
IS2

1

SHA-256 in FPGA
Damian B. Fedoryka

Abstract— SHA-256, or Secure Hash Algorithm-256, is one of

the latest hash functions standardized by the U.S. Federal
Government. This paper outlines an implementation of this new
standard in FPGA. First, the standard is defined, followed by a
description of our design and implementation. Finally the results
of the synthesis tests are given along with a comparison to similar
tests on a comparable FPGA implementation of the previous
FIPS standard, SHA-1, as well as another new standard, SHA-
512.

Index Terms—collision resistance, digest, hash, signature

I. INTRODUCTION
Hash functions map a message of arbitrary length to n-bit

hash values, called a message digest. A hash function is
typically a serially looped function in which subsequent
intermediate blocks are dependent on previous blocks. As a
result any change in the message will result in a change in the
digest with high probability. Hash functions are used
primarily in message authentication, where the hash of a given
message acts as a “fingerprint” for that message. A
cryptographically strong hash function has the following
properties1:

One-way property – given a code h, it is computationally

infeasible to find an x such that H(x) = h.
Weak collision resistance – given a block x, it is

computationally infeasible to find y such that H(x) = H(y).
Strong collision resistance –computationally infeasible to

find a pair (x,y) , x ≠ y, such that H(x) = H(y).

An attack against finding a message corresponding to a

given n-bit hash (property a) requires computations on the
order of about 2n. On the other hand, according to the
birthday paradox2, a collision attack requires significantly
fewer computations – 2n/2 attempts result in a 50% probability
of success. As a result an n-bit hash function provides a level
of security of n/2 bit against collision attacks. Until recently,
the Federally standardized hash algorithm was SHA-1, a 160-
bit hash offering 80 bits of collision resistance. With the
recent introduction of AES, offering security levels of 128,

192 and 256-bits, SHA-1 no longer offers a level of security
to match the encryption standard. Three new standards were
approved to match the three security levels of AES: SHA-256,
SHA-384 and SHA-512.

1 There is no set naming convention for these properties. Often two or
three properties are combined under a single title.

2 The birthday paradox states that the probability of any two persons in a
group who share any birthday is significantly greater than finding a person in
that group whose birthday matches a particular member of the group. In the
latter case, the probability surpasses 0.5 in a group of only 28 persons.

II. SHA-256 DESCRIPTION

A. General
SHA-256 accepts messages with arbitrary lengths up to 264-
bits. The message is divided into uniform-size blocks each of
which is run through a compression function loop of 64
iterations. Intermediate hash values are rerouted back into the
compression loop. The final hash output is 256-bits in length.

B. Preprocessing
As with other popular hashing functions, with SHA-256 the

message to be hashed is first padded so that its final length is a
multiple of 512 bits. The message is padded as follows: given
a message M of length l, append a “1” to the message
followed by k zeros, where k is the smallest non-negative
solution to the equation l + 1 + k ≡ 448 mod 512, followed by
a 64-bit block whose value is l in binary form. The message is
then parsed into N 512-bit blocks, M(1), M(2), . . ., M(N). Each
block i is divided into 15 sub-blocks, M(i)

0, M(i)
1, . . . M(i)

15.

Fig. 1a Message preprocessing: parsing.

 Fig. 1b Message preprocessing: padding

IS2

2

C. Definitions
SHA-256 uses the following six logical functions:

Ch(x,y,z) = (x ^ y) ⊕ (¬x ^ z)
Maj (x,y,z) = (x ^ y) ⊕ (x ^ z) ⊕ (y ^ z)
Σ0(x) = S2(x) ⊕ S 13(x) ⊕ S 22(x)
Σ1(x) = S 6(x) ⊕ S 11(x) ⊕ S 25(x)
σ0(x) = S 7(x) ⊕ S 18(x) ⊕ R3(x)
σ1(x) = S 17(x) ⊕ S 19(x) ⊕ R10(x)

where

^ = bit-wise OR
⊕ = bit-wise XOR
¬ = bit-wise inversion
S i = i-bit right rotate
R i = i-bit right shift

D. The Algorithm

The message, M is expanded by a Message Scheduler

according to the following function:

For j = 0,1,2, . . . , 15: W = Mj

(i) and
For j = 16 to 63
{
 Wj ← σ1(Wj-2) + Wj-7 + σ0(Wj-15) + Wj-16
}

SHA-256 uses a set of 64 defined constants3, K1 K2,, . . .,

K63 [FIPS].
The hash function proceeds according to the following:

