arguments is harnessed

to a

ount for 
onstru
tor-guarded re
ursion, via a memoization te
hnique:

D-re
 : 8

�

; x : D�: 8P : (8

�

; x : D�: ?):

(8

�

; x : D�:D-memoP x ! P x ) !

P x

The predi
ate transformer D-memo 
omputes a `
ourse-of-values' data stru
ture

storing a value in P y for every y stru
turally smaller than the given x . This

stru
ture is just a big tuple, 
omputed by primitive re
ursion over x . We write

D-memo informally in pattern mat
hing style|these laws hold as 
onversions|

but the eliminator translation is straightforward.

D-memoP (


i

�

i

) ' �(hyps(D-memoP ;�

i

); hyps(P ;�

i

))

where �(x

1

:T

1

; : : : ; x

n

:T

n

) denotes the Cartesian produ
t T

1

� : : :�T

n

. We take

�� to be Unit. For N, this gives

N-memo P 0 ;

�

Unit

N-memo P (sn);

�

( +N-memo P n)� P n

The term justifying D-
ase is trivial to 
onstru
t; that for D-re
 is a little more


omplex|we refer the interested reader to (M
Bride, 1999). We may use D-
ase x

repeatedly, or other means, to instantiate D-memoP x with 
onstru
tor-pre�xed

terms, allowing it to unfold and reveal hypotheses for the guarded subterms. The

meta-operation lookup must therefore be able to sear
h these tuples in order to

proje
t out the solutions to the programming problems 
orresponding to re
ursive


alls. Consider, for example, the Fibona

i fun
tion:

let

x : N

�b x : N

�b x ( N-re
 x

�b x ( N-
ase x

�b 0 7! 0

�b (sx

0

) ( N-
ase x

0

�b (s0) 7! s0

�b (s(sx

00

)) 7! �b x

00

+ �b (sx

00

)

Here, the initial( N-re
 x will sele
t the following motive and add the 
orrespond-

ing memo-stru
ture to the 
ontext:

P 7! �n: 8x : n = x ! h�b x :Ni

memo

x

: N-memo P x
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lookup(l ; �; x 7! s : S) =) try unpa
k(�; ("; "); x ; +S)

before lookup(l ;�)

lookup(l ; �; x : S) =) try unpa
k(�; ("; "); x ; +S)

before lookup(l ;�)

where

unpa
k(�; (~s ;

~

t); x ; hl

0

:T i) where (� 7! ~u) uni�es l

0

with l and ~s with

~

t

�;� 7! ~u ` x : hl :T i

=) ( + let � 7! ~u: x : + let � 7! ~u: hl :T i)

unpa
k(�; (~s ;

~

t); f ; 8x :S : T ) where x 2 T

=) unpa
k(�; x : S ; (~s;

~

t); f x ;T )

unpa
k(�; (~s ;

~

t); qf ; s = t ! T ) =) unpa
k(�; (~s;s;

~

t ;t); qf (re
 s);T )

unpa
k(�; (~s ;

~

t); xy ;X �Y ) =) try unpa
k(�; (~s;

~

t); snd xy ;Y )

before unpa
k(�; (~s;

~

t); fst xy ;X )

Fig. 11. The lookup meta-operation

In the re
ursive 
ase, x has been instantiated, and the memo-stru
ture be
omes

memo

x

: N-memo P (s(sx

00

)) ;

�

(( +N-memo P x

00

) �

(8x : x

00

= x ! h�b x :Ni)) �

(8x : sx

00

= x ! h�b x :Ni)

So, lookup must handle more than just the bindings, f 7! � � � : 8�: hf �:T i,

yielded by the [let℄ rule; it must extra
t solutions from hypotheses tupled or 
on-

strained by equations. We de�ne it in Figure 11, giving only the patterns whi
h

lead to progress|if the mat
h fails, so does the operation.

For ea
h binding in �, lookup inspe
ts the normal form of its type to 
he
k if it 
an

mat
h the required label l . The real work is done by the auxiliary meta-operation

unpa
k(�; (~s ;

~

t); x ;X ), whi
h builds a 
andidate solution x , whilst a

umulating

a 
ontext � whi
h must be instantiated, and a pair of ve
tors (~s ;

~

t) whi
h must

be equal, for the 
andidate to su

eed with type X . This X determines the sear
h

strategy: if it is 8-quanti�ed, try appli
ation; if it demands an equation, try a

re
exive proof; if it is a pair, try ea
h proje
tion in turn. Eventually, if unpa
k

rea
hes a 
andidate for a programming problem hl

0

:T i, it 
he
ks that l

0

subsumes

l by unifying the labels and the a

umulated 
onstraints, then type
he
king the

instantiated 
andidate: we use ordinary �rst-order uni�
ation on normalized terms.

For the �b example, lookup does indeed �nd that

snd (fstmemo

x

) x

00

(re
 x

00

) : h�b x

00

:Ni

sndmemo

x

(sx

00

) (re
 (sx

00

)) : h�b (sx

00

) :Ni

This de�nition of lookup is 
ertainly adequate to unpa
k the solutions to pro-

gramming problems exposed by D-
ase in the memo-stru
tures installed by D-re
.

