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SHA-256 in FPGA 
Damian B. Fedoryka 

  
Abstract— SHA-256, or Secure Hash Algorithm-256, is one of 

the latest hash functions standardized by the U.S. Federal 
Government.  This paper outlines an implementation of this new 
standard in FPGA.  First, the standard is defined, followed by a 
description of our design and implementation.  Finally the results 
of the synthesis tests are given along with a comparison to similar 
tests on a comparable FPGA implementation of the previous 
FIPS standard, SHA-1, as well as another new standard, SHA-
512. 
 

Index Terms—collision resistance, digest, hash, signature 
 

I. INTRODUCTION 
Hash functions map a message of arbitrary length to n-bit 

hash values, called a message digest.  A hash function is 
typically a serially looped function in which subsequent 
intermediate blocks are dependent on previous blocks.  As a 
result any change in the message will result in a change in the 
digest with high probability.  Hash functions are used 
primarily in message authentication, where the hash of a given 
message acts as a “fingerprint” for that message.  A 
cryptographically strong hash function has the following 
properties1: 

 
One-way property – given a code h, it is computationally 

infeasible to find an x such that H(x) = h. 
Weak collision resistance – given a block x, it is 

computationally infeasible to find y such that H(x) = H(y). 
Strong collision resistance –computationally infeasible to 

find a pair (x,y) , x ≠ y, such that H(x) = H(y). 
 
An attack against finding a message corresponding to a 

given n-bit hash (property a) requires computations on the 
order of about 2n.  On the other hand, according to the 
birthday paradox2, a collision attack requires significantly 
fewer computations – 2n/2 attempts result in a 50% probability 
of success.  As a result an n-bit hash function provides a level 
of security of n/2 bit against collision attacks.  Until recently, 
the Federally standardized hash algorithm was SHA-1, a 160-
bit hash offering 80 bits of collision resistance.  With the 
recent introduction of AES, offering security levels of 128, 

192 and 256-bits, SHA-1 no longer offers a level of security 
to match the encryption standard.  Three new standards were 
approved to match the three security levels of AES: SHA-256, 
SHA-384 and SHA-512.  

 
 

1 There is no set naming convention for these properties.  Often two or 
three properties are combined under a single title. 

2 The birthday paradox states that the probability of any two persons in a 
group who share any birthday is significantly greater than finding a person in 
that group whose birthday matches a particular member of the group.  In the 
latter case, the probability surpasses 0.5 in a group of only 28 persons. 

 

II. SHA-256 DESCRIPTION 

A. General 
SHA-256 accepts messages with arbitrary lengths up to 264-
bits.  The message is divided into uniform-size blocks each of 
which is run through a compression function loop of 64 
iterations.  Intermediate hash values are rerouted back into the 
compression loop.  The final hash output is 256-bits in length. 

B. Preprocessing 
As with other popular hashing functions, with SHA-256 the 

message to be hashed is first padded so that its final length is a 
multiple of 512 bits.  The message is padded as follows: given 
a message M of length l, append a “1” to the message 
followed by k zeros, where k is the smallest non-negative 
solution to the equation l + 1 + k ≡ 448 mod 512, followed by 
a 64-bit block whose value is l in binary form.  The message is 
then parsed into N 512-bit blocks, M(1), M(2), . . ., M(N).  Each 
block i is divided into 15 sub-blocks, M(i)

0, M(i)
1, . . . M(i)

15. 
 

 
Fig. 1a  Message preprocessing: parsing. 

 Fig. 1b Message preprocessing: padding 
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C. Definitions 
SHA-256 uses the following six logical functions: 
 
Ch(x,y,z) = (x ^ y) ⊕ (¬x ^ z) 
Maj (x,y,z) = (x ^ y) ⊕ (x ^ z) ⊕ (y ^ z) 
Σ0(x) = S2(x) ⊕ S 13(x) ⊕ S 22(x)  
Σ1(x) = S 6(x) ⊕ S 11(x) ⊕ S 25(x) 
σ0(x) = S 7(x) ⊕ S 18(x) ⊕ R3(x)  
σ1(x) = S 17(x) ⊕ S 19(x) ⊕ R10(x) 
 
where 
 
^ = bit-wise OR 
⊕ = bit-wise XOR 
¬ = bit-wise inversion 
S i = i-bit right rotate  
R i = i-bit right shift 
 

D. The Algorithm 
 
The message, M is expanded by a Message Scheduler 

according to the following function: 
 