For i = 1 to N
{

Initialize registers a,b,c,d,e,f,g,h with the (i-1)st
intermediate hash value

Apply the following compression function to registers a-
h:
For j = 0 to 63
{

T1 ← h + Σ1(e) + Ch(a,b,c) + Kj + Wj

T2 ← Σ0(a) + Maj(a,b,c)
h ← g
g ← f
f ← e
e ← d + T1

d ← c
c ← a
b ← a
a ← T1 + T2

}

3 The constants are derived from the cubed root of the first 64 primes.

ith intermediate hash:
H1

(i) ← a + H1
(i-1)

H2
(i) ← b + H2

(i-1)

…
H8

(i) ← h + H8
(i-1)

}

The hash of M:
 H(N) = (H1

(N) , H2
(N) , . . . , H8

(N))

III. DESIGN

A. Basic Architecture
The upper-most level of hash function architecture consists

of four main units: preprocessing unit, message scheduler,
message digest and control unit (cf. Fig. 1).

Fig. 2 Block diagram of SHA-256

The message scheduler is depicted in Fig. 2. For cycles 1-

16 the mux outputs the unexpanded message. After 16 clocks
all 16 registers are loaded and the mux outputs the value of the
rotated/shifted and added register values. The mux is reset
after 64 clocks. The message scheduler output is fed into the
W input of the digest unit. The digest unit (Fig. 3) begins on
clock 0 with the V0 value selected on mux0. These 8 32-bit
vectors are loaded into the register bank, which consists of 8
32-bit registers. These registers are loaded once per 512-bit
message block (on clock=0), at which point mux0 outputs Vi
instead of V0. Mux1 selects the output of reg0 on clock=0; for
clock=1 to 63, mux1 selects the looped back intermediate hash
value. Figure 4 illustrates the architecture of the compression
function. The function computes once per clock.

IS2

3

Fig. 3 Message scheduler

Fig. 4 High-level description of Message Digest Unit

On the 64th iteration the current register values must be
added to the Vi vector. This addition occurs in the initial
vector addition box of Fig. 4.

Fig. 5 Inner compression loop (un-optimized)

Figure 5 shows a detail of the Vi addition process. Using
mux2, a zero vector (32 zeros) is added to the hash value on
each cycle. Only on the 63rd cycle does the mux select the
output of register_0 instead of the zero vector. Although it
adds an addition to every compression loop, this design
prevents the need to add an extra clock cycle after each
intermediate hash computation for the addition of the Vi
vector.

Fig. 6 Initial vector addition module

Figure 6 illustrates the control logic used to set the muxes.
These signals are also used to enable the registers.

Fig. 7 Control architecture

IV. SIMULATION AND TESTING

A. Coding
The unit was modeled in VHDL on Xilinx ModelSim XE

Starter. The code for all units was completed with the
exception of the preprocessing unit. The high-level entity
sha_256 consisted of components corresponding to the block
diagram descrption of the algorithm (cf. Fig 2): Message
scheduler, control module and digest. The major components
of all entities were 32-bit registers, 32-bit 2-to-1 muxes. 32-
bit comparators were used in the control module to switch
muxes and enable registers. All shift and rotate functions
were achieved by simple signal re-routing, either in the
structural code or as separate components (as opposed to
functions). In the current design the control module utilizes a
single counter that is reset after 64 iterations. All units were
tied to a common clock and global reset.

Since the preprocessing unit was not completed, message
padding and parsing was done in the test bench. The 64
defined constants were also input through the test bench.
These constants will most likely be input by the pre-
processing unit. Test vectors were obtained from the FIPS
specification paper. Two test vectors were used during

IS2

4

simulation – one to represent single block messages, the other
for multi-block messages. The single-block message was the
text “abc” while the multiblock message consisted of the text
“abcdbcdecdefdefgefghfghighijhijkijkljklmkl-
mnlmnomnopopq.” Intermediate and final hash values for
these vectors were provide in the FIPS specification for
verification.

B. Simulation
The clock period was arbitrarily set at 20 ns. Message and

SHA constants were input to the high-level entity on the first
clock rise after reset went low. Register_1 was loaded with
V0 on count 1. The intermediate hash value was read from the
output of register_2 after a one-clock delay to allow for multi-
operand addition delay. On count = 64 the current message
block is completed and mux2 is switched to add the Vi vector
to the intermediate hash value. This value is loaded into
register_0 and loop begins again for next block. The final
hash value is available at register_2 after N block iterations.