However, the latter are just parti
ular instan
es of the general notion of elimination

operator, de�ned in Se
tion 4, and 
ould have been de�ned by a programmer us-

ing D-elim; but sin
e they may be generated automati
ally, we may take them as

given. They 
apture an important 
lass of allowable re
ursions; user-de�ned elimi-
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nation operators whi
h 
apture other interesting re
ursive 
all patterns have been


onsidered elsewhere (M
Kinna, 2002) and remain the subje
t of ongoing study.

Of 
ourse, htail and �b, as presented in full above, have rather more bulky 
ode

than fun
tional programmers normally expe
t to write. Espe
ially annoying is the

fa
t that the 
alls we eventually write on either side already 
arry the eviden
e of the


ase analysis and stru
tural re
ursion whi
h explain them|
onstru
tor symbols.

We 
an alleviate this problem somewhat by taking a 
ombination of outer D-re


and inner D-
ase appli
ations to be the default explanation of a non-empty blo
k of

programs wherever a single program is expe
ted. The 
onstru
tor patterns in these

programs bound the depth of the splitting whi
h 
an possibly produ
e them, and

there are only �nitely many ways to 
ombine re
ursions lexi
ographi
ally, hen
e

there is at least a 
lumsy elaboration method. More sophisti
ated approa
hes may

be found in (Cornes, 1997; Abel & Altenkir
h, 2000).

As a 
onsequen
e of this defaulting strategy, we may suppress the(-
lause in htail,

re
overing our earlier statement of the program

let

h : HAL (l :: ls)

hTail h : HAL ls

hTail (h
ons l x h

0

) 7! h

0

We may also remove all but the three equations from the program for �b, yielding

the more familiar

let

n : N

�b n : N

�b 0 7! 0

�b (s0) 7! s0

�b (s(sn

00

)) 7! �b n

00

+ �b (sn

00

)

Indeed, in the general 
ase, the only -
ase-splits whi
h we must retain are those

whi
h yield no 
ases! The unde
idability of type inhabitation obliges us to be expli
it

in su
h situations. In the absen
e of eviden
e in the form of a 
onstru
tor pattern,

whi
h points to a parti
ular argument type being empty, there is no basis on whi
h

to re
onstru
t the 
orre
t -
ase-term. Examples of this arise with the o

urren
e

of So false in the hnil bran
hes of typeProj and valProj.

With the derived 
ase analysis and re
ursion operators, and using this 
onvention,

our type theory 
an support|by elaboration into large and unreadable terms|

every program admitted by Coquand's proposed pattern mat
hing language (Co-

quand, 1992), as partially implemented in ALF (Magnusson, 1994). Su
h is the

prin
ipal result of the �rst author's PhD thesis (M
Bride, 1999), in whi
h the orig-

inal obje
tive had been to dispense with eliminators in favour of pattern mat
hing.

With hindsight, we would re
ommend exa
tly the opposite. In our terms, Coquand's

system hard-wires splitting as if by D-
ase (with interse
tions 
omputed by a uni-

�
ation ora
le) and presents re
ursion only as if by D-re
.

We 
on
lude this se
tion with a simple example using a non-standard eliminator|

the `target-�rst' variant of N-Compare from the Introdu
tion, of type
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N-
ompare : 8m;n :N: 8P : N ! N ! ?:

(8x ; y :N: P x (x + sy)) !

(8x :N: P x x ) !

(8x ; y :N: P (y + sx ) y ) !

P m n

With it, we may de�ne the `absolute di�eren
e' fun
tion for N:

let

m;n : N

absDi� m n : N

absDi� m n ( N-
ompare m n

absDi� x (x + sy) 7! sy

absDi� x x 7! 0

absDi� (y + sx ) y 7! sx

In the original spirit of pattern mat
hing, a testing operation, 
omparison, has

been safely and 
learly 
ombined with a sele
tion operation, subtra
tion. We shall

present more sophisti
ated examples in Se
tion 6, where we develop an idiom for


onstru
ting non-standard eliminators by �rst-order programming.

5 Abstra
ting Intermediate Computations

In this se
tion, we introdu
e our analogue to the proposed pattern guard no-

tation in Haskell (Peyton Jones, 1997; Peyton Jones & Erwig, 2000)|the with


onstru
t, lhs j expr fprogramg. Pattern guards allow an intermediate 
omputation

to be mat
hed against a single a

eptable pattern|if the subsidiary mat
h fails,


ontrol passes to the next line of the program. For example, pattern guards provide

a 
onvenient way to unpa
k a re
ursively 
omputed tuple:

unzip [℄ = ([℄, [℄)

unzip ((x,y):xys) | (xs,ys) <- unzip xys = (x:xs,y:ys)

The basi
 fun
tion of `j e' is to add the result of e to the 
olle
tion of values under

s
rutiny on the left. Subsequent `mat
hing' 
omes from the( 
onstru
t (impli
itly,

for standard -
ase operators) as usual. The e�e
t is similar to de�ning a helper

fun
tion over all the original `pattern variables' together with the extra value, but

the j is mu
h more 
ompa
t. With our layout 
onvention, the above be
omes:

let

xys : List (A� B)

unzip xys : ListA � List B

unzip [℄ 7! ([℄; [℄)

unzip ((x ; y) :: xys) j unzip xys

j

j (xs ; ys) 7! (x :: xs; y :: ys)