For j = 0,1,2, . . . , 15: W = Mj

(i) and 
For j = 16 to 63 
{ 
 Wj ← σ1(Wj-2) + Wj-7 + σ0(Wj-15) + Wj-16  
} 
 
SHA-256 uses a set of 64 defined constants3, K1 K2,, . . ., 

K63 [FIPS]. 
The hash function proceeds according to the following: 
 
For i = 1 to N 
{ 

Initialize registers a,b,c,d,e,f,g,h with the (i-1)st 
intermediate hash value 

Apply the following compression function to registers a-
h: 
For j = 0 to 63 
{ 

T1 ← h + Σ1(e) + Ch(a,b,c)  + Kj + Wj 

T2 ← Σ0(a) + Maj(a,b,c) 
h ← g  
g ← f  
f ← e  
e ← d + T1

d ← c 
c ← a  
b ← a  
a ← T1 + T2

} 

 
3 The constants are derived from the cubed root of the first 64 primes. 

ith intermediate hash: 
H1

(i) ← a  + H1
(i-1)

H2
(i) ← b  + H2

(i-1)

… 
H8

(i) ← h  + H8
(i-1)

} 
 
The hash of M: 
 H(N) = (H1

(N) , H2
(N) , . . . , H8

(N) )  
 

III.  DESIGN  
 

A. Basic Architecture 
The upper-most level of hash function architecture consists 

of four main units: preprocessing unit, message scheduler, 
message digest and control unit (cf. Fig. 1). 

 

 
 
Fig. 2 Block diagram of SHA-256 

 
The message scheduler is depicted in Fig. 2.  For cycles 1-

16 the mux outputs the unexpanded message.  After 16 clocks 
all 16 registers are loaded and the mux outputs the value of the 
rotated/shifted and added register values.  The mux is reset 
after 64 clocks.  The message scheduler output is fed into the 
W input of the digest unit.  The digest unit (Fig. 3) begins on 
clock 0 with the V0 value selected on mux0.  These 8 32-bit 
vectors are loaded into the register bank, which consists of 8 
32-bit registers.  These registers are loaded once per 512-bit 
message block (on clock=0), at which point mux0 outputs Vi 
instead of V0. Mux1 selects the output of reg0 on clock=0; for 
clock=1 to 63, mux1 selects the looped back intermediate hash 
value.  Figure 4 illustrates the architecture of the compression 
function.  The function computes once per clock.   
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Fig. 3 Message scheduler 

 

 
Fig. 4 High-level description of Message Digest Unit 
 

On the 64th iteration the current register values must be 
added to the Vi vector.  This addition occurs in the initial 
vector addition box of Fig. 4. 

 
Fig. 5 Inner compression loop (un-optimized) 
 

Figure 5 shows a detail of the Vi addition process.  Using 
mux2, a zero vector (32 zeros) is added to the hash value on 
each cycle.  Only on the 63rd cycle does the mux select the 
output of register_0 instead of the zero vector.  Although it 
adds an addition to every compression loop, this design 
prevents the need to add an extra clock cycle after each 
intermediate hash computation for the addition of the Vi 
vector.  

 
Fig. 6 Initial vector addition module 
 

Figure 6 illustrates the control logic used to set the muxes.  
These signals are also used to enable the registers. 

 

 
 
Fig. 7 Control architecture 

 

IV. SIMULATION AND TESTING 

A. Coding  
The unit was modeled in VHDL on Xilinx ModelSim XE 

Starter.  The code for all units was completed with the 
exception of the preprocessing unit.  The high-level entity 
sha_256 consisted of components corresponding to the block 
diagram descrption of the algorithm (cf. Fig 2): Message 
scheduler, control module and digest.  The major components 
of all entities were 32-bit registers, 32-bit 2-to-1 muxes.   32-
bit comparators were used in the control module to switch 
muxes and enable registers.  All shift and rotate functions 
were achieved by simple signal re-routing, either in the 
structural code or as separate components (as opposed to 
functions).  In the current design the control module utilizes a 
single counter that is reset after 64 iterations.  All units were 
tied to a common clock and global reset. 

Since the preprocessing unit was not completed, message 
padding and parsing was done in the test bench.  The 64 
defined constants were also input through the test bench.  
These constants will most likely be input by the pre-
processing unit.  Test vectors were obtained from the FIPS 
specification paper.  Two test vectors were used during 
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simulation – one to represent single block messages, the other 
for multi-block messages.  The single-block message was the 
text “abc” while the multiblock message consisted of the text 
“abcdbcdecdefdefgefghfghighijhijkijkljklmkl-
mnlmnomnopopq.”  Intermediate and final hash values for 
these vectors were provide in the FIPS specification for 
verification.   