At the time this paper was being drafted the simulation
yielded correct intermediate hash values until clock = 16 at
which point the expanded message is input to the digest.
After this point intermediate hash values did not match the
example values. Debugging indicates either a timing
mismatch between the scheduler and digest unit or improper
message expansion.

C. Test Results
The target FPGA device chosen was the Xilinx Virtex

XCV-1000-C. It is composed of 27,648 Configurable Logic
Cells (CLB) slices and has a maximum performance rate of up
to 200 Mhz. Timing and resourced analysis was performed on
Synplicity’s Synplify 9.0. The results of the timing and
resource analysis are as follows:

Per cycle propagation delay: 25.289 ns (worst)
Calculated frequency: 39.5 MHz
Throughput:
(Block size * Frequency ÷ Digest Rounds) 316 Mbps

Total mapping summary4: 1038 LUTs

Table 1 shows a comparison to similar implementations5 of

SHA-1 and SHA-512.

4 Synplify results yielded a total usage of 944 LUTs/61%. Since the

preprocessor unit was not implemented at testing time, an additional estimated
10% was added to allow for it.

5 Note: Both the SHA-1 and SHA-512 implementations utilized a 5-to-3
counter optimization.

Fig. 8 Throughput comparison to other implementations [Mbps]

Fig. 9 Minimum clock period comparison to other implementations [ns]

D. Adder Operand Optimization
In a basic architecture, the critical path of the circuit begins

at reg_h, travels through the four CPAs and through the CPA
on the a-bus/d-bus for a total of 32 bits x 5 FA
 delays = 160 FA delays. By using a 5-to-3 and 3-to-2 CSA
counter design (Fig. 7) the critical path can be reduced to 3
FA + 32 FA CSA counters implemented.

Fig. 10 Six operand addition with and without CSA reduction

IS2

5

Fig. 11 Digest with 5-to-3 & 3-to-2 Counters

This optimization design was not functioning proprerly as
this paper was being drafted. Based on the reduced carry
propagation delays, a conservative estimate in clock period
reduction is 20% (4 levels instead of 5), or 20.23 ns. This
would yield a throughput rate of 395 Mbps (Figs. 8 & 9). Of
course these results have not been attained and would have to
be verified.

Fig. 12 Digest with 5-to-3 & 3-to-2 Counters

Fig. 13 Digest with 5-to-3 & 3-to-2 Counters

E. Future Development
This implementation of the hash algorithm is an

implementation of a basic architecture. There are a number of
optimizations that should result in significant improvements,
including an increase in bandwidth and a decrease in circuit
area. Future development plans for this implementation
include the use of a 5-to-3 Counter in the digest unit. The
Counter will reduce the critical path in the digest unit from
five CPAs to three. Bit-slices of the counter can be
implemented on a single CLB slice of the XCV-1000-C, so
circuit areas will not increase significantly with this
optimization. An additional optimization is unrolling the

architecture of the algorithm, which should yield significantly
higher throughput rates. Since circuit area on this initial
implementation most likely contains redundancy, it is
expected that some reduction of area will be achieved through
further development. Future plans also include experimental
testing using the PCI FPGA board, SLAAC-1V.

V. SUMMARY
An initial basic and un-optimized implementation of this

newly standardized hash algorithm demonstrates that the
higher security offered by SHA-256 does not necessarily
come at a cost to speed and area. Certainly future
optimization will improve the results of testing. Future design
optimizations and testing should show that the SHA-256
algorithm offers some advantage over the more secure SHA-
384 and SHA-512.

ACKNOWLEDGMENT
A special thanks to Dr. Kris Gaj for his support and

guidance. Thanks also to Msrs. Roar Lien, Tappan Desai and
Pawel R. Chodowiec for their assistance in the labs.

REFERENCES
[1] W. Stallings, "Cryptography and Network Security," 2nd Edition, Upper

Saddle River, NJ: Prentice-Hall, Inc., 1999.
[2] P.J. Ashendon, “The Designer’s Guide to VHDL,” San Francisco,

CA: Morgan Kaufman, 1996.
[3] FIPS 180-2 Secure Hash Standard –

http://wwcsrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
[4] K. Gaj, et al., “Comparative Analysis of the Hardware Implementations

of Hash Functions SHA-1 and SHA-512,” Fairfax, VA: George Mason
University, 2001.

http://wwcsrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf

	INTRODUCTION
	SHA-256 Description
	General
	Preprocessing
	Definitions
	The Algorithm

	Design
	Basic Architecture

	Simulation and Testing
	Coding
	Simulation
	Test Results
	Adder Operand Optimization
	Future Development

	Summary