On
e we have an intermediate value, we 
an 
onsider more than one 
ase of it, as in

our version of elem. Haskell's guards also redu
e the tenden
y of programs whi
h

mix analysis of their arguments and intermediate values to degenerate into gangling



32 Conor M
Bride and James M
Kinna

right-hand sides built by if and 
ase. This fun
tion, 
ounting the number of times

a given tree o

urs within another, shows but the tip of the i
eberg:


ount s t = if s == t then 1

else 
ase t of

Leaf -> 0

t1 :^: t2 -> 
ount s t1 + 
ount s t2

To 
onne
t 
ount's arguments with the analysis on the right, we must observe the

re
urren
e of t. Longer trails of repeated identi�ers 
an easily be
ome 
onfusing,

and 
ertainly make it harder to tell at a glan
e what a program does. Here, even a

Boolean guard is enough to re
onne
t the program, expressing its analysis 
learly

and 
on
isely on the left:


ount s t | s == t = 1


ount s Leaf = 0


ount s (t1 :^: t2) = 
ount s t1 + 
ount s t2

Even without spe
ial sugar for booleans or `fall-through', our notation tabulates

exa
tly the analysis performed: its `laws' are as 
lear as its me
hanism.

let

s ; t : tree


ount s t : N


ount s t j s == t

j

j true 7! s0

leaf

j

j false 7! 0

(t

1

node t

2

)

j

j false 7! 
ount s t

1

+ 
ount s t

2

5.1 Abstra
ting from types

Clarity notwithstanding, type dependen
y provides a se
ond motivation for treating

sub
omputations on the left|their impa
t on types. We have already observed this

informally with the elem, typeProj, valProj example. In order to 
onne
t the

intermediate label tests in typeProj and valProj with the elem 
omputations at

the type level, we must abstra
t the tests from types as well as in the patterns.

Our `with' notation 
orresponds dire
tly to an established te
hnique in theorem

proving|generalizing a goal by abstra
ting a subexpression, perhaps to strengthen

an indu
tion|as implemented by the Pattern ta
ti
 in Coq (Coq, 2001). Its elab-

oration rule is shown in Figure 12.

Using the meta-operation abst (whose obvious de�nition as an inverse to substi-

tution is omitted), the elaborator 
omputes abstra
tions (l

x

, on labels, and �

x

on


ontexts): these abstra
tions must be type
he
ked again, to ensure that repla
ing

the elaborated term s by a variable has not 
ompromised validity. The elaborator

then 
onstru
ts a helper fun
tion t from subprogram p, with an extended label|the

main program 
alls the helper. The normalization of elem k (l :: ls), goes thus:
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ontext j
ontext 
 expr . term : hlabel : termi

[with℄

�;� 
 ` . l

s

�;� 
 e . s : S

(�

s

;�

s

) (= strengthen(�; s; S)

l

x

(= abst(s; x ; l

s

) �

x

(= abst(s; x ;�

s

)

�;�

s

; x : S ; �

x

` hl

x

j x :T i : ?

�j�

s

; x : S ; �

x


 p . t : hl

x

j x :T i

�j� 
 ` j e fpg . let x 7! s : S : return (
all hl

x

j x i t) : hl

s

: let x 7! s : S :T i

Fig. 12. Elaboration of `with' notation


all helem k (l :: ls)i List-re
 : : :

;

�


all helem k (l :: ls)i return (
all helem k (l :: ls) j (
all hk == li : : :)i : : :)

; 
all helem k (l :: ls) j (
all hk == li : : :)i : : :

Correspondingly, when 
he
king typeProj k (h
ons

X

l x h)p jk == l f: : :g, we start

in the 
ontext

k ; l : Label; : : : ; p : So (
all helem k (l :: ls) j (
all hk == li : : :)i : : :)

The term being abstra
ted, k == l , elaborates to the same (
all hk == li : : :) as is

found in the type of p, so the subprogram is 
he
ked in the 
ontext

k ; l : Label; b : Bool; : : : ; p : So (
all helem k (l :: ls) j bi : : :)

Of 
ourse, the hk == li 
all is abstra
ted from the term implementing the helem : : :i


all, not just from the label. The subsequent analysis of b then allows the type of

p to redu
e further. The [with℄ rule gives the 
orre
t behaviour for valProj too,

with abstra
tion from types working even harder to our bene�t.

6 Views: a programming idiom

We have shown how abstra
ting an intermediate 
omputation 
an have useful e�e
ts

on types whi
h depend on it. Case analysis on an intermediate value 
an also

instantiate other patterns, if that value 
omes from a dependent family. In this

se
tion, we will illustrate this possibility, and show how it leads to an a

ount of

views, as proposed by Wadler (Wadler, 1987).