B. Simulation  
The clock period was arbitrarily set at 20 ns.  Message and 

SHA constants were input to the high-level entity on the first 
clock rise after reset went low.  Register_1 was loaded with 
V0 on count 1.  The intermediate hash value was read from the 
output of register_2 after a one-clock delay to allow for multi-
operand addition delay.  On count = 64 the current message 
block is completed and mux2 is switched to add the Vi vector 
to the intermediate hash value.  This value is loaded into 
register_0 and loop begins again for next block.  The final 
hash value is available at register_2 after N block iterations. 

At the time this paper was being drafted the simulation 
yielded correct intermediate hash values until clock = 16 at 
which point the expanded message is input to the digest.  
After this point intermediate hash values did not match the 
example values.  Debugging indicates either a timing 
mismatch between the scheduler and digest unit or improper 
message expansion. 

 

C. Test Results 
The target FPGA device chosen was the Xilinx Virtex 

XCV-1000-C.  It is composed of 27,648 Configurable Logic 
Cells (CLB) slices and has a maximum performance rate of up 
to 200 Mhz.  Timing and resourced analysis was performed on 
Synplicity’s Synplify 9.0.  The results of the timing and 
resource analysis are as follows: 
 

Per cycle propagation delay:     25.289 ns (worst) 
Calculated frequency:       39.5 MHz 
Throughput: 
(Block size * Frequency ÷ Digest Rounds)    316 Mbps 
 
Total mapping summary4:      1038 LUTs 
 
Table 1 shows a comparison to similar implementations5 of 

SHA-1 and SHA-512. 

 
4 Synplify results yielded a total usage of 944 LUTs/61%.  Since the 

preprocessor unit was not implemented at testing time, an additional estimated 
10% was added to allow for it. 

5 Note: Both the SHA-1 and SHA-512 implementations utilized a 5-to-3 
counter optimization. 

 
Fig. 8 Throughput comparison to other implementations [Mbps] 
 

 
Fig. 9 Minimum clock period comparison to other implementations [ns] 

D. Adder Operand Optimization 
In a basic architecture, the critical path of the circuit begins 

at reg_h, travels through the four CPAs and through the CPA 
on the a-bus/d-bus for a total of 32 bits x 5 FA 
 delays = 160 FA delays.  By using a 5-to-3 and 3-to-2 CSA 
counter design (Fig. 7) the critical path can be reduced to 3 
FA + 32 FA CSA counters implemented. 

 

 
Fig. 10  Six operand addition with and without CSA reduction 
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Fig. 11 Digest with 5-to-3 & 3-to-2 Counters 
 

This optimization design was not functioning proprerly as 
this paper was being drafted.  Based on the reduced carry 
propagation delays, a conservative estimate in clock period 
reduction is 20% (4 levels instead of 5), or 20.23 ns.  This 
would yield a throughput rate of 395 Mbps (Figs. 8 & 9).  Of 
course these results have not been attained and would have to 
be verified. 

 

 
Fig. 12 Digest with 5-to-3 & 3-to-2 Counters 

 
Fig. 13  Digest with 5-to-3 & 3-to-2 Counters 

 

E. Future Development 
This implementation of the hash algorithm is an 

implementation of a basic architecture.  There are a number of 
optimizations that should result in significant improvements, 
including an increase in bandwidth and a decrease in circuit 
area.  Future development plans for this implementation 
include the use of a 5-to-3 Counter in the digest unit.  The 
Counter will reduce the critical path in the digest unit from 
five CPAs to three.  Bit-slices of the counter can be 
implemented on a single CLB slice of the XCV-1000-C, so 
circuit areas will not increase significantly with this 
optimization.  An additional optimization is unrolling the 

architecture of the algorithm, which should yield significantly 
higher throughput rates.  Since circuit area on this initial 
implementation most likely contains redundancy, it is 
expected that some reduction of area will be achieved through 
further development.  Future plans also include experimental 
testing using the PCI FPGA board, SLAAC-1V. 

 

V. SUMMARY 
An initial basic and un-optimized implementation of this 

newly standardized hash algorithm demonstrates that the 
higher security offered by SHA-256 does not necessarily 
come at a cost to speed and area.  Certainly future 
optimization will improve the results of testing.  Future design 
optimizations and testing should show that the SHA-256 
algorithm offers some advantage over the more secure SHA-
384 and SHA-512. 
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