It is a 
ommonpla
e to equip a datatype with an ordering by implementing a binary

operator returning an element of the enumeration Ordering, given by flt; eq; gtg. For

N, we might write

let

m;n : N


mpm n : Ordering


mp 0 0 7! eq


mp 0 (sn) 7! lt


mp (sm) 0 7! gt


mp (sm) (sn) 7! 
mpm n

We might then write the absDi� fun
tion, by inspe
ting the result of an interme-

diate 
omparison:
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let : : : absDi� m n j 
mpm n

j

j lt 7! n �m

j

j eq 7! 0

j

j gt 7! m � n

A minor problem with this approa
h is that subtra
tion for N must return bogus

answers when its se
ond argument is the larger, in order to be a total fun
tion.

More annoying is the fa
t that 
mp has basi
ally done the subtra
tion, but thrown

the answer away. We 
ould get around this by extending Ordering with di�eren
e

information, but datatype families o�er a more subtle approa
h.

We 
an de�ne a binary relation on N, with three 
anoni
al ways to show that two

given numbers are 
omparable:

data

x ; y : N

Compare x y

where

lt x y : Compare x (x + sy)

eq x : Compare x x

gt x y : Compare (y + sx ) y

Of 
ourse, every two numbers are 
omparable in one of these three ways. We 
an

prove this by writing a program not mu
h more 
omplex than 
mp above:

let


ompare x y : Compare x y


ompare 0 0 7! eq 0


ompare 0 (sn) 7! lt 0 n


ompare (sm) 0 7! gtm 0


ompare (sm) (sn) j 
omparem n


ompare (sx ) (s(x + sy))

j

j lt x y 7! lt (sx ) y


ompare (sx ) (sx )

j

j eq x 7! eq (sx )


ompare (s(y + sx )) (sy)

j

j gt x y 7! gt x (sy)

What has happened here? For the base 
ases, it is easy to 
hoose the appropriate


onstru
tor and its arguments. To 
ompare sm with sn, however, we must `update'

the result of 
omparing m with n, hen
e we abstra
t it. But when we analyse a

value in the datatype Comparem n, the arguments m and n be
ome instantiated

via the more informative 
onstru
tor types. Inspe
ting an intermediate value has

simultaneously told us more about the arguments from whi
h it was 
omputed.

Analysing the value of 
omparem n now does the job of 
omparison, subtra
tion,

max and min. We 
an now write

let : : : absDi� m n j 
omparem n

absDi� x (x + sy)

j

j lt x y 7! sy

absDi� x x

j

j eq x 7! 0

absDi� (y + sx ) y

j

j gt x y 7! sx

The instantiated patterns now make quite 
lear the relationship between the inputs
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and the outputs in ea
h 
ase. We emphasize again that the nonlinear and `+'

patterns do not require any ingenious operational behaviour: this is just a 
learer

way to write programs with basi
ally the same operation as 
mp.

One 
an perhaps imagine other suites of related testing and sele
tion fun
tions being


ombined into more general analysis methods whi
h deliver informative patterns:

Haskell's takeWhile, dropWhile, exists, all, . . . ea
h extra
t di�erent fun
tion-

ality from the 
ommon pro
ess of applying a test su

essively to the elements of a

list until it su

eeds (or fails). By giving that pro
ess a type whi
h shows whether

and how the list is split at a parti
ular point, all of these fun
tions, together with

parti
ular instan
es like elem, 
an be 
ombined. We leave this as an exer
ise.

The 
urious thing about 
omparem n is that on
e we have seen the patterns it

yields for m and n, we no longer 
are about its a
tual value! The 
olumn of patterns

with lt, and so on, in absDi� is unne
essary noise. We 
an tidy up this idiom of

testing and sele
tion by examining 
ase analysis over an indu
tively de�ned relation.

6.1 From relations to views

Wadler's original views proposal (Wadler, 1987) �ts well with the notion of user-

de�ned elimination operators. He suggests that any (possibly abstra
t) datatype T

may be equipped with a notion of pattern mat
hing by de�ning an isomorphism

between T and a datatype D: elements of T may be mat
hed against or built by

D's 
onstru
tors d

1

; : : : ; d

n

, with the 
ompiler inserting either 
omponent of the

isomorphism, out : T ! D or in : D ! T , as required. Of 
ourse, there is no

guarantee that in and out are either total or mutually inverse. In our setting, su
h

a view may be expressed by repla
ing out with an elimination operator,

T -view : 8t :T : 8P :T ! ?:

(8~x

1

:

~

X

1

: P (d

1

~x

1

)) !

.

.

.

(8~x

n

:

~

X

n

:P (d

n

~x

n

)) !

P t

where d

i

is the de�ned operation by whi
h in interprets d

i

. Moreover, this type

makes it 
lear that the t we put in is exa
tly the (d

i

~x

i

) we get out.

It is easy to extra
t these eliminators from programs like 
ompare above. To see

how, examine the following two typed terms:

N-
ompare m n :

8P : N ! N ! ?:

(8x ; y : P x (x + sy)) !

(8x : P x x ) !

(8x ; y : P (y + sx ) y ) !

P m n

Compare-
ase (
omparem n) :

8P

0

:8

m

: 8

n

:Comparem n ! ?:

(8x ; y : P

0

x

(x+sy)

(lt x y) ) !

(8x : P

0

x x

(eq x ) ) !

(8x ; y : P

0

(y+sx)

y

(gt x y) ) !

P

0

m n

(
omparem n)
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ontext 
 expr . term : term

[view℄

� 
 e . t : D

~

t

� ` D-
ase t : 8P

0

: (8

�

: D� ! ?): : : : (8�

i

: P

0

~s

i

(


i

�

i

)) ! : : : ! P

0

t

� 
 view e . �P :8�: ? : D-
ase t (�

�

: � :D �: P �)

: 8P :8�: ? : : : : (8�

i

: P ~s

i

) ! : : : ! P

~

t

Fig. 13. Elaboration of view

These are almost the same, ex
ept that P

0

(on the right) takes an extra argument|

the a
tual value from the Compare family. However, given a 
andidate motive P for

N-
ompare, we 
an 
hoose to instantiate P

0

with

P

0

7! �

m;n

: � :Comparem n: P m n

This motive ignores its Compare argument and applies P to just the indi
es|the

patterns we wish to keep. Observe then that the following judgment holds:

�P : 8m;n :N: ? :

Compare-
ase (
omparem n)

(�

m;n

: �
 :Comparem n: P m n)

: 8P : N ! N ! ?:

(8x ; y : P x (x + sy)) !

(8x : P x x ) !

(8x ; y : P (y + sx ) y ) !

P m n

We have just built N-
ompare! This 
onstru
tion is just what we mean by the


on
rete syntax view 
omparem n. Figure 13 shows the elaboration rule.

There is a general re
ipe for establishing that a type T 
an be viewed via patterns

p

1

(over �

1

) to p

n

(over �

n

)|it readily extends to views of ve
tors of values. First,

de
lare the relation

data

t : T

View�T t : ?

where

�

1




1

�

1

: View�T p

1

� � �

�

n




n

�

n

: View�T p

n

Se
ond, write the 
overing fun
tion whi
h shows that the view applies to all of T :

let

view-T t : View�T t

: : :

The view may be invoked in a fun
tion using the `by' 
onstru
t,

lhs ( view view-T t fprogramsg

Indeed, as view t is meaningful for any t whi
h belongs to a datatype, we 
an, in

parti
ular, use view to show the e�e
t on patterns of the 
overing fun
tion's own

re
ursive 
alls. The a
tual 
ode for 
ompare in Figure 14 demonstrates this.

What we have done is to explain non-standard `pattern mat
hing' via the re�nement

of index information whi
h naturally a

ompanies the standard notion of 
ase anal-

ysis for datatype families, whilst hiding their a
tual 
onstru
tors. We hope that the

intermediate data stru
tures we 
on
eal when a view is invoked 
an also be elim-
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let


omparem n : Comparem n


ompare 0 0 7! eq 0


ompare 0 (sn) 7! lt 0 n


ompare (sm) 0 7! gtm 0


ompare (sm) (sn) ( view 
omparem n


ompare (sx ) (s(x + sy)) 7! lt (sx ) y


ompare (sx ) (sx ) 7! eq (sx )


ompare (s(y + sx )) (sy) 7! gt x (sy)

Fig. 14. Comparison of natural numbers

inated from 
ompiled 
ode by deforestation, a te
hnique for whi
h we also have

Wadler to thank (Wadler, 1990).

Wadler 
on
eived his view notation as synta
ti
 sugar for the insertion of mutually

inverse 
oer
ions between datatypes, one of whi
h admits pattern-mat
hing, the

other potentially abstra
t. The idea that a signature for an abstra
t data stru
ture

might hide its a
tual representation, but nonetheless export a notion of `pattern

de
omposition', over
omes a genuine problem in the engineering of modular 
ode.

Programming with su
h programmer-de�nable patterns is exa
tly what the( 
on-

stru
t permits, with the bonus that the interfa
e is given by a type whi
h 
an be

required of an exported method in the usual way. Moreover, this type pre
isely wit-

nesses the `no junk' dire
tion of the bije
tion: Wadler is for
ed by an inexpressive

type system to trust the programmer.

The presentation of views through datatype families also makes it easy to state a

`no 
onfusion' property, by stipulating that the 
overing fun
tion view-T delivers

the only possible value in ea
h 
ase. We des
ribe a view for whi
h this property

holds as unambiguous. To prove that su
h a property holds, we write a program

with the following signature:

let

x : View�T t

view-T -unique x : view-T t = x

� � �

7 An extended example: type
he
king

This se
tion shows views in a
tion. We develop a type
he
ker for Chur
h-style pre-

terms in simply-typed �-
al
ulus. Our language of simple type expressions has a

base type and fun
tion spa
es:

data

TExp : ?

where

o : TExp

S ;T : TExp

S ) T : TExp

Contexts are represented (ba
k-to-front) by lists � : List TExp of su
h. We use

a de Bruijn index (de Bruijn, 1972) representation of variables, rendered in type

theory as usual by the datatype family Fin : N ! ?, where Fin n has n elements.
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data

n : N

Fin n : ?

where

� : Fin sn

i : Fin n

" i : Fin sn

Our sour
e language, Exprn, is the datatype of well-s
oped but untyped expressions

with n free variables, the pre-terms. This is quite 
lose to the representation of

untyped terms in (Bird & Paterson, 1999).

data

n : N

Expr n : ?

where

i : Fin n

eVar i : Expr n

f ; s : Expr n

eApp f s : Expr n

S : TExp t : Expr (sn)

eLam S t : Expr n

Our aim is to write a type
he
ker for pre-terms, relative to a given 
ontext �, of

length j�j; we implement the type
he
ker for expressions in Expr j�j, by de�ning

three views respe
tively:

� for looking up variables in the 
ontext;

� for testing equality of simple types;

� for type
he
king pre-terms.

Ea
h of these views has a similar 
avour: they 
apture the extra
tion of stru
tured

data (like well-typed terms or error diagnosti
s) from less stru
tured data (like

pre-terms) by showing that the latter 
an be viewed as the forgetful image of the

former. Let us warm up by 
onsidering variables.

7.1 The �nd view

We may de�ne the membership relation of a list indu
tively as follows:

data

xs : ListX x : X

In xs x : ?

where

� : In (x :: xs) x

i : In xs y

" i : In (x :: xs) y

An element of In xs x en
odes a referen
e to a parti
ular x in a list xs. We think

of su
h a referen
e as a de Bruijn index into a list, labelled by the x to whi
h it

points, whi
h is why we have overloaded the 
onstru
tors. We shall use In � S to

represent variables of type S over 
ontexts � in our de�nition of well-typed terms.

There is an obvious forgetful map ji j

x

from In to Fin, whi
h strips the label. We

usually overload su
h forgetful maps as j�j, supers
ripting what the map forgets,

if we ourselves wish to remember it.

let

i : In xs x

ji j

x

: Fin jxs j

j�j

x

7! �

j" i j

x

7! " ji j

x

If we have an unlabelled index in Fin jxsj, we 
an look it up in xs by `unforgetting'

the label. That is, we explain how every unlabelled index arises as the forgetful

image of a labelled index, by means of the following view :
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data

xs : ListX i : Fin jxsj

Find xs i : ?

where

i : In xs x

found x i : Find xs ji j

x

let

�nd xs i : Find xs i

�nd (x :: xs) � 7! found x �

�nd (x :: xs) (" i) ( view �nd xs i

(" ji j

x

) 7! found x (" i)

This program fragment shows how we use this view:


he
k � (eVar i) ( view �nd � i

(eVar ji j

S

) 7! � � �

7.2 The type of well-typed terms

Now that we 
an represent typed variables, let us de�ne the well-typed terms, in a

similar fashion to (Altenkir
h & Reus, 1999):

data

� : List TExp T : TExp

Term � T : ?

where

i : In � S

var i : Term � S

t : Term (S :: �) T

lam S t : Term � (S ) T )

f : Term � (S ) T ) s : Term � S

app f s : Term � T

These 
onstru
tors just give the typing rules in syntax-dire
ted form. There is an

obvious forgetful map from Term to Expr:

let

t : Term � T

jt j

T

: Expr j�j

jvar i j

S

7! eVar ji j

S

jlam S t j

S)T

7! eLam S jt j

T

japp f s j

T

7! eApp jf j

S)T

js j

S

7.3 The eq? view

Imagine we are in the pro
ess of type
he
king an appli
ation. On one hand, we have

a fun
tion, whi
h we have 
he
ked has an )-type: that is, we have some jf j

S)T

.

On the other, we have an argument, whi
h is some well-typed term js j

A

. What we

do not yet know is whether S and A are the same. How will we �nd out?

We 
ould 
ompute the value of S == A, the usual Boolean equality test. If false,

the appli
ation is ill-typed, so we 
an reje
t it. But if true, whilst we may know

that == tests equality the type
he
ker just knows that S ;A : TExp; true : Bool. A

su

essful == test does not tell the type
he
ker that S and A are the same, hen
e

we 
annot yet build app f s . The trouble is that a Bool is a bit uninformative. We


an remedy this by presenting equality via a view.

As usual, we de
lare a relation
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The positive 
ases of eq?

let

eq? S T : Eq? S T

eq? o o 7! same

eq? o (S

2

) T

2

) 7! di� ?

1

eq? (S

1

) T

1

) o 7! di� ?

2

eq? (S

1

) T

1

) (S

2

) T

2

) ( view eq? S

1

S

2

eq? (S ) T

1

) (S ) T

2

) ( view eq? T

1

T

2

eq? (S ) T ) (S ) T ) 7! same

eq? (S ) T ) (S ) T

0

nT ) 7! di� ?

3

eq? (S ) T

1

) (S

0

nS ) T

2

) 7! di� ?

4

Filling in the negative 
ases

data

S : TExp

Isnt S : ?

where let

T : Isnt S

TnS : TExp

[?

1

℄

isnto S

2

T

2

: Isnt o

isnto S

2

T

2

n o 7! S

2

) T

2

[?

2

℄

isnt) S

1

T

1

: Isnt (S

1

) T

1

)

isnt) S

1

T

1

n (S

1

) T

1

) 7! o

[?

3

℄

T

0

: Isnt T

isntRT

0

: Isnt (S ) T )

isntRT

0

n (S ) T ) 7! S ) T

0

nT

[?

4

℄

S

0

: Isnt S T

2

: TExp

isntL S

0

T

2

: Isnt (S ) T

1

)

isntL S

0

T

2

n (S ) T

1

) 7! S

0

nS ) T

2

Fig. 15. The equality view

data

S ;T : TExp

Eq? S T : ?

where

same : Eq? S S

T : Isnt S

di� T : Eq? S (TnS )

The �rst 
onstru
tor is 
lear enough, but what is this Isnt S , and what is (SnT )?

The former is a type representing eviden
e of di�eren
e from S , and the latter is

its forgetful map ba
k to TExp (whi
h binds more tightly than )). We do not

write jT j

S

, to avoid 
lashing with the forgetful map for Term. There are many

ways to de�ne Isnt. One obvious 
andidate is to use existential quanti�
ation (or

dependent pairs).

Isnt S 7! 9T : TExp: S = T ! ? (T ; p)nS 7! T

Another possibility is to de�ne Isnt by re
ursion on S . We shall de
lare it as a

datatype family, but we defer the de�nition until after our �rst attempt to write

the 
overing fun
tion, eq?. At the top of Figure 15, we write what we 
an without

fully de
laring Isnt.

Now, we need elements of Isnt types in four pla
es|two for `di�erent 
onstru
tors',

and two for di�eren
es left or right of). The easiest way to de�ne Isnt is just to give

it 
onstru
tors for these 
ases, pa
king up exa
tly the information available where

they are used. The 
onstru
tor forms de
lared at the bottom of Figure 15 go in the

`holes in the program' as indi
ated. Or rather, the 
onstru
tor forms 
ome from
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The positive 
ases of 
he
k

data

� : List TExp e : Expr j�j

Che
k � e : ?

where

t : Term � T

term T t : Che
k � jt j

T

err : Error �

error err : Che
k � jerr j

let


he
k � e : Che
k � e


he
k � (eVar i ) ( view �nd � i


he
k � (eVar ji j

S

) 7! term S (var i)


he
k � (eLam S t ) ( view 
he
k (S :: �) t


he
k � (eLam S jt j

T

) 7! term (S ) T ) (lam S t)


he
k � (eLam S jerr j) 7! error ?

1


he
k � (eApp f s ) ( view 
he
k � f


he
k � (eApp jf j

o

s ) 7! error ?

2


he
k � (eApp jf j

S)T

s ) ( view 
he
k � s


he
k � (eApp jf j

S)T

jsj

A

) ( view eq? S A


he
k � (eApp jf j

S)T

jsj

S

) 7! term T (app f s)


he
k � (eApp jf j

S)T

jsj

AnS

) 7! error ?

3


he
k � (eApp jf j

S)T

jerr j ) 7! error ?

4


he
k � (eApp jerr j s ) 7! error ?

5

Filling in the negative 
ases

data

� : List TExp

Error � : ?

where let

e : Error �

jej : Expr j�j

[?

1

℄

err : Error (S :: �)

bodyE S err : Error �

jbodyE S err j 7!

eLam S jerr j

[?

2

℄

f : Term � o s : Expr j�j

notFunE f s : Error �

jnotFunE f sj 7!

eApp jf j

o

s

[?

3

℄

f : Term � (S ) T ) s : Term � (AnS)

mismat
hE f s : Error �

jmismat
hE f sj 7!

eApp jf j

S)T

jsj

AnS

[?

4

℄

f : Term � (S ) T ) err : Error �

argE f err : Error �

jargE f err j 7!

eApp jf j

S)T

jerr j

[?

5

℄

err : Error � s : Expr j�j

funE err s : Error �

jfunE err sj 7!

eApp jerr j s

Fig. 16. The type
he
king view

the holes in the program as indi
ated. The forgetful map is generated a

ordingly.

We see no reason why, in an intera
tive setting, we 
annot extra
t the `remainder'

family from the unsolved programming problems.

We are now ready to write the type
he
ker.
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7.4 The 
he
k view

We de�ne type
he
king as a view Che
k � e on 
ontexts and pre-terms, expressing

any e : Expr j�j as the forgetful image either of a Term, or of an Error. Again, we

shall defer giving the 
onstru
tors of Error until we have identi�ed the holes in the

program 
he
k � e whi
h establishes the view. At the top of Figure 16, we develop

the algorithm as usual, by 
ase analysis on e, followed by re
ursive 
alls to 
he
k:

� in the eVar 
ase, there is nothing further to do, as variables are well-s
oped;

it suÆ
es to look up the type from the 
ontext, using the �nd view;

� in the eLam 
ase, we type
he
k the body in an extended 
ontext;

� in the eApp 
ase, we su

essively 
he
k �rst the fun
tion, then the argument,

and �nally mat
h the 
omputed types using the eq? view.

The view of ea
h re
ursive 
all on 
he
k, yields two 
ases, a

ording as type
he
king

su

eeds or fails; in the 
ase of su

ess, the pattern lays bare pre
isely the data

required for the next 
all. As with the equality view, we now 
hoose 
onstru
tors

and de�ne a forgetful map for Error with whi
h we 
an �ll in the �ve remaining holes,

pa
king up the information exposed by ea
h of the possible sour
es of type
he
king

failure|see the bottom of Figure 16.

The fun
tion 
he
k is not just a program: it is a proof that type
he
king is de
idable

for the pre-terms. It does not merely say `yes' or `no', but rather explains ea
h pre-

term as deriving, by a forgetful map, either from a well-typed term or an error

term. Its type guarantees that the term being 
he
ked really is the term it is given.

Its analysis is 
on
isely stated and imposes the 
onditions for well-typedness (and

its 
omplement) just as they are expressed by the typing rules.

Moreover, as its re
ursive 
alls show, it represents these two possibilities in a `pat-

tern mat
hing' style, visibly delivering either a well-typed term whi
h may be passed

to an ex
eption-free interpreter in the style of Augustsson and Carlsson (Augusts-

son & Carlsson, 1999), or a useful error diagnosti
. The latter lo
ates the leftmost

type error in a pre-term. It 
ould easily be adapted to �nd every appli
ation of a

well-typed non-fun
tion or mismat
hed appli
ation between two well-typed terms|

useful information not only for error reporting, but also for type debugging and

repair, as investigated by M
Adam (1999).

Epilogue

The main dis
overy we have made in the light of this resear
h is how little is known,

not least by ourselves, about fun
tional programming with dependent types. It is no

longer 
redible to 
on
eive of dependently typed programming merely as a means to

relegitimize programs whi
h were lost to us when we moved from untyped languages

to the Hindley-Milner system. We take its inherent 
omplexity as an opportunity,
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rather than a problem, and in so doing, we see emerging a very di�erent possibility

for de
larative programming, whi
h we have barely begun to explore.

This paper has introdu
ed a spe
i�
 programming notation on top of an existing

type theory, and shown in detail, through examples and a skeletal formal de�nition

whi
h explains how the main 
onstru
ts are translated, some of the power, as well

as weight, that is available in this new world. We have extended the notion of

`pattern mat
hing' to embra
e any user-de�nable stru
tured de
omposition of data

on the left, in
luding the use of, and interplay with, intermediate 
omputations and

result types. We have further related our work spe
i�
ally to two proposals in the

fun
tional programming 
ommunity for extensions to the 
lassi
al notion of pattern

mat
hing, Peyton Jones' pattern guards (1997), and Wadler's views (1987).

The former remarks that the potential uses of pattern guards are, 
an, and should

be ubiquitous, as they allow \a useful 
lass of programs to be written mu
h more

elegantly". We would 
ertainly argue that this is all the more surely the 
ase in our

setting|with the greater expressivity available with dependent types, that 
lass of

programs be
omes mu
h more interesting. And in our notation, we would argue,

without any loss of that elegan
e. Neither we, nor anyone else for that matter, have

even begun to exhaust the possibilities of programming in su
h a style.

As to the latter, we have given a thorough analysis of how views may be pre-

sented using dependent types, as well as variety of examples of views, and uses

of views not previously 
onsidered in the literature. Our general pi
ture allows us

to 
onsider partial and ambiguous views, to explore trade-o�s between re
ursive

and non-re
ursive views, as well as looking at termination proofs and varieties of

re
ursion indu
tion (Bove & Capretta, 2001).

More generally, we take the explosion of power whi
h dependent types bring to

programming, as delineated in Se
tion 3 as a 
ue to re-evaluate design 
hoi
es

about the language within whi
h we express programs, the tools with whi
h we


onstru
t programs, and the programs we 
hoose to write in the �rst pla
e. This

in
ludes reassessing the interfa
es and implementations of standard data stru
tures

and algorithms, no less than any other programs.

We believe that su
h new languages, tools and libraries as emerge in the future

will also pro�t 
onsiderably from the experien
e gained in the wider domain of

intera
tive problem-solving with dependent types. While we have downplayed that

aspe
t of our resear
h in this paper, our new analysis of the left-hand sides of

fun
tional programs is strongly rooted in logi
al 
onsiderations and the te
hniques

whi
h are supported by existing intera
tive proof assistants based on type theory.

We intend in future work to elaborate on these aspe
ts, and the 
ontribution our

notation may make to de
larative proof.

There is mu
h work to do here in building su
h a future|in Durham, we have

dubbed our programme of resear
h Epigram, embra
ing language, meta-theory,

implementation and appli
ations. The �rst author's experimental extensions to
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Lego (1999; 2002) provided ta
ti
s for indu
tive proof supporting the 
onstru
-

tions whi
h underpin the [by℄ and [with℄ elaboration rules. These ta
ti
s are suÆ-


ient to develop the examples in this paper, but do not support a 
on
rete syntax

for programs as su
h.

This paper lays the groundwork for a formal language de�nition for Epigram;

we are now working on a new prototype implementation based on this de�nition.

Clearly many interesting issues remain to be explored, not least at the run-time

level, studying the operational behaviour of elaborated programs.

In 
losing, we return to Wadler, 
rediting him with the insight that, by 
onstru
ting

views, we 
an and should 
hoose to adapt our per
eptions of data to mat
h our


on
eptions of data. We are able to reify his views dire
tly, by using dependent

types, and by our treatment of the left. So hurrah for Wadler! Wel
ome to the new

programming.
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